Numerical methods for Ordinary Differential Equations

Let's consider the initial value problems for ordinary differential equations

$$y' = f(x, y); y(x_0) = y_0,$$

where f is a known funkcion of x and y, and x_0 , y_0 are given values.

1 Single-step methods: Runge-Kutta

The general Runge – Kutta method is in the form

$$k_{1} = hf(x_{n}, y_{n})$$

$$k_{2} = hf(x_{n} + \alpha_{1}h, y_{n} + \beta_{11}k_{1})$$

$$k_{3} = hf(x_{n} + \alpha_{2}h, y_{n} + \beta_{21}k_{1} + \beta_{22}k_{2})$$

$$\vdots$$

$$k_{j+1} = hf(x_{n} + \alpha_{j}h, y_{n} + \beta_{j1}k_{1} + \beta_{j2}k_{2} + \ldots + \beta_{jj}k_{j})$$

$$y_{n+1} = y_{n} + \gamma_{1}k_{1} + \gamma_{2}k_{2} + \ldots + \gamma_{j+1}k_{j+1}.$$

where the $\alpha_1, \ldots, \alpha_j, \beta_{11}, \ldots, \beta_{jj}, \gamma_1, \ldots, \gamma_j$ are constants to be determined. For this we use Taylor's expansion.

1.1 Modified Euler's method

$$k_1 = h f(x_n, y_n)$$

 $k_2 = h f(x_n + \frac{h}{2}, y_n + \frac{1}{2}k_1)$
 $y_{n+1} = y_n + k_2$.

The global error of this method is $\mathcal{O}(h^2)$.

1.2 Standard fourth-order Runge-Kutta method

$$k_1 = h f(x_n, y_n)$$

$$k_2 = h f(x_n + \frac{h}{2}, y_n + \frac{1}{2}k_1)$$

$$k_3 = h f(x_n + \frac{h}{2}, y_n + \frac{1}{2}k_2)$$

$$k_4 = h f(x_n + h, y_n + k_3)$$

$$y_{n+1} = y_n + (k_1 + 2k_2 + 2k_3 + k_4)/6.$$

The global error of this method is $\mathcal{O}(h^4)$.

Exercises:

1. Write a computer program that solve the initial value problem using fourth-order Runge-Kutta method. Apply this program with h=1/10 to find the solution of the following ODEs. Compare this results with the exact solutions.

(a)
$$y' = 1 - 2y$$
, $y(0) = 1$; $y(x) = \frac{1}{2}e^{-2x}(1 + e^{2x})$.

(b)
$$y' = (1 - y) y$$
, $y(0) = 1/2$; $y(x) = \frac{e^x}{1 + e^x}$.

(c)
$$y' = (1 + e^{2x}) y$$
, $y(0) = 1$; $y(x) = e^{x + \frac{e^{2x}}{2} - \frac{1}{2}}$.

(d)
$$y' = -y + \sin(x)$$
, $y(0) = 1/2$; $y(t) = \frac{1}{2} \left(-\cos(t) + 3e^{-t} + \sin(t) \right)$.

2. For each initial problem below, approximate the solution using the standard fourth–order Runge–Kutta method with sequence of decreasing grids $h = \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ For those problems when an exact solutions is given, compare the accuracy achieved over the interval [0,1] with theoretical accuracy.

(a)
$$y' = 1 - 4y$$
, $y(0) = 1$; $y(x) = \frac{1}{4}(3e^{-4x} + 1)$.

(b)
$$y' = -y \ln y$$
, $y(0) = 3$; $y(x) = e^{(\ln 3)e^{-x}}$.

(c)
$$y' + y^2 = 0$$
, $y(0) = 1$; $y(x) = \frac{1}{x+1}$.