Numerical methods for parabolic partial differential equations

Let's consider the linear parabolic equation with constant coefficients

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} . \tag{1}
\end{equation*}
$$

A more general equation (describing heat conduction or mass diffusion)

$$
\begin{equation*}
\frac{\partial u}{\partial \tau}=\sigma \frac{\partial^{2} u}{\partial x^{2}} \tag{2}
\end{equation*}
$$

can be converted to (1) by the substitution $t=\sigma \tau$.
The solution of equation (1) is often defined on a rectangle $D=[0,1] \times[0, T]$. The solution $u(x, t)$ satisfy the initial condition (the function $\varphi(x)$ is given)

$$
\begin{equation*}
u(x, 0)=\varphi(x), \quad 0<x<1 \tag{3}
\end{equation*}
$$

and a boundary condition

$$
\begin{equation*}
u(0, t)=u(1, t)=0 \tag{4}
\end{equation*}
$$

1 Simple explicit formula

Let us divide the interval $[0,1]$ in x into n subintervals by equidistant grid points

$$
x_{0}=0, x_{1}=h, x_{2}=2 h, \ldots, x_{n-1}=1-h, x_{n}=1,
$$

where $h=1 / n$ and $x_{i}=i h, i=0,1, \ldots, n$. Similarly the interval $[0, T]$ in t is divided into r equal parts by the grid points

$$
t_{0}=0, t_{1}=k, \ldots, t_{r}=T
$$

where the time step is $k=T / r$ and $t_{j}=j k, j=0,1, \ldots, r$. The set of nodes - the intersections of the lines $x=i h, i=0,1, \ldots, n$, and the lines $t=j k, j=0,1, \ldots, r$, forms a rectangular grid denoted by $D^{(h)}$. On this grid we can approximate the derivatives of the function u by the difference formulas for $i=1, \ldots, n-1, j=0, \ldots, r-1$:

$$
\begin{align*}
\left.\frac{\partial u}{\partial t}\right|_{\left(x_{i}, t_{j}\right)} & =\frac{u_{i}^{j+1}-u_{i}^{j}}{k}+\mathcal{O}(k) \tag{5}\\
\left.\frac{\partial^{2} u}{\partial x^{2}}\right|_{\left(x_{i}, t_{j}\right)} & =\frac{u_{i-1}^{j}-2 u_{i}^{j}+u_{i+1}^{j}}{h^{2}}+\mathcal{O}\left(h^{2}\right) \tag{6}
\end{align*}
$$

where we denote $u(i h, j k)=u\left(x_{i}, t_{j}\right) \doteq u_{i}^{j}$.

Consider the equation (1) in one node $\left(x_{i}, t_{j}\right) \in D^{(h)}$ and the approximation using (5) and (6):

$$
\begin{equation*}
\frac{u_{i}^{j+1}-u_{i}^{j}}{k}=\frac{u_{i-1}^{j}-2 u_{i}^{j}+u_{i+1}^{j}}{h^{2}}+\mathcal{O}\left(k+h^{2}\right) . \tag{7}
\end{equation*}
$$

Neglecting $\mathcal{O}\left(k+h^{2}\right)=\mathcal{O}(k)+\mathcal{O}\left(h^{2}\right)$, which is called the approximation error and using the initial condition (3) and the boundary conditions (4) we get the following difference problem:

$$
\begin{align*}
& u_{i}^{j+1}=\frac{k}{h^{2}}\left(u_{i-1}^{j}+u_{i+1}^{j}\right)+\left(1-\frac{2 k}{h^{2}}\right) u_{i}^{j}, \quad \begin{array}{l}
i=1,2, \ldots, n-1 \\
j=0,1, \ldots, r-1, \\
u_{i}^{0}=\varphi(i h), \quad i=1,2, \ldots, n-1, \\
u_{0}^{j}=0, \quad u_{n}^{j}=0, \quad j=0,1, \ldots, r .
\end{array} \tag{8}
\end{align*}
$$

It is easy to rewrite (8), (9) and (10) using profiles as

$$
\begin{align*}
\boldsymbol{u}^{j+1} & =\mathbf{A}_{1} \boldsymbol{u}^{j} \\
\boldsymbol{u}^{0} & =[0, \varphi(h), \varphi(2 h), \ldots, \varphi((n-1) h), 0]^{T} \tag{11}
\end{align*}
$$

where the matrix \mathbf{A}_{1} is three-diagonal

$$
\mathbf{A}_{1}=\left(\begin{array}{ccccccc}
0 & 0 & & & & & \tag{12}\\
\alpha & (1-2 \alpha) & \alpha & & & 0 & \\
& \alpha & (1-2 \alpha) & \alpha & & & \\
& & \ddots & \ddots & \ddots & \alpha & \\
& 0 & & \alpha & (1-2 \alpha) & \alpha & \alpha \\
& & & & & (1-2 \alpha) & \alpha \\
& & & & & 0 & 0
\end{array}\right)
$$

where

$$
\begin{equation*}
\alpha=\frac{k}{h^{2}} . \tag{13}
\end{equation*}
$$

If $\alpha \leq \frac{1}{2}$ then the method (11) is stable.

