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Technická 1905/5, 160 00 Praha 6.



Preface

The 4th Scientific Colloquium is dedicated to two of our colleagues, Prof. A. Kĺıč
and Prof. M. Kub́ıček, who have built the Department of Mathematics at Insti-
tute of Chemical Technology, Prague over the past 30 years. Under their guidance
the department lived its mathematical life, unified in stimulating discussions and
fruitful cooperation. Such an environment naturally motivated students to study
mathematics with deeper interest which resulted in acquiring new skills to solve
difficult technical problems.

Professor Alois Kĺıč started to work at our institute already in 1969. He is an
expert in the field of Complex Analysis, Differential Geometry and Dynamical
Systems.

Professor Milan Kub́ıček has been working at the Department of Chemical
Engineering since 1964 and at the Department of Mathematics since 1985. His
favorite subjects are Numerical Methods, Algorithms and Dynamical Systems.
He was one of the members of the research group that invented, nowadays the
world-wide used, method of continuation in dynamical systems. During the Col-
loquium, there will be two talks devoted to our honored colleagues. Professor
Miloš Marek from the Chemical Engineering Department ICT, Prague, and Pro-
fessor Ivo Marek from the Civil Engineering Faculty of the Technical University,
Prague, will remember the time spent with them, shared experiences and stories.

Mathematics is the science of pattern, order and relationships. It is the lan-
guage and logic of our technological world. Mathematical power is the ability
to explore and to use a variety of mathematical methods to solve engineering
problems effectively. The main purpose of the Colloquium is to exchange ideas,
discuss issues of common concern, establish contacts, and gather information
in the same field of research. Many of the contributions are closely related to
the need for mathematical modeling and simulation of physical and engineering
phenomena.

We have the pleasure to welcome several outstanding researchers from vari-
ous countries, namely from Germany, Italy, Japan, Slovakia, and Great Britain,
as well as distinguished Czech professors. We would like to thank all colleagues
and friends who helped us to organize this Colloquium.

June 2014, Prague Daniel Turźık
Head of the Department of Mathematics

Drahoslava Janovská
On behalf of the Organizing Committee
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Prof. RNDr. Vladimı́r Janovský, DrSc. janovsky@karlin.mff.cuni.cz
Charles University in Prague
Faculty of Mathematics and Physics
Department of Numerical Mathematics
Prof. Ing. Igor Schreiber, CSc. Igor.Schreiber@vscht.cz
Institute of Chemical Technology Prague
Faculty of Chemical Engineering
Department of Chemical Engineering
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jarosf@vscht.cz

5



6



Contents

Analysis and applications of the space-time discontinuous Galerkin method 9
Miloslav Feistauer

Exponential stability of solutions of nonlinear differential equations with
Riemann-Liouville fractional integrals in the nonlinearities . . . . . . . . . . . . . . 10

Milan Medved’

The algebraic Riccati equation with matrix entries from noncommutative
algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Gerhard Opfer

Reaction network analysis of oscillatory instabilities in a model of noxious
components removal in the three-way catalytic converter . . . . . . . . . . . . . . . . 22
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Seven Conjectures On Lucky Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Pavla Pavĺıková
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Analysis and applications of the space-time
discontinuous Galerkin method

Miloslav Feistauer

Charles University Prague, Faculty of Mathematics and Physics

Abstract

The subject of the lecture is the analysis of the space-time discontinuous Galer-
kin method for the solution of nonstationary, nonlinear, convection - diffusion
problems and dynamic elasticity. In the formulation of the numerical scheme,
the nonsymmetric, symmetric and incomplete versions of the discretization of
diffusion terms and interior and boundary penalty are used. Error estimates are
characterized and then the attention is paid to the investigation of unconditional
stability of the method. Theoretical results are accompanied by numerical exper-
iments. In the second part the application to the solution of dynamic elasticity
problem and fluid-structure interaction will be mentioned.

The results were obtained in cooperation with Monika Balázsová, Martin
Hadrava, Adam Kośık and Jaromı́r Horáček.
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Exponential stability of solutions of nonlinear
differential equations with Riemann-Liouville

fractional integrals in the nonlinearities

Milan Medved’

Department of Mathematical Analysis and Numerical Mathematics,
Faculty of Mathematics, Physics and Informatics,

Comenius University
Mlynská dolina, 842 48 Bratislava, Slovakia

e-mail: Milan.Medved@fmph.uniba.sk

Keywords: Riemann-Liouville integral, Caputo’s derivative,
exponential stability, fractionally damped pendulum.

Abstract We study a nonlinear fractional differential equations with
power nonlinearities containing Riemann-Liouville fractional integrals of
different fractional orders in the nonlinearities. Equations of this type
can be obtained e.g. from fractionally damped second order differential
equations with a fractional damping terms, depending on the Caputo’s
fractional derivatives. An example of such type of equations is the frac-
tionally damped pendulum or fractionally damped oscillator. Using a
desingularization method a sufficient condition for the exponential sta-
bility of the zero solution of this type of equations is proved.

1 INTRODUCTION

Fractional Calculus and the theory of fractional differential equations have be-
come very useful in many applications in applied sciences. Fundamentals of this
calculus and the theory of fractional differential equations can be found in the
book by K. Miller and B. Ross [22]. The book by I. Podlubny [28] contains a
very good introduction to the theory of fractional differential equations. Funda-
mentals of this theory can be found also in the books [13] and [10].

Fractional differential equations of the Caputo’s type in an explicit general
form can be defined as equations of the form

cDαx(t) = (1)

F
(
x(t), x′(t), . . . , x(k)(t),cDβ1x(t), . . . ,cDβmx(t), Iα1x(t), . . . , Iαlx(t)

)
,

where cDαx(t),cDβ
i x(t), i = 1, 2, . . . ,m are the Caputo’s fractional derivatives

and Iαj x(t), j = 1, 2, . . . , l are the Riemann-Liouville fractional integrals of x(t)
defined below.

The fractional differential equations are recently very intensively studied.
However even linear fractional differential equations are very complicated. There
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are many differences between the theory of ordinary differential and the theory of
fractional differential equations. The most close to the dynamical system defined
by the autonomous differential equation

ẋ(t) = f(x), x ∈ Rn

is the fractional differential equation

cDαx(t) = f(x(t)), x ∈ Rn.

Real solutions of the equation f(x) = 0 are constant solutions, or equilibrium
points, respectively, for the both equations. Generic results for the autonomous
differential equations and vector fields on manifolds and generic results on bi-
furcations of one-parameter families of vector fields, locally defined as equations
of the form

ẋ(t) = g(x, µ), x ∈ Rn, µ ∈ R, (2)

are proved in details in the monograph [20]. The books [9] and [1] contain many
results and information on dynamical systems, bifurcation theory, on chaotic
properties of different mathematical models of mechanical systems, electronic
systems, chemical and biological systems and hydrodynamical systems.

From the generic results (see [20]) it follows that the set of K(g) := {(x, µ) ∈
Rn × R : g(x, µ) = 0}, where g : Rn × R → Rn, f ∈ Cr, r ≥ 3 is generically a
one-dimensional Cr-submanifold of Rn×R and the set of all bifurcation points,
where the saddle node or the Hopf bifurcations appear, consists of isolated points.
The set K(g) is also the set of equilibrium points of the one-parameter family
of fractional differential equation

cDαx(t) = g(x(t), µ), x ∈ Rn, µ ∈ Rn.

However the generic bifurcations of these fractional differential equations have
not been studied yet. There are no results about an existence of a ”center man-
ifold” which plays an important role in the theory of generic bifurcations for
dynamical systems. The stability results for equilibrium points of fractional dif-
ferential equations are much more complicated than those for the dynamical
systems (see e. g. [13], [15] and [27]). Many problems concerning generic proper-
ties and bifurcations of fractional differential equations, their numerical analysis
and their applications remain open.

In this paper we study equations of the type (1), where α is a natural number
and the right-hand side is independent of the Caputo’s derivatives.

An example of equation of this type is the well known Bargley-Torvik equa-
tion

u′′(t) +AcD
3
2u(t) = au(t) + φ(t), (3)

(see [31]) modelling the motion of a rigid plate immersing in a viscous liquid
with the fractional damping term AcD

3
2u(t).

Solutions of the linear fractionally damped oscillator equation with the Cap-
uto’s derivative are analyzed in the paper [23]. Interesting results concerning
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boundary value problems for the following generalized Bagely-Torvik equation

u′′(t) +A cDαu(t) = f(t, u(t),cDβu(t), u′(t)) (4)

and for some further fractional differential equations are published in the papers
[1], [2], [24] and [30]. We were motivated by the paper [29], where an existence
and uniqueness result for the initial value problem

Au′′ +
N∑
k=1

Bk
cDαku(t) = f(t, u), u(0) = u0, u

′(0) = c1, (5)

0 < αk < 2, k = 1, 2, . . . , N

is proved. The Caputo’s fractional derivatives in the equation (5) play there the
role of damping terms. This type of equations can be written as a system of
differential equations with the Riemann-Liouville integrals on their right-hand
sides (see Section 2). Abstract evolution equations with fractional derivatives in
the nonlinearities are studied in the paper [11].

This paper is concerned with the following initial value problem

ẋ(t) = Ax(t) + f

(
t, x(t), (Iα1 [g1x])(t), . . . , (Iαm [gmx])(t)

)
, x(t) ∈ Rn, (6)

x(0) = x0, (7)

where A is a constant matrix, 0 < α < 1, , f : R×Rn×Rn → Rn is a continuous
map,gi : R×Rn → Rn, (t, x) 7→ gi(t, x), i = 1, 2, . . . ,m are continuous maps,

(
Iαi [gix]

)
(t) := 1

Γ (αi)

∫ t

0
(t− s)αi−1gi(s, x(s))ds, 0 < αi < 1 (8)

- the Riemann-Liouville fractional integrals of the function [gix](t) := gi(t, x(t))
of order αi.

In the paper [21] a theorem on the nonexistence of blowing-up solutions for a
delay fractional differential equation of the type (6) is proved. In the paper [12]
a similar theorem is proved for the delay equation of the type (6) with m = 1.
In this paper we study the stability problem for the equation (6).

Fractionally damped pendulums or oscillators are studied e. g. in the papers
[23], [29], where also some further papers devoted to this type of equations can
be found in the list of references.

The following equation is a fractionally ordinary damped pendulum with the
damping term λx′(t) :

x′′(t) +λ1
cDβ1x(t) + . . . λm

cDβmx(t) +λx′(t) +ω2x(t),= g(t, x(t), x′(t)), t > 0,

where
cDβix(t) = 1

Γ (1− βi)

∫ t

0
(t− s)−βix′(s)ds
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is the Caputo’s derivative of the function x(t) of order βi ∈ (0, 1). The fractional
damping terms are

λ1
cDβ1x(t), . . . , λm cDβmx(t).

If we denote z1(t) = x(t), y2(t) = x′(t), z(t) = (z1(t), z2(t))T then we can write
this equation as a system of the form (4).

In the paper [23] the equation

x′′ + λc0D
αx+ ω2x = 0, x(0) = x0, x

′(0) = x1, λ > 0.

is analyzed by using the fractional version of the Laplace transformation.
The Laplace image of x(t) is

X(s) = sx0 + x1 + λsα−1x0

s2 + λsα + ω2

and equation

s2 + λsα + ω2 = 0.

is the characteristic equation for the fractional differential equation.
If α = p

q , then the characteristic equation is

s2 + λs
p
q + ω = 0.

This type of equations is analyzed e. g. in [26], [27] and [23].
It is clear that the exact analysis of linear fractional systems is extraordinary

difficult. Some analysis and simulations of fractional-order systems can be found
in the book [26] and in the paper [27].

The form of the equation (4) enables us to avoid these difficulties in the study
of the stability problem by using a desingularization method developed in the
papers [17], [18], [19].

2 BIHARI INTEGRAL INEQUALITY
AND ITS FRACTIONAL VERSION

In this section we recall the well-known Bihari inequality (see e. g. [3], [4], [5], [7]
and [25]) and its generalizations to integral inequalities with weakly singular
kernels which are recently frequently used in the theory of fractional differential
equations.

Theorem 1. . Let F (t) be a continuous, nonnegative function on [a,∞), c is
a nonnegative constant, ω(u) is a continuous, nonnegative and nondecreasing
function on [0,∞), positive for u > 0 and let u(t) be a continuous, nonnegative
function satisfying the integral inequality

u(t) ≤ c+
∫ t

a

F (s)ω(u(s))ds, t ≥ a.
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Then
u(t) ≤ Ω−1

(
Ω(c) +

∫ t

a

F (s)ds
)
, t ≥ a.

Ω(v) =
∫ v

v0

dσ

ω(σ) , v ≥ v0 > 0.

Corollary 1. . If ω(u) = u, then

u(t) ≤ ce
∫ t
a
F (s)ds

, t ≥ a

- the Gronwall inequality.

Corollary 2. If ω(u) = um, m > 1 and∫ ∞
a

F (s)ds < 1
(m− 1)cm−1

then
u(t) ≤ c(

1− (m− 1)cm−1
∫ t
a
F (s)ds

) 1
m−1

, t ≥ a.

Corollary 3. . If ω(u) = um, 0 < m < 1, then

u(t) ≤
(
c1−m + (1−m)

∫ t

a

F (s)ds
) 1

1−m

, t ≥ a.

Singular version of the Bihari inequality, studied in the papers [17] - [19], is
an inequality of the form

u(t) ≤ c+
∫ t

0
(t− s)α−1F (s)ω(u(s))ds, t ≥ 0,

where u(t), F (t), c are as in Theorem 1 and 0 < α < 1.
If ω(u) = u, F (t) ≡ b, where b > 0 is a constant, then by [8] this inequaity

yields

u(t) ≤ c+ bΘ

∫ t

0
E′α(Θ(t− s))ds,

where

Θ = (bΓ (α)) 1
α , Eα(z) =

∞∑
n=0

znα

Γ (nα+ 1) , E
′
α(z) = d

dz
Eα(z).

The proof of this result is obtained by an iteration argument. However it is clear
that this method is not applicable to the nonlinear case. We have developed a
method of desingularization of the nonlinear singular integral inequality in the
papers [17]- [19] which enables to reduce this inequality to the Bihari case. We
will use this method also in the next section in the proof of a stability theorem.
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3 EXPONENTIAL STABILITY
OF FRACTIONALLY PERTURBED
DIFFERENTIAL EQUATIONS

In the stability theory of ordinary differential equations, Lyapunov’s direct method,
called also the second Lyapunov’s method, is frequently used. It is also used in
the theory of partial and integral equations. This method has been success-
fully applied also for fractional differential equations (see e. g. the papers [14]
and [15]). The stability of integral and fractional differential equations by an
application of the second Lyapunov’s method is studied in the monograph by T.
A. Burton [6]. However this method is not applicable to a wide class of systems
not having the Lyapunov’s function. One of the most effective method applicable
to this class of systems is the method of integral inequalities. We present a result
on the exponential stability of a class of fractional differential equations with its
proof, where the method of integral inequalities with weakly singular kernels is
applied.

Theorem 2. Let the following conditions be satisfied:
(H1)

‖eAtx‖ ≤ Ke−at‖x‖

for all t ≥ 0, x ∈ Rn, i.e. all eigenvalues of the matrix A have negative real parts;
(H2)
Let f : R×Rn ×Rnm → Rn be a continuous mapping with

‖f(t, u, w1, . . . , wm)‖ ≤

P (t)e−γt‖u‖k + S1e
−ω1t‖w1‖k + · · ·+ Sme

−ωmt‖wm‖k

for all (t, u, . . . , wm) ∈ R+×Rn×Rnm, where P (t) is a continuous, nonnegative
function on [0,∞), Sj , j = 1, 2, . . . ,m are nonnegative constants, γ > 0, ωj >
0, j = 1, 2 . . .m, k > 0 are constants;

(H3)
Let gj : R×Rn → Rn, j = 1, 2, . . . ,m are continuous mappings with

‖gj(t, w)‖ ≤ Rj(t)‖w‖k

for all (t, w) ∈ R×Rn, where Rj(t) are nonnegative, continuous functions;
(H4)
There exist numbers pj > 1, j = 1, 2, . . . ,m such that pj(αj − 1) + 1 > 0 and∫ ∞

0
P (s)qds <∞,

∫ ∞
0

Rj(s)qjds <∞, j = 1, 2, . . . ,m,

where qj = pj
pj−1 , q = q1q2 . . . qm;
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(H5)
γ > a(1 + k), ωj > 1 + a, j = 1, 2, . . . ,m,

Then the following assertions hold:
(A1) If 0 < k ≤ 1, then the trivial solution of the initial value problem (4),

(5) is exponentially stable for any initial value x0.

(A2) If k > 1, then the trivial solution of the initial value problem (4), (5)
is exponentially stable for ‖x0‖ small enough.

We shall need the following lemma in the proof of this theorem.

Lemma 1. Let pj , αj , j = 1, 2, . . . ,m satisfy the condition (H4). Then∫ t

0
(t− s)pj(αj−1)epjsds ≤ Qjepjt, t ≥ 0, j = 1, 2, . . . ,m,

where
Qj = Γ (1 + pj(αj − 1))

p1+pj(αj−1) ,

Γ (u) is the Gamma function.

For the proof of this lemma see [17].

Proof :
Let x(t) be a solution of the initial value problem (4), (5) defined on [0,∞) and
u(t) = ‖x(t)‖eat, C = K‖x0‖, S = max{Sj : j = 1, 2, . . . ,m}. Then (H1)− (H4)
yields

u(t) ≤ C +K

∫ t

0
e−[γ−(1+k)]asP (s)u(s)kds+

KS

m∑
j=1

∫ t

0
e−(ωj−a)s

∫ s

0
(s− τ)αj−1Rj(τ)e−akτu(τ)kdτds,

Using the Hölder inequality and Lemma 1 we can estimate∫ s

0
(s− τ)αj−1Rj(τ)e−akτu(τ)kdτ ≤

(∫ s

0
(s− τ)pj(αj−1)epjτdτ

) 1
pj
(∫ s

0
e−(1+ak)qjτRj(τ)qju(τ)kqjdτ

) 1
qj

≤

Qes
(∫ s

0
e−(1+ak)qjτRj(τ)qju(τ)kqjdτ

) 1
qj

,

where Q = max{Qj : j = 1, 2, . . . ,m} and∫ s

0
e−[γ−(1+k)a]τP (τ)u(τ)kdτ ≤

∫ s

0

(
e−[γ−(1+k)a]pτdτ

) 1
p
(∫ s

0
P (τ)qu(τ)kqdτ

) 1
q

,
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where q = q1q2 . . . qm, p = q
q−1 . These two inequalities yield the following estim-

ate for u(t) :

u(t) ≤ C + 1
γ − (1 + k)a

(∫ t

0
P (s)qu(s)qds

) 1
q

+

KSQ

m∑
j=1

∫ t

0
e−[ωj−(1+a)]s

(∫ s

0
e−(1+ak)qjτRj(τ)kqju(τ)kqjdτ

) 1
qj

≤

C + 1
γ − (1 + k)a

(∫ t

0
P (s)qu(s)qds

) 1
q

+

KSQ
m∑
j=1

1
ωj − (1 + a)

(∫ t

0
e−(1+ak)qjτRj(τ)kqju(τ)kqjdτ

) 1
qj

.

Therefore there are positive constants D1, D2 such that

u(t) ≤ C+D1

(∫ t

0
P (s)qu(s)qds

) 1
q

+D2

m∑
j=1

(∫ t

0
e−(1+ak)qjτRj(τ)kqju(τ)kqjdτ

) 1
qj

.

Using the elementary inequality(m+2∑
i=1

ai

)q
≤ (m+ 2)q−1

m+2∑
i=1

aqi

for any nonnegative numbers a1, a2, . . . , am we obtain

u(t)q ≤ (m+ 2)q−1[Cq +Dq
1

∫ t

0
P (s)qu(s)qds+

Dq
2

m∑
j=1

(∫ t

0
e−(1+ak)qjτRj(τ)kqju(τ)kqjdτ

)q̂j
,

where q̂j = q1q2 . . . qj−1qj+1 . . . qm. The Hölder inequality yields∫ t

0
e−(1+ak)qjτRj(τ)kqju(τ)kqjdτ ≤

(∫ t

0
e−(1+ak)qj p̂jτdτ

) 1
p̂j
(∫ t

0
Rj(τ)qu(τ)kqdτ

) 1
q̂j

≤ 1
(1 + ak)qj

(∫ t

0
Rj(τ)qu(τ)kqdτ

) 1
q̂j

,

where p̂j = q̂j
q̂j−1 . Therefore we have the inequality

u(t)q ≤ (m+ 2)q−1Kq‖x0‖q +H1

∫ t

0
P (s)qu(s)kqds+H2

m∑
j=1

∫ t

0
Rj(s)qu(s)kqds
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form some constants H1, H2. Thus we have the inequality for v(t) = u(t)q :

v(t) ≤ (m+ 2)q−1Kq‖x0‖q +
∫ t

0
F (s)v(s)kds,

where

F (t) = H1P (t)q +H2

m∑
j=1

∫ t

0
Rj(s)ds

From the condition (H4) it follows that
∫∞

0 F (s)ds <∞ and therefore we have:
If k = 1, then the Gronwall inequality yields

v(t) ≤ G1 = (m+ 2)q−1Kq‖x0‖q
∫ ∞

0
F (s)ds <∞

and thus u(t) = v(t)
1
q ≤ G

1
q

1 for all t ≥ 0
or

‖x(t)‖ ≤ (m+ 2)
q−1
q K‖x0‖e−at, t ≥ 0

If 0 < k < 1, then by the Corollary 3

v(t) ≤ G1 =
(

[(m+ 2)q−1Kq‖x0‖q]1−k + (1− k)
∫ ∞

0
F (s)ds

) 1
1−k

, t ≥ 0 <∞

and thus
‖x(t)‖ ≤ G

1
q

2 e
−at t ≥ 0.

If k > 1, then by the Corollary 2

v(t) ≤ G3 = (m+ 2)q−1Kq‖x0‖q(
1 + (k − 1)[(m+ 2)q−1Kq‖x0‖q]k−1

∫∞
0 F (s)ds

) 1
k−1

, t ≥ 0.

Obviously G3 <∞ for ‖x0‖ sufficiently small,

‖x(t)‖ ≤ G
1
q

3 e
−at, t ≥ 0

and the proof is complete.

Acknowledgments: This work was supported by the Slovak Grant Agency
VEGA No. 1/0071/14.
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20. M. Medveď: Fundamentals of Dynamical Systems and Bifurcation Theory , Adam
Hilger, Bristol, Philadelphia and New York 1992.
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The algebraic Riccati equation with matrix
entries from noncommutative algebras

Gerhard Opfer

University of Hamburg

Keywords: Algebraic Riccati equation, quaternions, noncomutative algeb-
ras in R4, Newton method

Abstract

The equation mentioned in the title is the simplest nonlinear matrix equation

(∗) R(X) := XDX + CX + XB + A = 0, where

X ∈ Cm×n, D ∈ Cn×m, C ∈ Cm×m, B ∈ Cn×n, A ∈ Cm×n.

See e. g. Abou-Kandil, Freiling, Ionescu, Jank, 2003. The equation (*) mimics
the stationary solutions of the Riccati differential equation

ẋ(t) = d(t)x2(t) + b(t)x(t) + a(t) (see e. g. Reid, 1972).

The one dimensional equation (*) with X,D,C,B,A ∈ H where H stands for
the space of quaternions was recently solved by Janovská & O., 2013. In this talk
we want to discuss the case where the above C, the field of complex numbers,
is replaced with an algebra A in R4. The set of these algebras contains coqua-
ternions tessarines, cotessarines (Cockle, 1849) and others (Schmeikal, 2014).
Thus we consider (*) where the matrix entries are from A. Since explicit solu-
tions of (*) can in general not be expected, we show that the linearized version
of (*) is easy to derive by results from Lauterbach & O., 2014, and we will also
show by presenting numerical examples, that the corresponding Newton method
works very well and produces solutions of (*) for various algebras in R4.

The talk is based on joint research with Drahoslava Janovská, Institute of Chem-
ical Technology, Prague.

Acknowledgments: The research was supported by DFG, GZ OP 33/19-1.
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Reaction network analysis of oscillatory
instabilities in a model of noxious components
removal in the three-way catalytic converter

Otto Hadač and Igor Schreiber

Institute of Chemical Technology, Prague

Keywords: stoichiometric network, extreme currents, oscillatory subnet-
work, role of species, classification of chemical oscillators

Abstract This paper presents stability analysis of the reaction network
corresponding to the mechanism of simultaneous oxidation of carbon
monoxide CO, unburned hydrocarbons represented by acetylene C2O2
and reduction of nitrogen oxides NOx , taking place in the three-way
catalytic converter used in cars to remove noxious components from ex-
haust gases. We use stoichiometric network analysis as a methodology
for decomposing the entire mechanism into irreducible subnetworks (ex-
treme currents) and examining stability of corresponding steady states.
This methods allows for indication of those subnetworks, which may
within a range of kinetic parameters display instabilities leading to oscil-
lations. Within those subnetworks the major positive and negative feed-
backs are used to explain the oscillatory dynamics in chemical terms, i.e.,
the role of chemical species and classification of the oscillatory modes are
proposed.

1 Introduction

Although oscillatory dynamics in heterogeneous chemical reaction systems were
already discovered in the 19th century [1], the research on oscillations in the
course of catalytic CO oxidation over Pt has not begun before the 1970s [2, 3].
Since then oscillatory surface reactions became a field of very active research
where some 65 oscillatory heterogeneous catalytic systems have been discovered
[4]. Most of these catalytic systems represent catalytic oxidation of organic com-
pounds on noble metal catalysts followed by catalytic hydrogenation or catalytic
decomposition of various compounds.

Heterogeneous catalytic reactions represent nonlinear multilevel dynamical
systems, operated far from thermodynamic equilibrium, which are capable of
generating a broad variety of complex temporal and spatiotemporal patterns
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that can originate at various levels of a heterogeneous catalytic system. These
levels range from an element on a single crystal surface up to a catalyst bed or
a monolith. From a spatially extended single crystal surface up, a heterogeneous
catalytic system can be modeled as a set of local oscillators where more or less
synchronized behavior not only depends upon the properties of local oscillators
but also on the strength and the nature of the coupling between them [5]. If
periodic oscillatory behavior of the global reaction rate is observed, then there
is complete synchronization of the local oscillators at each level of the system.
Coupling between the local oscillators may occur through surface diffusion, dif-
fusion through the gas phase, and by heat transfer. The dominant mechanism
of synchronization depends upon the nature of the local oscillators and the ex-
perimental conditions used [6, 7].

Dynamic behavior taking place on extended single crystal surfaces can be
visualized by the photoemission electron microscopy (PEEM) [8]. Then a broad
variety of spatiotemporal patterns was observed, including target patterns, ro-
tating spiral waves, standing waves and cellular structures [7]. It was shown that
two mechanisms of coupling via surface diffusion and diffusion via the gas phase
operated over single crystal surfaces under ultra high vacuum (UHV) conditions.
However, in contrast to the very fine metal tips used in the group of Nieuwenhuys
(see for example ref. [9]), synchronization under these conditions takes place via
gas phase coupling.

Since most surface science methods are limited to the study of reactions over
single crystal surfaces under UHV conditions, the study of oscillatory behavior
at the macro-level (cm-scale), i.e., extended polycrystalline surfaces under at-
mospheric pressure conditions, is complicated by several factors. These include
gradients of concentration and temperature which can originate both in the re-
actor and within the catalyst particles. However, the study of the oscillatory
behavior of heterogeneous catalytic reactions under atmospheric pressure con-
ditions can produce important information about the reaction mechanism. The
information about the reaction mechanism can be obtained from the waveforms
of reaction rate oscillations, from the phase shifts between oscillations of different
product concentrations, and from visual observations of surface spatiotemporal
behavior [5].

2 Chemical processes in the three-way converter

The three-way catalytic converter (TWC) [10] is a catalytic reactor used for sim-
ultaneous degradation of carbon monoxide, unburned hydrocarbons and oxides
of nitrogen. The device is operated mostly under transient conditions close to
a stoichiometric composition. The stoichiometric composition is the ratio of air
and fuel injected into gasoline engine such that the mixture has just enough air
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to completely burn the available fuel. In practice this is never quite achieved,
due to the very short time for each combustion cycle.

Table 1. The detailed reaction mechanism of the TWC; ∗ represents a noble
metal (Pt) catalytic site and s indicates an oxygen storing (Ce) site), � denotes
an external source (input) or a sink (output).

No. Reaction step Kinetic expression
R1 CO + ∗ −→ CO∗ v1 = k1[CO][∗]
R2 CO∗ −→ CO + ∗ v2 = k2[CO∗]
R3 O2 + 2∗ −→ 2O∗ v3 = k3[O2][∗]
R4 CO∗ + O∗ −→ CO2 + 2∗ v4 = k4[CO∗][O∗]
R5 CO + O∗ −→ OCO∗ v5 = k5[CO][O∗]
R6 OCO∗ −→ CO + O∗ v6 = k6[OCO∗]
R7 OCO∗ −→ CO2 + ∗ v7 = k7[OCO∗]
R8 O2 + 2s −→ 2Os v8 = k8[O2][s]
R9 CO∗ + Os −→ CO2 + ∗+ s v9 = k9[CO∗][Os]
R10 C2H2 + ∗ −→ C2H∗2 v10 = k10[C2H2][∗]
R11 C2H∗2 −→ C2H2 + ∗ v11 = k11[C2H∗2]
R12 C2H∗2 + 2∗ −→ C2H∗∗∗2 v12 = k12[C2H∗2][∗]2

R13 C2H∗∗∗2 −→ C2H∗2 + 2∗ v12 = k13[C2H∗∗∗2 ]
R14 C2H∗2 + 3O∗ −→ 2CO∗ + H2O + 2∗ v14 = k14[C2H∗2][O∗]
R15 C2H∗∗∗2 + 3O∗ −→ 2CO∗ + H2O + 4∗ v15 = k15[C2H∗∗∗2 ][O∗]
R16 C2H2 + O∗ −→ C2H2O∗ v16 = k16[C2H2][O∗]
R17 C2H2O∗ −→ C2H2 + O∗ v17 = k17[C2H2O∗]
R18 C2H∗2 + 3Os + ∗ −→ 2CO∗ + H2O + 3s v18 = k18[C2H∗2][Os]
R19 C2H2O∗ + 2O∗ −→ 2CO∗ + H2O + ∗ v19 = k19[C2H2O∗][O∗]
R20 NO + ∗ −→ NO∗ v20 = k20[NO][∗]
R21 NO∗ −→ NO + ∗ v21 = k21[NO∗]
R22 NO∗ + ∗ −→ N∗ + O∗ v22 = k22[NO∗][∗]
R23 NO∗ + N∗ −→ N2O∗ + ∗ v23 = k23[NO∗][N∗]
R24 N2O∗ −→ N2O + ∗ v24 = k24[N2O∗]
R25 N2O∗ −→ N2 + O∗ v25 = k25[N2O∗]
R26 N∗ + N∗ −→ N2 + 2∗ v26 = k26[N∗]2

R27 NO + O∗ −→ NO∗2 v27 = k27[NO][O∗]
R28 NO∗2 −→ NO + O∗ v28 = k28[NO∗2]
R29 NO∗2 −→ NO2 + ∗ v29 = k29[NO∗2]
R30 NO2 + ∗ −→ NO∗2 v30 = k30[NO2][∗]
R31 � −→ CO v31 = k31[CO]in
R32 CO −→ � v32 = k32[CO]
R33 � −→ O2 v33 = k33[O2]in
R34 O2 −→ � v34 = k34[O2]
R35 CO2 −→ � v36 = k36[CO2]
R36 � −→ C2H2 v37 = k37[C2H2]in
R37 C2H2 −→ � v38 = k38[C2H2]
R38 � −→ NO v39 = k39[NO]in
R39 NO −→ � v40 = k40[NO]
R40 � −→ NO2 v41 = k41[NO2]in
R41 NO2 −→ � v42 = k42[NO2]
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The catalytic oxidation of CO is the most frequently studied oscillatory
heterogeneous catalytic system. Under the UHV conditions, CO oxidation on
platinum single-crystal surfaces proceeds via a Langmuir-Hinshelwood mechan-
ism [11]. Mechanism of oscillatory CO oxidation under these conditions is connec-
ted with a periodic change in surface structure: hex 
 (1× 1) phase transition
of Pt(100), and (1 × 1) 
 (1 × 2) phase transition of Pt(110) [7]. Temporal
oscillations of the reaction rate are possible due to an adsorbate-driven phase
transition in the top substrate layer [12,13]. Under atmospheric conditions, both
periodic and chaotic regimes in the course of CO oxidation on Pt/γ-Al2O3 pel-
lets were found in a fixed-bed reactor containing a large number of catalytic
particles [14, 15]. Kapička and Marek [15] observed experimentally transition
to chaos via period-doubling bifurcations during a slow, continuous change of
the catalyst activity. They found that under gradient as well as nongradient
conditions both periodic and aperiodic oscillations have the same mechanistic
causes and do not result from transport limitations in the bed or from a different
course of the reaction on individual particles. They also found that synchroniz-
ation/desynchronization of oscillations takes place via the gas phase.

Based on experiments with the commercial Pt/Rh/CeO2/γ-Al2O3 TWC
catalyst, Eindhoven group [16-19] proposed and evaluated detailed kinetics of
the TWC. Dynamics of this detailed reaction mechanism was thoroughly stud-
ied and compared with experimental results [20,21]. In the following we analyze
the mechanism of the TWC taking into account CO, C2H2 (a typical hydrocar-
bon) and NOx (NO and NO2) as reactants, see Table 1. In addition to the 30
chemical reactions in the Table, there are also 11 pseudoreactions corresponding
to an external source (input) and sink (output) to each of the reactants CO, O2,
C2H2,NO, NO2 and output of CO2.

3 Stoichiometric network analysis

The stoichiometric network analysis (SNA) [22] begins with the definition of
the stoichiometric network involving n = 19 chemical species and r = 41
(pseudo)reactions. The corresponding rate expressions essentially follow mass
action kinetics except where more than two molecules/active sites interact. The
first 30 steps are true chemical reactions, the rest are inlets and outlets treated
here as pseudoreactions. We assume that the converter behaves as an isothermal
ideally mixed system, which is a simplification that does not take into account
mass/heat transport phenomena and the spatial extension of the converter but
is adequate for examining instabilities caused by nonlinear chemistry of this
complex mechanism.

The dynamics of the network is given by the mass balance equations for all
species:
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d[CO]
dt = −v1 + v2 − v5 + v6 + v31 − v32 ,

d[CO∗]
dt = v1 − v2 − v4 − v9 + 2v14 + 2v15 + 2v18 + 2v19 ,

d[OCO∗]
dt = v5 − v6 − v7 ,

d[CO2]
dt = v4 + v7 + v9 − v35 ,

d[O2]
dt = −v3 − v8 + v33 − v34 ,

d[O∗]
dt = 2v3 − v4 − v5 + v6 − 3v14 − 3v15 − v16 + v17 − 2v19 + v22

+v25 − v27 + v28 ,

d[Os]
dt = 2v8 − v9 − 3v18 ,

d[∗]
dt = −v1 + v2 − 2v3 + 2v4 + v7 + v9 − v10 + v11 − 2v12 + 2v13

+2v14 + 4v15 − v18 + v19 − v20 + v21 − v22 + v23 + v24

+2v26 + v29 − v30 ,

d[s]
dt = −2v8 + v9 + 3v18 , (1)

d[C2H2]
dt = −v10 + v11 − v16 + v17 + v36 − v37 ,

d[C2H∗2]
dt = v10 − v11 − v12 + v13 − v14 − v18 ,

d[C2H∗∗∗2 ]
dt = v12 − v13 − v15 ,

d[C2H2O∗]
dt = v16 − v17 − v19 ,

d[NO]
dt = −v20 + v21 − v27 + v28 + v38 − v39 ,

d[NO∗]
dt = v20 − v21 − v22 − v23 ,

d[NO2]
dt = v29 − v30 + v40 − v41 ,

d[NO∗2]
dt = v27 − v28 − v29 + v30 ,

d[N∗]
dt = v22 − v23 − 2v26 ,

d[N2O∗]
dt = v23 − v24 − v25 .
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The rate coefficients in Table 1 are either taken to be Arrhenius temperature-
dependent (see [16-19] for relevant expressions) when directly solving Eqs. (1)
or considered to be freely adjustable non-negative parameters when applying
the SNA. In the former case the control parameters are chosen to be the tem-
perature T (assumed equal at the inlet and inside of the reactor) and the inlet
concentration/inflow of reactants (oxygen in particular). Other parameters, such
as flow rate, loading capacities of the catalyst and oxygen stores are set so as to
maintain consistence with our previous work [23]. Our aim is to systematically
compare oscillatory characteristics found by constructing a bifurcation diagram
for Eqs. (1) in the temperature—oxygen inflow parameter plane with generic
oscillatory characteristics obtained by the SNA approach. From this compar-
ison we draw conclusions on the mechanistic causes of the observed oscillatory
dynamics.

Eqs. (1) can be rewritten in a compact matrix form,

dx
dt = S v(x,k) , (2)

where x ∈ Rn+ is the concentration vector, S ∈ Rn×r is the stoichiometric matrix
whose elements are differences of the right and left stoichiometric coefficients
of species i in reaction j, νij = νRij − νLij , v ∈ Rr+ is the reaction rate vector,
and k ∈ Rr+ is the vector of the rate coefficients. The rank of S is d = 17 and
determines both the maximum number of linearly independent species and the
maximum number of linearly independent reactions. This also implies that there
are n − d = 2 conservation constraints, which correspond to chemical species
bound to platinum (∗) or cerium (s) catalytic sites.

In general, reaction rates obey the physical constraint vi(x,k) > 0, for
i = 1, . . . , 41. Since any steady state x0 solves the equation S v = 0, the cor-
responding steady-state rate vector v0 = v0(x0,k) lies in the intersection of the
null space of S and the positive orthant R

r

+, i.e. v0 ∈ Ker(S) ∩ R
41
+ . Thus the

set of all v0s form an unbounded convex cone Cv ≡ {v0 ∈ R
r

+ | S v0 = 0} of
dimension dim Cv = dim Ker(S) = r− d = 24. The cone Cv can be expressed as
a convex combination of column vectors Ei of a matrix E ∈ Rr×f ,

Cv = {E j | j ∈ R
f

+} , (3)

The vectors Ei point along the edges of the cone Cv so that they form the
cone’s frame. The edges of the cone Cv represent a set of steady states having a
minimum possible nonzero reaction rates vi and thus uniquely define the set of
irreducible elementary subnetworks of the mechanism. The cone can be spanned
by more than r − d frame vectors, f > r − d = 24 so the edges may not be
all linearly independent. Moreover, certain edges span k-dimensional faces of Cv,
where k = 2, . . . , 23. The edges (or 1-faces) and k-faces constitute a natural
hierarchy of increasingly complex subnetworks that may be used as a basis for
reduced models of the full network. The software we use for decomposition of
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the stoichiometric network, i.e. calculation of E, is based on a pathway oriented
algorithm [24]. The identification of the edges and faces is a first step when
examining the stability of the (sub)networks at the steady state x0.

The dynamical behavior of the system is described by Eq. (2). Dynamics
sufficiently close to the steady state x0 follows the linearized form of Eq. (2),

dζ
dt = J ζ , (4)

where ζ = x − x0 is a small deviation from the steady state concentrations of
species, and J ∈ Rn×n is the Jacobi matrix, which can be expressed in terms of
new, so called convex parameters h and j as

J(h, j) = S diag(E j)κT diag(h) , (5)

where h ∈ Rn+ is the vector of reciprocals of steady state concentrations, hi = 1
x0
i

.

The matrix κ = [κij ] ∈ Rn×r is called the kinetic matrix; its element κij is the
effective order of the j-th reaction with respect to the i-th species defined as

κij ≡
∂ ln vj(x,k)
∂ ln xi

. (6)

In general, linear stability of the steady state x0 is determined by eigenvalues
of the Jacobi matrix. However, the SNA is adopting an approach of predicting
stability prior specifying x0 (or equivalently h). For mass action/power law kin-
etics, κij is constant and independent of x0. In addition, κij 6 νij . Since these
conditions apply to the TWC mechanism, the matrix B = −S diag(E j)κT is
independent of h and can be conveniently used for predicting stability of any
(sub)network v0 = E j without involving h as would be the case when using
eigenvalues of J.

Stability of v0 can be inferred from B by examining its principal subde-
terminants βl of order l = 1, . . . , n. There are

(
n
l

)
different βls related to all

choices of l species. If at least one βl is negative, then at least one eigenvalue
of J has a positive real part and indicates an instability of the steady state x0

provided that the steady state concentrations of the corresponding l species are
sufficiently small [22]. Because any steady state rate vector v0 is a convex com-
bination of elementary subnetworks v0 = E j, the stability of the entire network
depends on the stability of the elementary subnetworks and coefficients j. Thus
if there is a negative βl for a (sub)network, then the SNA predicts that the
(sub)network is capable of displaying a dynamical instability even prior specify-
ing rate coefficients and steady state concentrations. There are two basic types
of instabilities: occurrence of multiple steady states (via a saddle-node bifurca-
tion) and occurrence of oscillations (via a Hopf bifurcation). The condition of a
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negative βl implies a positive feedback, which is a sufficient condition for occur-
rence of multistability. A combination of positive and negative feedback leading
to oscillations via the Hopf bifurcation requires specific types of negative feed-
back, and knowledge of steady state concentrations. It is possible to formulate
conditions ensuring the Hopf bifurcation in terms of inequalities for steady state
concentrations [13,25].

A rough but useful guide for a visual identification of both positive and neg-
ative feedbacks is a graphical representation of the network called a network
diagram. Each reaction can be represented as a multi-headed multi-tailed arrow
which is oriented from the reactants to the products. The number of feath-
ers/barbs determines the stoichiometric coefficients of reactants/products. The
number of left feathers determines the reaction order of the reacting species. The
network diagram for an oscillatory network, i.e. a network having the capacity
for occurrence of the Hopf bifurcation, possesses characteristic features such as
autocatalytic cycles (positive feedback) and reactions that are tangent or exit
with respect to the autocatalytic cycles (negative feedback) [26,27].

At the Hopf bifurcation (specified by a pair of pure imaginary eigenvalues of
J), a classification and determination of the role of species in oscillations [26,27]
can be done, for example, by calculating mutual phase shifts of oscillating spe-
cies, [28] or by other methods. [29,30] To that purpose the phase shifts of oscil-
lating species at the Hopf bifurcation were used in this work. The procedure of
determining the phase shift signature is as follows. For each unstable edge or a
low-dimensional face of a selected TWC (sub)system we verified whether it can
provide oscillations by constructing a network E j with nonzero values of all jk,
k = 1, · · · , f , but maintaining dominance of the unstable edge/face in question
by setting the corresponding jks much larger than others. For such a network we
set the reciprocal steady state vector h so that its components specified by the
negative βl were large enough ensuring an unstable eigenvalue(s) of J. Then we
fine-tuned both j and h to find a pair of pure imaginary eigenvalues of J. This
procedure amounts to balancing positive feedback with a proper negative feed-
back to yield an oscillatory instability. The phase shifts of all species relative to
a reference species are then determined from the complex conjugate eigenvectors
associated with the pair of pure imaginary eigenvalues. Qualitatively, each of the
n phase shifts can be characterized as being in-phase (small shifts), anti-phase
(shifts near to π), phase advanced and phase delayed. We call the n-vector of
qualitative phase shifts a shift signature.

Based on the signatures, the chemical oscillators can be classified as category
1 or 2 (suggesting first or second order autocatalysis), with subcategories B and
C (suggesting batch and continuous conditions of operation). Simultaneously, the
species can be classified as essential/nonessential for oscillations; if the former
are held fixed (buffered) the oscillations are suppressed. The essential species are
of three types: the autocatalytic, exit and negative feedback (denoted as X, Y
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and Z, respectively). Type X species are typically forming a cyclic chain of linked
reactions in the network diagram (current cycle), the type Y species reacts with
and removes a type X species (direct inhibition) and the type Z species forms
a negative cyclic feedback involving the X species (indirect inhibition) which
makes the oscillations possible.

In the next step we examined the same TWC (sub)system by using bifurca-
tion analysis to find a Hopf bifurcation, but instead of using convex parameters
(i.e., j and h) we used direct parameters (i.e. rate coefficients at a given temper-
ature and inflow rates of reactants). When the phase shifts determined by both
methods are matching each other, we conclude that the oscillations are caused
by the corresponding dominant unstable edge/face combined with a proper neg-
ative feedback. This conclusion is based on an idea verified repeatedly in our
previous work that the shift signatures are constant and specific for each topolo-
gically distinct type of oscillatory (sub)network dominating the dynamics of the
full network within certain (usually large) parameter domain bounded by Hopf
bifurcation.

Software used for network analysis and classification of oscillators is home-
made (written in Fortran and Matlab), additional dynamic and bifurcation ana-
lysis was done by using the program CONT [31].

4 Results

After visual inspection of the TWC reaction mechanism listed in Table 1, the
system can be naturally separated into several subsystems: CO oxidation, CO
& C2H2 oxidation, CO oxidation & NOx reduction. Here we analyze these three
subsystems. In all cases, we focus on the identification of the mechanistic sources
of oscillatory instabilities which are compared with various modes of oscillatory
dynamics of the kinetic model.

4.1 Network of CO oxidation

The CO oxidation subsystem as the subsystem of the TWC reaction mechanism
was previously examined in the work by Marek et al. [23], where the network
analysis of CO oxidation subsystem is compared with the previously cited ex-
perimental results [23].

The network of CO oxidation involves nine chemical reactions R1–R9, and
5 pseudoreactions R31–R35, and 11 chemical species, see Table 1. This network
can be decomposed into 7 elementary subnetworks Ek, see Table 2. The first
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Table 2. Elementary subnetworks Ek (edges) for CO oxidation subsystem; un-
stable ones are marked in boldface

E1 E2 E3 E4 E5 E6 E7

v1 1 0 2 0 2 0 0
v2 1 0 0 0 0 0 0
v3 0 0 1 1 0 0 0
v4 0 0 2 0 0 0 0
v5 0 1 0 2 0 0 0
v6 0 1 0 0 0 0 0
v7 0 0 0 2 0 0 0
v8 0 0 0 0 1 0 0
v9 0 0 0 0 2 0 0
v31 0 0 2 2 2 1 0
v32 0 0 0 0 0 1 0
v33 0 0 1 1 1 0 1
v34 0 0 0 0 0 0 1
v35 0 0 2 2 2 0 0

two Eks represent reversible reaction pairs at equilibrium. The last two Eks rep-
resent inflow/outflow steady state for the CO and O2. The subnetworks E4–E6
involve genuine chemical pathways. E3 involves reactions R1, R3, and R4 bal-
anced by pseudoreactions R31, R33, and R35. This subnetwork represents the
classical Langmuir-Hinshelwood mechanism of CO oxidation characterized by
interaction of previously Pt-adsorbed carbon monoxide and oxygen. E4 consists
of reactions R3, R5, and R7 and pseudoreactions R31, R33, and R36. In contrast,
this subnetwork represents the Eley-Rideal mechanism, characterized by interac-
tion of Pt-adsorbed oxygen with gaseous CO. On the other hand, E5 represents
a pathway of CO oxidation with mixed catalysts whereby Pt-adsorbed CO∗ is
oxidized by Ce-adsorbed Os. In addition, the Eks form 36 different 2-faces and a
number of higher-dimensional faces. Below we examine edges and 2-faces because
higher-dimensional faces are unlikely to produce instability on their own.

A negative βl indicating at least one unstable eigenvalue of J marks an in-
stability in the subnetworks represented by the edge E3 and the 2-faces F(1,4)
and F(4,5) shown as network diagrams in Fig. 1. The faces F(1,4) and F(4,5) are
spanned by the edges E1 & E4 and the edges E4 & E5, respectively. Each of these
subnetworks accounts for multiple steady states and by combining any of them
with certain stable subnetworks an oscillator emerges via Hopf bifurcation. In
addition, the 2-face F(4,5) involves two topologically distinct oscillators in con-
trast to E3 and F(1,4). It is therefore necessary to determine, which of these four
options underlie the oscillatory behavior obtained by the direct simulations with
a realistic choice of parameters [23].

The corresponding bifurcation diagram (see Ref. [23]) shows two regions of os-
cillatory dynamics, one at sub-stoichiometric and the other at super-stoichiometric
constraints. According to the classification system of chemical oscillators [26,27],
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Figure 1. Network diagrams of oscillators in the CO oxidation mechanism.
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each of the two oscillatory regions is tied up with a particular topologically dis-
tinct oscillatory subnetwork detectable by comparing the phase shifts of essential
species obtained from the network analysis and from the direct simulations, see
Table 3.

Table 3. Classification deduced from phase shifts of chemical species relative
to ∗ at the Hopf bifurcation in four oscillatory networks based on the E3, F(1,4)
and F(4,5).

Subnetwork Category CO CO∗ OCO∗ O2 O∗ Os ∗ s
E3 1C 163.37 (Z) 30.54 (X) 152.35 (n) 175.83 (Y) -47.08 (n) 161.76 (n) 0.00 (X) -18.24 (n)
F(1,4) 1C -178.97 (Y) -177.00 (n) 7.75 (X) 162.12 (Z) 3.33 (X) 110.68 (n) 0.00 (X) -69.32 (n)
F(4,5) (i) 1C -178.80 (Y) -177.32 (n) 6.35 (X) 163.71 (Z) 3.14 (X) 113.40 (n) 0.00 (X) 66.61 (n)
F(4,5) (ii) 1C 157.70 (Z) 12.60 (X) 151.27 (n) 177.48 (Y) -58.40 (n) -179.71 (n) 0.00 (X) 0.29 (W)
θsim

1 -164.65 -128.14 59.32 179.98 28.49 178.29 0.00 -1.71
θsim

2 67.75 39.10 85.94 176.51 -113.15 26.97 0.00 -153.03

The vector of the simulated phase shifts θsim
1 was computed near the Hopf

bifurcation at T = 477 K and yin
O2

= 0.5 %. Similarly, the vector of phase shifts
θsim

2 was computed near Hopf bifurcation at T = 500 K and yin
O2

= 0.673 %.

When we look for the oscillator responsible for oscillatory behavior in the
sub-stoichiometric region, phase shifts of all oscillators are compared with θsim

1 ,
see Table 3. Both oscillators F(1,4) and F(4,5)(i) have almost same values of phase
shifts except the species s and correspond to θsim

1 quite well. The 2-faces F(1,4)
and F(4,5) (i) involve the classical Eley-Rideal mechanism of CO oxidation over
Pt. For both oscillators, the instability determining minor indicates that the
species ∗, O∗, OCO∗ and CO must have small steady state concentrations and
thus are of autocatalytic (X) or exit (Y) type. The autocatalytic cycle involves
the reactions R3, R5 and R7 and the autocatalytic species O∗, OCO∗ and ∗.
The reaction order of these species in the reactions R3, R5 and R7 is one and
it is equal to their order in any reactions removing them from the cycle (here
R1). In this situation, an unstable steady state is achieved only if there exists
an exit reaction which is a reaction of a non-cycle species with a cycle species
removing that species [22]. This is provided by reaction R1 and CO is then the
exit species. Finally, the oscillatory instability is made possible by the presence
of O2 and its flow-controlled availability. There is a negative cycle feedback
exerted by O2 upon itself via the path through O∗, OCO∗ and ∗ implying that
the autocatalysis depletes the supply of O2, which must be replenished by the
feed at a later time. During the autocatalytic phase CO is consumed, and as
the autocatalysis reaches its peak, CO becomes depleted due to reaction R1.
The overall effect is an oscillatory regime with the negative feedback species O2
advancing the three autocatalytic species O∗, OCO∗ and ∗, which are mutually
in-phase, and the exit species CO being antiphase relative to the autocatalytic
species. All the above species are thus essential for oscillations.
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On the other hand, the unstable subnetwork E3 shown in Fig. 1 is dominant
in the oscillatory region where the amount of oxygen is just stoichiometric or
in excess. Phase shifts of species θsim

2 correspond to the unstable edge E3 in
the best way. The subnetwork E3 involves the classical Langmuir-Hinshelwood
mechanism of CO oxidation. Oscillations occurring under these circumstances
have been examined earlier for the case of CO oxidation on a single crystal of
Pt(100) or Pt(110) [13,32]. The instability determining minor indicates that the
species ∗, CO∗ and O2 are of autocatalytic or exit type. Near the Hopf bifurcation
the concentrations of species CO∗ and ∗ oscillate relatively in-phase therefore
they are autocatalytic species. Then the autocatalytic loop involves reactions R1
and R4. Since oxygen is antiphase correlated with respect to the autocatalytic
species it plays the role of the exit species in the exit reaction R2. The role of
the negative feedback species is played by CO which controls the autocatalysis.

4.2 Subsystem of CO & C2H2 oxidation

This is a more complex subsystem of the TWC reaction mechanism where com-
petition between different reactants for oxygen occurs. This network includes
19 chemical reactions R1–R19, eight pseudoreactions R31–R38, and involves 13
chemical species from Table 1. The SNA decomposes the network of the CO
& C2H2 oxidation subsystem into 28 elementary subnetworks Ek (the list is
available upon request from the corresponding author). The 7 elementary sub-
networks found in the CO oxidation network, (Table 2) occur naturally here
since the CO network is a subnetwork of the CO & C2H2 system. Apart from
that, there are two roughly separable groups of subnetworks, one representing
different pathways of C2H2 oxidation to CO2 and H2O and the other involves
pathways of partial oxidation of C2H2 to CO and H2O.

Upon examining the stability of the network in the same manner as before,
potentially unstable behavior is indicated in 15 edges. In this case no 2-face or
higher order face shows an instability not already contained in the edges. Some
of the edges display multiple unstable topologies based on different essential
species. Altogether there are 37 different unstable topologies, 23 of them provide
oscillatory behavior when a given unstable elementary subnetwork is mixed with
some stable ones. The rest accounts for multiple steady states only (i.e., no Hopf
bifurcation occurs). The list of the oscillatory subnetworks and their classification
is shown in Table 4.

Using the eigenvectors associated with the pair of pure imaginary eigenvalues
of the Jacobi matrix, we calculated mutual phase shifts of all species for the
oscillators where a particular unstable subnetwork plays a dominant role. These
phase shifts of the unstable subnetworks were then compared with those obtained
from the kinetic model with realistic kinetics near the Hopf bifurcation, see
Table 5. The vector of phase shifts θsim

1 was computed near Hopf bifurcation at
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Table 4. List of oscillators in CO & C2H2 oxidation subsystem

Subnetwork oscillator Essential species (Roles of species)
E3 (i) CO (Y), O∗ (X), ∗ (X), O2 (Z)
E3 (ii) CO∗ (X), O2 (Y), ∗ (X), CO (Z)
E9 O∗ (X), ∗ (X), C2H2 (Y), C2H∗2 (Y), O2 (Z)
E10 (i) CO (W), O∗ (X), ∗ (X), C2H2 (Y), C2H∗2 (Y), O2 (Z)
E10 (ii) CO∗ (X), O∗ (X), ∗ (X), C2H2 (Y), C2H∗2 (Y), O2 (Z)
E10 (iii) OCO∗ (X), O∗ (X), ∗ (X), C2H2 (Y), C2H∗2 (Y), O2 (Z)
E11 O∗ (X), ∗ (X), C2H2 (Y), C2H∗2 (Y), O2 (Z)
E12 O∗ (X), ∗ (X), C2H2 (Y), O2 (Z)
E13 (i) O2 (Y), ∗ (X), C2H∗2 (X), C2H2 (Z)
E13 (ii) CO∗ (X), OCO∗ (X), O∗ (X), ∗ (X), C2H2 (Y), O2 (Z)
E14 (i) CO∗ (X), O2 (Y), ∗ (X), C2H∗2 (X), C2H2 (Z)
E14 (ii) CO∗ (X), O∗ (X), ∗ (X), C2H2 (Y), O2 (Z)
E14 (iii) O2 (Y), ∗ (X), s (W), C2H∗2 (X), C2H2 (Z)
E15 (i) O∗ (X), ∗ (X), O2 (Z)
E15 (ii) CO∗ (X), O2 (Y), ∗ (X), C2H∗2 (X), C2H2 (Z)
E16 CO (W), CO∗ (X), OCO∗ (X), O2 (Y), ∗ (X), C2H∗2 (X), C2H2 (Z)
E18 O∗ (X), ∗ (X), C2H2 (Y), O2 (Z)
E19 CO∗ (X), OCO∗ (X), O∗ (X), ∗ (X), C2H2 (Y), O2 (Z)
E20 CO∗ (X), O∗ (X), ∗ (X), C2H2 (Y), O2 (Z)
E21 O∗ (X), ∗ (X), C2H2 (Y), C2H∗2 (Y), O2 (Z)
E22 (i) O2 (Y), ∗ (X), C2H∗2 (X), C2H2 (Z)
E22 (ii) CO∗ (X), O∗ (X), ∗ (X), C2H2 (Y), O2 (Z)
E24 CO∗ (X), O∗ (X), ∗ (X), C2H2 (Y), O2 (Z)

T = 575 K and yin
O2

= 0.5 %. The vector of phase shifts θsim
2 was computed near

Hopf bifurcation at T = 680 K and yin
O2

= 0.841 %.

As before, only two of those subnetworks correspond to the regions of oscil-
lations in the bifurcation diagram obtained for realistic parameter values. They
are shown in Fig. 2. The unstable subnetwork E20 brings about oscillatory in-
stability in the region of sub-stoichiometric oxygen concentration. Gaseous C2H2
is firstly adsorbed on O∗ and then C2H2O∗ is oxidized into CO∗. CO∗ is oxidized
by Os. Negative β indicates that species CO∗, O∗, C2H2 and ∗ are essential which
means that they have relatively low concentrations. Autocatalytic species CO∗,
O∗ and ∗ oscillate in-phase forming the autocatalytic cycle. The autocatalytic

Table 5. Phase shifts of chemical species relative to ∗ at a Hopf bifurcation for
the relevant unstable subnetworks

Subnetwork Category CO∗ O2 O∗ ∗ C2H2

Sub-st. region
E20 1C 3.76 (X) 141.91 (Z) 15.55 (X) 0.00 (X) -175.37 (Y)
θsim

1 6.84 178.57 -6.73 0.00 -176.39

Subnetwork Category O2 ∗ s C2H2 C2H∗2
Super-st. region
E14 (ii) 1C 174.27 (Y) 0.00 (X) -4.09 (W) 129.88 (Z) -20.46 (X)
θsim

2 178.55 0.00 -51.79 -176.51 -3.38
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Figure 2. Unstable subnetworks of CO & C2H2 oxidation subsystem causing
oscillatory behavior. Autocatalytic cycles are emphasized by bold lines.

loop is formed by reactions R3, R9 and R19. C2H2 decreases the concentration of
O∗ via the exit reaction R16. Negative feedback species O2 makes autocatalysis
possible.

The oscillator E14 (ii) in Fig. 2 is responsible for oscillations in the surplus of
oxygen. Gaseous C2H2 is firstly adsorbed on ∗ and then C2H2

∗ is oxidized into
CO∗ via R14. Here negative β indicates that there are four essential species ∗,
s, O2 and C2H2

∗. Because concentrations of C2H2
∗ and ∗ oscillate mutually in-

phase and the species form a closed loop then C2H2
∗ and ∗must be autocatalytic

species. The autocatalytic cycle involves reactions R10 and R14. Since concen-
tration of O2 oscillates anti-phase respect to ∗ then species O2 plays the role of
exit species decreasing the number of free sites ∗. Negative feedback is provided
by controlled inflow of C2H2 which makes autocatalysis possible.
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4.3 Subsystem of CO oxidation and NOx reduction

This subsystem of the TWC reaction mechanism allows for transfer of oxygen
from nitrogen oxides to CO which may be seen as synergy between oxidation
and reduction subnetworks. The network of the CO oxidation and NOx reduction
system is formed by 20 chemical reactions R1–R9, R20–R30, 10 pseudoreactions
R31–R36 and R39–R42, and involves 13 chemical species from Table 1. This net-
work can be decomposed into 31 elementary subnetworks Ek. Again, 7 of these
elementary subnetworks are the same as the elementary subnetworks for the
CO oxidation network in Table 2. Furthermore, 8 elementary subnetworks in-
volve inflow of NO2. Since the concentration of NO2 is much lower than the
concentration of NO these subnetworks play minor role in dynamical behavior.

The SNA indicates unstable behavior in 17 elementary subnetworks. The
unstable elementary subnetworks include 60 different topologies out of which
29 can oscillate. Interestingly, E14 (i), E16 (i), E16 (iii), E18 (ii) are standalone
oscillators, the rest displays oscillatory behavior when the unstable elementary
subnetwork is combined with some stable ones. The list of all oscillatory subnet-
works and their classification is found in Table 6

Selection of two oscillators whose phase shifts of oscillating species correspond
to those for sub- and superstoichiometric region in the corresponding bifurcation
diagram is based on Table 7. The vector of phase shifts θsim

1 was computed near
Hopf bifurcation at T = 483 K and yin

O2
= 0.5 %. Similarly the vector of phase

shifts θsim
2 was computed near Hopf bifurcation at T = 510 K and yin

O2
= 0.647 %.

The two dominant subnetworks accounting for the two oscillatory domains
in the bifurcation diagram are shown in Fig. 3. The unstable subnetwork E20
involves the oscillator E20 (i) that is responsible for oscillatory behavior in the
region of sub-stoichiometric oxygen concentration. The subnetwork E20 repres-
ents an ideal situation when NO is reduced into N2 while CO depletes supply
of O∗ to produce CO2. Negative β indicates that CO∗, NO∗, NO and ∗ are
essential species. Species CO∗ and ∗ oscillate mutually in-phase and form the
autocatalytic cycle. This autocatalytic loop is formed by reactions R1 and R4.
Both species NO and NO∗ decrease the amount of free Pt-sites ∗ via the exit
reactions R20 and R22. Moreover, low concentration of NO∗ cause limited pro-
duction of O∗ which is a necessary condition for oscillations here. A controlled
inflow of CO provides for negative feedback.

The unstable subnetwork E12 involves the oscillator E12 (ii) that brings about
oscillatory instability in the region of super-stoichiometric oxygen concentration,
see Fig. 3. The subnetwork E12 involves NO reduction with CO is oxidized
into N2O. Negative β indicates that there are four essential species CO∗, N∗,
∗ and NO. Autocatalytic species CO∗, N∗ and ∗ form two autocatalytic loops
acting in synchrony. These loops combine reactions R1, R4, R22 and R23. NO
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Table 6. List of potential oscillators in CO & NOx oxidation subsystem

Subnetwork Essential species (Roles of species)
E3 (i) CO (Y), O∗ (X), ∗ (X), O2 (Z)
E3 (ii) CO∗ (X), O2 (Y), ∗ (X), CO (Z)
E9 O∗ (X), ∗ (X), NO (Y), N∗ (X), NO∗ (Z)
E10 O∗ (X), ∗ (X), NO (Y), NO∗2 (X), NO∗ (Z)
E11 (i) O∗ (X), ∗ (X), NO (Y), NO∗2 (X), NO∗ (Z)
E11 (ii) O∗ (W), ∗ (X), NO (Y), N∗ (X), NO∗ (Z)
E12 (i) CO (Y), O∗ (X), ∗ (X), NO (Y), CO∗ (Z)
E12 (ii) CO∗ (X), ∗ (X), NO (Y), N∗ (X), CO (Z)
E12 (iii) CO (Y), ∗ (X), NO (Y), N∗ (X), N2O∗ (X), NO∗ (Z)
E13 ∗ (X), NO (Y), N∗ (X), N2O∗ (X)
E14 (i) CO∗ (X), ∗ (X), NO (Y), NO2 (Y), CO (Z)
E14 (ii) CO∗ (X), ∗ (X), NO2 (Y), N∗ (X), CO (Z)
E14 (iii) CO (Y), O∗ (X), ∗ (X), NO (Y), NO2 (Y), NO∗ (Z)
E14 (iv) CO (Y), O∗ (X), ∗ (X), NO∗ (Y), NO2 (Y), N2O∗ (W), CO∗ (Z)
E14 (v) CO (Y), ∗ (X), NO (Y), NO2 (Y), N∗ (X), N2O∗ (X), CO∗ (Z)
E15 ∗ (X), NO (Y), NO2 (Y), N∗ (X), N2O∗ (X), NO∗ (Z)
E16 (i) CO∗ (X), ∗ (X), NO (Y), CO (Z)
E16 (ii) CO (Y), O∗ (X), ∗ (X), NO (Y), NO∗ (Z)
E16 (iii) CO (Y), O∗ (X), ∗ (X), NO∗ (Y), N2O∗ (W), CO∗ (Z)
E16 (iv) CO (Y), O∗ (X), ∗ (X), N∗ (X), N2O∗ (X), NO∗ (Z)
E18 (i) CO (Y), O∗ (X), ∗ (X), NO (Y), NO2 (Y), NO∗ (Z)
E18 (ii) CO (Y), O∗ (X), ∗ (X), NO∗ (Y), NO2 (Y), N2O∗ (W), CO∗ (Z)
E18 (iii) CO (Y), O∗ (X), ∗ (X), NO2 (Y), N∗ (X), N2O∗ (X), NO (Z)
E20 (i) CO∗ (X), ∗ (X), NO (Y), NO∗ (Y), CO (Z)
E20 (ii) CO∗ (X), ∗ (X), NO (Y), N∗ (X), CO (Z)
E22 (i) CO∗ (X), ∗ (X), NO (Y), NO2 (Y), CO (Z)
E22 (ii) CO (Y), O∗ (X), ∗ (X), NO2 (Y), N∗ (X), NO∗ (Z)
E25 (i) CO∗ (X), ∗ (X), NO2 (Y), CO (Z)
E25 (ii) CO (Y), O∗ (X), ∗ (X), NO∗2 (X), NO2 (Z)

Table 7. Phase shifts of chemical species relative to ∗ at a Hopf bifurcation for
the relevant unstable subnetworks

Subnetwork Category CO CO∗ ∗ NO NO∗
Sub-stoichiometric region
E20 (i) 1C 148.71 (Z) 45.46 (X) 0.00 (X) 174.25 (Y) 170.23 (Y)
θsim

1 6.84 101.93 0.00 -6.73 0.00

Subnetwork Category CO CO∗ ∗ NO N∗
Super-stoichiometric region
E12 (ii) 1C 151.25 (Z) 81.54 (X) 0.00 (X) 174.89 (Y) -3.01 (X)
θsim

2 66.68 128.26 0.00 -52.62 -176.51

is indicated as exit species that decreases the concentration of ∗ by binding to
Pt-sites. Negative feedback is provided by controlled inflow of CO which makes
autocatalysis possible.
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Figure 3. Unstable subnetworks of CO & NOx subsystem causing oscillatory
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5 Conclusions

The application of the stoichiometric network analysis to the TWC proves an
efficient tool in elucidating the nature of oscillatory dynamics predicted by direct
simulations and by constructing bifurcation diagrams. In principle, the method
enables to indicate all the potential oscillating subnetworks and provides criteria
for selecting those that fit best either simulations or experimental observations.
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Abstract

The detection of a Hopf bifurcation in a large-scale dynamical system that de-
pends on a physical parameter often consists of computing the right-most ei-
genvalues of a sequence of large sparse eigenvalue problems. This is not only a
hugely expensive operation but many of the common numerical methods for this
problem may be unreliable for large sparse matrices.

This talk will summarise some of the methods commonly used in applica-
tions and discuss their advantages and disadvantages. Next, we describe a recent
approach that reformulates the problem using Kronecker products of matrices
(see [1], [2]). This approach is based on inverse iteration but requires the solution
of Lyapunov equations with low-rank right-hand sides at each step of the iter-
ation. Numerical results will be presented for some large-scale problems arising
from fluid dynamics and aeroelasticity.

This is joint work with Karl Meerbergen (KU Leuven), Howard Elman (Mary-
land) and Minghao Rostami (Worcester Polytechnic Institute).
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Abstract

Currently cancer diagnosis ought to be carried out by qualified pathologists
based mainly on morphological inspection of biological specimen taken from
patients. We have developed a new automatic method of cancer diagnosis based
on observation of multitude of bio-chemical compounds measured on a tiny tissue
with a PESI-MS spectrometer. There have been many attempts of the diagnosis
based on particular biological markers identified for particular cancers. But this
approach is not very reliable, because it is based on a single (or a few) marker(s)
and their combined thresholds are not clear. Presuming that a cancerous cell
would produce multiple unknown metabolites different from the ones of normal
cells, we applied the lerning machine dPLRM for diagnosis.

dPLRM (dual Penalized Logistic Regression Machine(2001)) ( [1–5] is a
’universal’ inductive reasoning machine, which belongs to a family of learn-
ing machines such as Neural Networks(NN), Support Vector Machines(SVM).
The concept of machine learning has recently arisen as an alternative to the
Hypothetico-Deductive Method accompanied by the Reductionism, which has
been held unequivocal for scientific inquiries. However, dPLRM and other learn-
ing machines follow Anti-Reductionism. These machines are intended for sci-
entific inference in the fields whose subjects are too complex to allow contrived
identification of causal chains of primitive elements, [1, 5].

When a set of multi-categorically classified data (in the cancer diagnosis
case, pathologically diagnosed MS data) is fed into dPLRM, it produces inside
the machine a mathematical model which relate data to category. This process
is called learning with the training data set. Once this process is completed, the
machine can tell you which categorical class a newly obtained unknown data
should be classified.
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Unlike NN and SVM, the machine PLRM and its dual machine, dPLRM,
are based essentially on a statistical model, called penalized logistic regression
model, and can give directly a probabilistic estimate (or prediction) of possible
categorical classes of yet-to-be classified data. The statistical model adopted with
dPLRM differ form the traditional statistical models representing very specific
mathematical relationship between category and data. By presuming that the
true mathematical relationship is not to be known, dPLRM adopts a set of very
versatile and plastic models for relating data to category, resulting in the models
with kernel functions, thus enabling us to infer categorical class of a data without
resorting to heavily specific assumptions.

Three histological types, RCC, HCC, MUC of human tissue specimen were
gathered and they were put into the PESI module, [6,8,9], directly connected
to the single quadropole mass spectrometers, SHIMADZU LCMS-2020 to
obtain PESI-MS data of a large set of microscopic droplets picked up with the
tip of a very fine acupuncture needle from pathologically diagnosed normal and
cancerous tissues. We fed dPLRM with the full measurable range (from m/z 10
through 2000) spectrum data without any range truncation adjustment to his-
tological types of the tissues. We found that the agreement rate of probabilistic
diagnosis by dPLRM and diagnosis by pathologists is quite high for each histo-
logical type case, [10]. Besides, the diagnosing time of an unknown spectrum by
our system is within a few minutes, in which dPLRM computing requires about
10 seconds for diagnosis.

References
1. K. Tanabe, Penalized Logistic Regression Machines: New method for statistical

prediction 1, ISM Cooperative Research Report, 143, (2001),163-194.
2. K.Tanabe, Penalized Logistic Regression Machines: New method for statistical

prediction 2, Proceedings of 2001 Workshop on Information Based Induction Sci-
ence(IBIS2001) (2001), 71-76.

3. K.Tanabe, Penalized Logistic Regression Machines and Related Numerical Al-
gebra, KOKYUROKU, Inst. for Math. Sci., Kyoto Univ., 1320 (2003), 239-249.

4. T. Matsui et al., Speaker Recognition without Feature Extraction Process,
Technical Report of IEICE, NLC2004-54, SP2004-94, Institute of Electronics, In-
formation and Communication Engineers, (2004), 79-84.

5. K.Tanabe, ‘Universal’ Induction Machine PLRM and dPLRM — Methodology,
Model, Algorithm and Applications(in Japanse), System, Information and Control,
51, 2 (2007), 87-95.

6. K.Hiraoka et al., Development of Probe Electrospray using a Solid Needle,
Rapid Commun. Mass Spectrom., 21, (2007), 3139-3144.

7. O.Birkenes et al., Penalized Logistic Regression with HMM Log-Likelihood Re-
gressors for Speech Recognition, IEEE Transaction on Audio, Speech and Language
Processing, 18, 6 (2010), 1440-1454.

8. S.Takeda et al., Innovation in Analytical Oncology-Status quo of Mass
Spectrometry-based Diagnostics for malignant Tymor, J. Anal. Oncol., 2012, 1,
74-80.

44
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Abstract We present two new models for interacting populations sub-
ject to a transmissible disease. The novelty lies in the assumption that
herd behavior influences the disease incidence, rather than the demo-
graphic description of the interactions, as in previous related similar
models. As it is already known from other ecoepidemiological situations,
the epidemics may affect the system demographic outcomes.

1 Introduction

Ecoepidemiology studies the influence of diseases among interacting populations.
This rather new field of research started about a quarter of a century ago, with
investigations merging diseases in demographic models in different contexts, [3,
6, 9]. For a brief overview of the progress up to a few years ago, see Chapter 7
of [8].

Much more recently, a novel idea for modeling herd behavior has been intro-
duced, [1,2], and further explored in [4]. It is essentially based on the observation
that individuals gathering in groups can generally be attacked by predators on
the outskirts of the territory that they occupy, that is proportional to their size.
The population occupies thus a two-dimensional manifold, while its boundary
represents a one-dimensional one. The former is directly related to the popula-
tion size, while the latter instead must be then related to its square root.

Rather then pursuing this idea in various circumstances in ecological situ-
ations, [2], following the idea of extending these demographic remarks to ecoep-
idemic situations, [4,10], we want to exploit it here still in the ecoepidemic realm,
but considering gatherings of infected individuals. In fact, we use the basic ideas
on herd behavior, [2], in a different context. Specifically, in [10] as well as in [4,5],
it is still the demographic part of the system that is modeled according to herd
behavior. Here, however, we assume that the infected lump together. Their herd
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size grows due to the arrival of new individuals only through the susceptible
contacts, wandering about independently of each other, with the infectious indi-
viduals positioned on the outskirts of the infected bunch. This may be plausible
in the context of predators and prey interactions, because infected individuals,
in general weaker and slower, may gather together. Hence, their new possible
recruits would arrive precisely through the above mechanism. As stated above,
assuming thus that these populations occupy a certain portion of ground, preda-
tion occurs on the border, i.e. the perimeter, of the lump of infected individuals,
therefore it is expressed via a square root term of their size.

The paper is organised as follows. We briefly summarize the results on the
classical predator-prey reference model in the next Section, then provide some
basic information on the ecoepidemic models we want to introduce. In Section 4
we consider the case of infected prey that are harmless for predators. Section 5
contains the particular case in which the predators recognize and avoid infected
prey. In Section 6 we present the model for which infected are toxic for the
predators. Results on the boundedness of the systems’ trajectories are derived
in the next Section and a final summary of the results concludes the paper.

2 The classical predator-prey reference model

Let us consider the Lotka-Volterra predator-prey model with logistic correction
for the prey Q. The predators P are assumed to be specialists, so that in the
absence of Q they would starve to death. The model reads

dP

dt
= −mP + aPQ, (1)

dQ

dt
= rQ

(
1− Q

K

)
− aPQ.

The parameters are defined as follows: m represents the predator’s mortality
rate, a is the predator’s hunting rate, r is the prey reproduction rate, K is the
prey carrying capacity.

This system dynamics is well known. There are only two possibly stable
equilibria, since the origin is always unstable. Between the predator-free point
Ec1 = (0,K) and coexistence Êc∗ = (P c∗ , Qc∗) there is a transcritical bifurcation.
Whenever the predators’ mortality rate falls below the threshold

m∗ = aK (2)

the predators invade the environment permanently, as Ec∗ becomes feasible and
is unconditionally stable, while instead Ec1 loses its stability. In each case, the
only possible equilibrium is globally asymptotically stable.
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3 Background on the ecoepidemic situation

In the ecoepidemic approach the main difference with the previous demographic
model consists in the fact that the prey population is divided among infected
I, that gather in herds, and susceptibles S. We also assume the presence in the
ecosystem of a third population P that can predate on S as well as possibly on
the I lumped together. With this we mean that predation occurs always on the
border of the lump of I’s, as in other herd behavior systems, [2]. But the effect
of predation on the infected can have different outcomes for the predators.

Three cases will be considered, as far as the behavior of P with respect to I
is concerned: they do not recognize the infected, but their predation leaves the
P ’s unaffected, they recognize the I’s and avoid them, or finally the P ’s predate
the I’s and the latter harm the predators. We stress here once again that the
novelty of this model is in using the herd behavior in the epidemiological terms,
especially in contrast with what was done in [4,5], where the major issue was on
the infected behavior, but still considered from the demographic behavior point
of view.

The group gathering behavior is modeled as indicated above, via the square
root of the infected population density

√
I. Disease transmission occurs through

contacts among the infected lying on the boundary of the herd with the sus-
ceptibles. Assuming homogeneous mixing among these classes of individuals,
the corresponding (modified) “mass action” term assumes the form S

√
I. Thus,

our nonlinear disease incidence model could be regarded as a particular case
of the SαIγ incidence, which has been proposed among other epidemiological
population interaction possibilities, see [7]. The following are further general as-
sumptions for all the three models considered here: the lump of I’s does not
reproduce, it can grow only by recruiting newcomers from the class S. They are
also too weak to exert any intraspecific competition on the healthy individuals
S, nor feel their pressure for the search for resources, since they do not repro-
duce. We also assume that the predators do not have other food sources, being
specialists. With respect to the loose population S the encounters with P are on
a one to one basis, i.e. they are expressed via the usual mass action law.

4 Infected are harmless for predators.

The first model we investigate is the following one
dP

dt
= −mP + aPS + bP

√
I, (3)

dS

dt
= −βS

√
I + rS

(
1− S

K

)
− aPS,

dI

dt
= −µI + βS

√
I − bP

√
I.
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We define the meaning of all the parameters, because although we use the
same notation as in (1), the interpretation of the parameters common to both (1)
and (3) is at times slightly different. Here m represents the predator’s mortality
rate, a is the predator’s hunting rate on healthy prey, b is the predation rate on
the infected herds of prey, β is the disease incidence rate, r is the healthy prey
reproduction rate, K is the carrying capacity of healthy prey, µ is the natural
plus disease-related mortality rate of infected individuals.

In view of the fact that the prey modeled by the I’s lump together, predation
on them is exerted only on the outer boundary of their herd, which is expressed
by the square root term in the above first and third equations (3). We need to
redefine the dependent variables, to avoid a possible singularity in the Jacobian
when I vanishes. Singularity removal can be performed by defining U =

√
I. It

leads to
dP

dt
= P (−m+ aS + bU) , (4)

dS

dt
= S

[
−βU + r

(
1− S

K

)
− aP

]
,

dU

dt
= 1

2 (−µU + βS − bP ) .

The Jacobian of (4) is

Jh =

 −m+ aS + bU aP bP
−aS −βU + r − 2 r

KS − aP −βS
− 1

2b
1
2β − 1

2µ

 . (5)

4.1 Equilibria and their analysis

The possible equilibria are the points E0, namely the system disappearance, the
predator-free point

E1 =
(

0, rK µ

β2K + rµ
, rK

β

β2K + rµ

)
,

and the coexistence equilibrium Ê∗ with population values

P̂∗ = bKrβ + aKrµ−mrµ−Kmβ2

a2Kµ+ b2r
, Ŝ∗ = K

amµ+ b2r − bmβ
a2Kµ+ b2r

,

Û∗ = bmr + aKmβ − abKr
a2Kµ+ b2r

.

Feasibility conditions for Ê∗ are

Kr(bβ+aµ) ≥ m(rµ+Kβ2), amµ+b2r ≥ bmβ, m(br+aKβ) > abKr. (6)
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The origin is unstable, since the eigenvalues of Jh are −m, r, − 1
2µ.

At E1 the stability condition is regulated by the very first eigenvalue,

aS1 + bU1 ≡ m‡ < m, (7)

since the remaining ones come from a 2 by 2 submatrix Jh2 for which the Routh-
Hurwitz conditions hold unconditionally, since they become

− tr(Jh2 ) = r

K
S1 + 1

2µ > 0, det(Jh2 ) = r

K
S1 + 1

2β
2S1 > 0. (8)

Note that (7) is the opposite condition of the first inequality for the feasibility
of Ê∗, (6), so that when the other two feasibility conditions (6) hold, we have a
transcritical bifurcation for which Ê∗ emanates from E1. It is clearly seen also
that no Hopf bifurcation can arise here, in view of the strict inequality for the
trace.

The coexistence equilibrium Ê∗ is always stable, whenever feasible, since the
characteristic equation (9) is the cubic

3∑
k=0

akλ
k = 0, (9)

with the coefficients

a0 = 1
2

(
a2µ+ b2 r

K

)
S∗P∗ > 0, a2 = r

K
S∗ + 1

2µ > 0, (10)

a1 = a2S∗P∗ + 1
2

[
b2P3 +

( r
K
µ+ β2

)
S∗

]
> 0.

In fact, also the last Routh-Hurwitz conditions holds unconditionally

a2a1 − a0 = r

K
S2
∗

(
a2P∗ + rµ

2K + 1
2β

2
)

+ µ

4

(rµ
K
S∗ + β2S∗ + b2P∗

)
> 0 (11)

and strictly, thus preventing also possible Hopf bifurcations.

5 No predation on infected prey

We briefly examine here the particular case of (3) in which b = 0, i.e. the infected
are recognized and completely disregarded by the predators. The system with
no singularity and its Jacobian are obtained just as particular cases of (4) and
(5), setting in them b = 0.
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The possible equilibria are again all the points found earlier, namely the origin
and the predator-free equilibrium E1 with the very same population values. Both
these equilibria are always feasible. We also find coexistence, which now simplifies
to

E∗ =
(
arKµ−mβ2K −mrµ

a2Kµ
,
m

a
,
βm

µa

)
.

It is feasible only if
m < m† ≡ aKrµ

Kβ2 + rµ
. (12)

This condition specifies that the predator’s mortality must fall below a certain
critical threshold. Note that m† coincides with m‡ when the latter is evaluated
for b = 0.

The origin E0 retains its unconditional instability, in view of the very same
eigenvalues we found for (4), namely −m, r, − 1

2µ.

One eigenvalue of E1 is now −m+ aS1 giving the stability condition, as the
last two conditions (6) now are trivially satisfied:

m† < m, (13)

again a particular case of what we found for (4). For the remaining ones again the
Routh-Hurwitz conditions hold unconditionally. Indeed the remaining ones come
from the 2 by 2 submatrix J̃h2 = Jh2 for which the Routh-Hurwitz conditions hold
unconditionally (8). Again, no Hopf bifurcation can arise here as well and for
m = m† there is a transcritical bifurcation for which E∗ arises from E1.

At E∗ the characteristic equation is the cubic (9) with coefficients that are ob-
tained from (10) by setting b = 0. Therefore since all these coefficients are strictly
positive and also the third Routh-Hurwitz stability condition holds, whenever
feasible, the coexistence equilibrium is unconditionally stable. Also, in view of
the above strict inequality in (11), no Hopf bifurcations can arise here as well.

6 The case of toxic infected.

In this case we assume that the infected prey are harmful for the predators when
they come in contact. The model becomes then

dP

dt
= −mP + aPS − bP

√
I, (14)

dS

dt
= −βS

√
I + rS

(
1− S

K

)
− aPS,

dI

dt
= −µI + βS

√
I − bP

√
I.
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Again, all the parameters retain their meaning from (4), but note the change
in sign in the last term of the first equation. Once again, the system with the
removed singularity becomes

dP

dt
= P (−m+ aS − bU) , (15)

dS

dt
= S

[
−βU + r

(
1− S

K

)
− aP

]
,

dU

dt
= 1

2 (−µU + βS − bP ) .

The Jacobian of (15) is

J t =

 −m+ aS − bU aP −bP
−aS −βU + r − 2 r

KS − aP −βS
− 1

2b
1
2β − 1

2µ

 .

6.1 Equilibria and their analysis

Again the origin E0 and the predator-free equilibria E1 are unaltered from the
previous case (4) and are therefore always feasible. Coexistence Ẽ∗ settles instead
at the following population values

P̃∗ = aKrµ−mrµ−Kmβ2 − bKrβ
a2Kµ− 2abKβ − b2r

, S̃∗ = aKmµ− bKmβ − b2Kr

a2Kµ− 2abKβ − b2r

Ũ∗ = aKmβ + bmr − abKr
a2Kµ− 2abKβ − b2r

.

Feasibility conditions are either one of these sets of inequalities

2abKβ + b2r ≥ a2Kµ, mrµ+Kmβ2 + bKrβ ≥ aKrµ, (16)
bKmβ + b2Kr ≥ aKmµ, abKr ≥ bmr + aKmβ;

or
2abKβ + b2r ≤ a2Kµ, mrµ+Kmβ2 + bKrβ ≤ aKrµ, (17)

bKmβ + b2Kr ≤ aKmµ, abKr ≤ bmr + aKmβ.

Stability of E0 is once again unchanged, the eigenvalues are still the same,
−m, r, − 1

2µ. For E1 we find again the very same condition (7), as the remaining
analysis on the 2 by 2 submatrix carries out unaltered.

At coexistence instead relevant changes occur, as the cubic (9) has here the
coefficients

a0 = 1
2

(
a2µ− b2 r

K
− 2abβ

)
S̃∗P̃∗, a2 = r

K
S̃∗ + 1

2µ,

a1 = a2S̃∗P̃∗ + 1
2

[( r
K
µ+ β2

)
S̃∗ − b2P̃∗

]
.
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They now must all be imposed to be positive. Note that a0 > 0 is incompatible
with the first feasibility condition for Ẽ∗ (16). Also the condition a2a1 − a0 > 0
must be imposed, which now becomes

r

K
S̃2
∗

(
a2P̃∗ + r

2Kµ+ 1
2β

2
)

+ 1
4µS̃∗

( r
K
µ+ β2

)
+ abβS̃∗P̃∗ >

1
4µb

2P̃∗. (18)

It would therefore in principle be possible that Hopf bifurcations in this case
could arise. However extended simulations attempting to violate this conditions
were not successful. We have been able only to make it almost an equality, but
never to reverse the above inequality (18), see Fig. 3.

We conjecture therefore that also in this case the coexistence equilibrium
does not lead to Hopf bifurcations. Instead, mainly by rendering a0 negative,
we can destabilize the coexistence equilibrium. This in turn takes the system
trajectories either to the predator-free equilibrium E1, when it is stable, namely
for (7), or to limit cycles around it, see Fig. 1.
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  a0 = 0.00734197, a1=−0.775984, a2 = 0.600008, RH3 = −0.472939

Figure 1. For the system (15), the prey subpopulations can thrive together, in
absence of predators, also via tiny persistent oscillations, here obtained with
the parameter values m = 1.35, a = 0.29, b = 0.25, r = 3.2, β = 0.8, K =
5000, µ = 1.2. The coexistence equilibrium in this case is unfeasible, Ẽ∗ =
(25.889, 0.013,−5.385). In this case E1 = (0, 5.993, 3.995) and m < m‡ = 2.737,
showing its instability, compare (7). Note that the oscillations shown are indeed
around this predator-free equilibrium point. Top to bottom the populations P ,
S, U , as functions of time.
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 m=1.35, a=0.29, b=0.025, r=3.2, β=0.8, K=5000, µ=2.2
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  a0 = 2.75693, a1=4.12458, a2 = 1.10307, RH3 = 1.79278

Figure 2. For the system (15), the coexistence equilibrium can be stably
achieved for the parameter values m = 1.35, a = 0.29, b = 0.025, r = 3.2,
β = 0.8, K = 5000, µ = 2.2, at the level Ẽ∗ = (6.410, 4.799, 1.672). The
Routh-Hurwitz conditions hold, since a0 = 2.667, a1 = 4.125, a2 = 1.103 and
a2a1−a0 = 1.882. Top to bottom the populations P , S, U , as functions of time.

7 Boundedness

The finiteness of the trajectories can be shown for all three original models
together as follows. Let T = P +S + I, by adding the differential equations it is
then easy to show that for (3) and (14) the following inequality holds:

dT

dt
≤ −mP + rS − r

K
S2 − µI.

Taking now an arbitrary 0 < q < min{µ,m} = M , we find

dT

dt
+ qT ≤ (r + q)S − r

K
S2 + (q −M)(P + I) ≤ Ψ,

since q −M < 0 and where Ψ denotes the height of the vertex of the parabola
in S on the left hand side, for which

Ψ = K

4r (r + q)2.

It follows then that the solutions of the above differential inequality must lie
below those of

dT

dt
= Ψ − qT,
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 m=0.35, a=9.4, b=0.025, r=0.2, β=0.04, K=50000, µ=0.1

0 1000 2000 3000 4000 5000
0

0.2

0.4

M

time

0 1000 2000 3000 4000 5000
0

0.02

0.04

U

time; Ptilde = 0.0212358, Mtilde = 0.0372596, Utilde = 0.00959489,
  a0 = 0.00349196, a1=0.0699367, a2 = 0.0500001, RH3 = 4.88817e−06, 
    M1 = 12.4969, U1 =4.99875, mdagger = 117.471, mddagger = 117.596

Figure 3. For the system (15), decaying oscillations involving all three sub-
populations arise for the parameter values m = 0.35, a = 9.4, b = 0.025,
r = 0.2, β = 0.04, K = 50000, µ = 0.1, dampened toward the equilibrium
Ẽ∗ = (0.0212, 0.0373, 0.0096). The Routh-Hurwitz conditions do however hold:
a0 = 0.0035, a1 = 0.0699, a2 = 0.0500 and a2a1 − a0 = 8.607 × 10−6. Top to
bottom the populations P , S, U , as functions of time.

i.e.
T (t) = Ψ

q

(
1− e−qt

)
+ T (0)e−qt ≤ max

{
Ψ

q
, T (0)

}
.

8 Conclusions

The analysis shows that the system cannot possibly disappear, as the origin is
always unstable. This is a good result in terms of ecological implications, and
it is essentially implicit in the model assumptions, namely the logistic growth
of the prey, as the positive eigenvalue of the Jacobian stems exactly from the
susceptible prey reproduction equation.

The systems then have only two possible equilibria, related to each other
via a transcritical bifurcation, which occurs when the predators’ mortality falls
below the threshold m‡, or its particular case m† for the model of infected prey
avoided by predators. When it is above it, the systems settles at the prey-only
equilibrium, with endemic disease.

The predator-free equilibrium Ec1 of the classical predator-prey case can get
destabilized by the disease presence, see the stability conditions for E1 (7) and
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(13). Note indeed that the thresholds m† and m‡ contain the epidemiological
parameters β and µ, while m∗ obviously does not, compare (2) with (7) and
(13). Note also that m† = m∗ for β = 0, i.e. in the absence of the disease. This
destabilization never occurs in the classical case. This remark once more stresses
the fact that epidemics have also demographic consequences at the ecological
level and therefore cannot be easily neglected in ecological investigations too.
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with bottleneck: standing and traveling waves

Bodo Werner

University of Hamburg, Department of Mathematics,
Hamburg, Germany

Keywords: microscopic car following traffic model on the line, optimal ve-
locity function, leading car model, quasi-stationary solution, standing waves,
Poincarťe N−model, Floquet multipliers.

Abstract

We study a very simple microscopic car following traffic model on the line with
a leading car at the top, given by the infinite ODE system

ẍj(t) = 1
τ

(V (xj−1(t)− xj(t))− ẋj(t)) , j = 2, 3, . . . ,

where V (h) is a certain optimal velocity function as proposed in [1]. The leading
car (j = 1) has no car ahead and is governed by the simple ODE

ẍ1(t) = 1
τ

(vf − ẋ1(t)) ,

where vf is the speed it is aiming to.
This line model has a unique trivial solution – a quasi-stationary solution where
all cars have speed vf and headway hf implicitly defined by V (hf ) = vf . In
comparison with an arbitrary infinite autocade (without a leading car), in our
leading car model we extract a specific solution from all possible quasi-stationary
solutions with constant headway h and speed v, where v = V (h). The quantity
%f := 1/hf can be considered as a given average traffic density on the infinite
line. In [4] we studied the stability of the quasi-stationary solution in dependence
on the system parameter hf .
In addition to [4] we introduce a bottleneck of strength ε at certain position
in the same way as in [2] for the circle model. The bottleneck is modeled by
replacing the optimal velocity function V by some function Vj,ε for car No. j.
We are interested how ε and hf influence the traffic dynamics. The first obser-
vation is that the quasi-stationary solution for ε = 0 is perturbed to a certain
standing wave where all cars have the same dynamics. Their speed is locally
reduced in the neighborhood of the bottleneck, see Fig. 1.
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Figure 1: Standing wave: Speed-time dynamics of a single car for hf = 2 and ε = 0.2

Figure 2: Solution diagram: Standing waves for hf = 2.1 in dependence on ε

2

Figure 1. Standing wave: Speed-time dynamics of a single car for hf = 2 and
ε = 0.2.

Numerical experiments show a similar bifurcation phenomenon as reported
in [4]: As far as an infinite autocade is considered, for a fixed ε the standing
waves lose stability with decreasing hf , and jam waves caused by the bottleneck
are traveling upstream (We will present some movies). In [4] the loss of stability
of the quasi-stationary solution was theoretically justified by investigating the
spectrum of an infinite matrix. Based on these arguments it was shown that the
bifurcation takes place at the Hopf bifurcation parameters in the circle model, [3].
Another observation in [4] is the coexistence of stable quasi-stationary solutions
and certain jam waves – another analogy to the circle model when jam waves
are replaced by periodic solutions. We will show that some results in [2] for the
circle model still hold on the line. The natural analogy with so called POMs
are standing waves. To handle their stability we use another approach as in [4].
Instead of the infinite ODE system we consider a simple Poincarťe N−model:
The Poincarťe event is defined by the fact that the leading car of a finite auto-
cade consisting of N cars passes certain fixed position behind the bottleneck.
Then the leading car is removed from the autocade, the second car becomes the
new leader and at the end of the autocade another car is added with headway hf
and speed vf . This defines a Poincarťe map on R2N . A standing wave is now a
fixed point of this Poincarťe map. Its stability can be studied numerically by the
eigenvalues of its linearization. We call the eigenvalues Floquet multipliers of
the standing waves.
Our numerical experiments show that for large enough N , say N = 100, our
Poincarťe N−model shows the same dynamical behavior as the infinite ODE
system.
This enables us to follow numerically the standing waves in dependence on ε or
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hf and study their stability and possible bifurcations. An example of a solution
diagram is given by Fig. 2, where the minimal speed vMin of the standing wave is
indicated on the vertical axis. The dashed line corresponds with stable standing
waves. From Fig. 2 we conclude the coexistence of two stable standing waves for
ε = 0.25.

Figure 1: Standing wave: Speed-time dynamics of a single car for hf = 2 and ε = 0.2

Figure 2: Solution diagram: Standing waves for hf = 2.1 in dependence on ε

2

Figure 2. Solution diagram: Standing waves for hf = 2.1 in dependence on ε.

(a) Standing wave A for hf = 2.1 and ε = 0.25 (b) Standing wave B for hf = 2.1 and ε = 0.25

Figure 3: Time-speed dynamics for hf = 2.1 and ε = 0.25

A, is the result of a quasi-stationary autocade hitting the bottleneck. It is very stable, the Floquet multiplier with maximal
modulus is µ = 0.8. The second one was initiated ´ by a rather large initial perturbation of the quasi-stationary autocade.
Its Floquet multiplier with maximal modulus is µ = 0.98. This indicates that its stability is rather weak.
There exist parameter regions where there exist no stable standing wave. This can already occur for ε = 0 and small
headways, see [Wer13]. Then small perturbations of the quasi-stationary solution lead to so called jam waves.
Also in case of bottlenecks coexistence of stable standing waves and jam waves can be observed.
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Figure 3. Time-speed dynamics for hf = 2.1 and ε = 0.25.

Fig. 3 shows the two standing waves which are quite different with respect to
the decrease of speed each car has to undergo by passing the bottleneck. The
black dot on the time axis denotes the time when the car passes the center of
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the bottleneck. The first one, standing wave A, is the result of a quasi-stationary
autocade hitting the bottleneck. It is very stable, the Floquet multiplier with
maximal modulus is µ = 0.8. The second one was initiated by a rather large
initial perturbation of the quasi-stationary autocade. Its Floquet multiplier with
maximal modulus is µ = 0.98. This indicates that its stability is rather weak.
There exist parameter regions where there exist no stable standing wave. This
can already occur for ε = 0 and small headways, see [4]. Then small perturbations
of the quasi-stationary solution lead to so called jam waves. Also in case of
bottlenecks coexistence of stable standing waves and jam waves can be observed.
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Abstract The Navier–Stokes system represents well established model
for describing flows of viscous incompressible fluids. Although it is widely
used in numerous applications, its mathematical analysis is far from be-
ing satisfactory. Recently, there have appeared many regularity criteria
for weak solutions regarding one velocity component or/and part of its
gradient. The aim of this review note is to give an introduction into this
area and an overview of known results.

1 Introduction

We consider the Cauchy problem for the incompressible Navier–Stokes equations
in three space dimensions, id est system of nonlinear partial differential equations
for unknown vector velocity field v and a scalar function p representing pressure;
the constant kinematic viscosity ν > 0 and the density of external force f are
given.

∂v
∂t

+ v · ∇v− ν∆v +∇p = f
div v = 0

}
in (0, T )× R3, (1)

v(0,x) = v0(x) in R3,

Since the existence of classical solutions to the system (1) globally in time is
generally not known1, we move our attention to so called weak solutions which
existence and main properties were proved by Jean Leray [20] in 1930‘s. Now,
1 In fact, its existence is one of the Millenium problems of Clay institute, see [13].
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we will recall briefly his main results. Further details, as well as other properties
of the solutions and the definitions of involved spaces can be found in classical
monographies (see e.g. [19], or [21]).

1.1 Weak, strong and classical solutions

In what follows we will assume for simplicity f = 0. In fact, for the case of
potential forces we can absorb it in the pressure, while for the nonpotential case
it is easy to establish the assumptions on its behaviour so that all results remain
valid.

Theorem and definition 1. Let v0 ∈ L2
div(R3). Then there exists at least

one weak solution to the Navier–Stokes equations corresponding to the initial
value v0, id est v ∈ L2

(
0, T,

(
W 1,2

div (R3)
))
∩ L∞

(
0, T,

(
L2(R3)

))
with ∂v

∂t ∈

L1
(

0, T,
(
W 1,2

div (R3)
)∗), such that〈

∂v
∂t
,ϕϕϕ

〉
(W 1,2

div (R3))∗,W 1,2
div (R3)

+
∫
R3

(v · ∇v) ·ϕϕϕ dx

+ ν

∫
R3

(∇v : ∇ϕϕϕ)dx = 0, ∀ϕϕϕ ∈W 1,2
div (R3), s.v. t ∈ (0, T ),

lim
t→0+

∫
R3

v(t, ·) ·ϕϕϕ dx =
∫
R3

v0 ·ϕϕϕ dx, ∀ϕϕϕ ∈ L2
div(R3).

Moreover, we are able to construct the solution in such a way that it satisfies the
so called energy inequality,

1
2

∫
R3

|v(t)|2dx+ ν

t∫
0

∫
R3

|∇v|2dxdt ≤ 1
2

∫
R3

|v0|2dx, for a.a. t ∈ (0, T )

in that case we call it the weak Leray–Hopf solution.

Remark 1. Since we take in the weak formulation only solenoidal test func-
tions, the pressure is in the weak formulation not present. However, it can be
subsequently recovered from the velocity field, we omit further discussion con-
cerning this feature.

Remark 2. It is not known whether there can exist a weak solution, which does
not satisfy the energy inequality.2

2 Let us remark that in 2D setting due to a better integrability of the time derivative,
we are able to test the weak formulation with the solution itself, to get the energy
equality and consequently also uniqueness and full regularity.
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Definition. We call a weak solution strong, if it additionally satisfies

v ∈ L∞
(

0, T,
(
W 1,2

div (R3)
))
∩ L2 (0, T, (W 2,2(R3))) .

The following assertions possesses really important role in understanding the
possible behaviour of the solution and are crucial in proofs of regularity criteria.
Theorem 3. Every strong solution satisfies even the energy equality, especially
it is the Leray–Hopf solution, and it is also unique in the class of the weak
Leray–Hopf solutions satisfying the corresponding initial condition.
Theorem 4. Let v0 ∈ W 1,2

div (R3). Suppose that v is a strong solution to the
Navier-Stokes equations, then v is as smooth as the data allow, hence in our
case of the Cauchy problem with zero external force v ∈ C∞

(
(0, T )× R3).

Theorem 5. Let v0 ∈ W 1,2
div (R3). Then there exists (possibly small) time T ∗ =

T ∗(‖v0‖W 1,2
div (R3) , ν) so that on the time interval (0, T ∗), there exists a unique

strong solution to the Navier–Stokes equations. Moreover, we have a lower bound
on this time T ∗ ≥ Cν3

‖∇v0‖4
2
.

2 Regularity criteria

Generally speaking it is not known whether the class of weak solutions is a class
of uniqueness of the solutions, or equivalently said, if it is possible that for some
choice of initial data the singularity (blow-up) time occurs, meaning that time
T ∗ is necessarily finite. Therefore, there naturally appears a question, under
which additional conditions imposed on the general Leray-Hopf weak solution,
is the weak solution regular, and consequently also unique. These conditions are
in literature called regularity criteria, and a lot of mathematicians are focused
on searching for them during the last fiveteen years, in hope that it will help to
shed light on the behaviour of a possible singularity. Unfortunately, not all the
authors are familiar with already known results, and it is not rare to recognize
that some of them just reobtain exactly the same result (compare e.g. [25] with
more recent [33]).

The celebrated Prodi–Serrin conditions, guaranteeing the regularity as soon
as there exist s and t such that

v ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
≤ 1, s ≥ 3 (2)

have an interesting history.

First in early sixties, Prodi [27] proved uniqueness of the solutions in the
class

v ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
< 1, s ≥ 3, (3)
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further Ohyama3 and Serrin [24, 29] showed for s > 3 also the regularity of the
solution. Fabes, Jones and Rivière [12] then proved that for smoothness of v it
is enough to assume

v ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
≤ 1, s > 3.

The fact that the Prodi–Serrin conditions assures regularity also in the limit
case s = 3, was showed more recently by Escauriaza, Seregin and Šverák [9] by
transforming the problem into the backward uniqueness of the heat equation
(see also [28]).

As a straightforward consequence of (2) we get by the Gagliardo–Nirenberg
inequality the regularity also by assuming

∇v ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
≤ 2, s ∈

[
3
2 , 3
)
, (4)

this was generalized for s ∈ [3,∞) by Beirão da Veiga [3].

Thanks to the incompressibility condition div v = 0 it is relatively easy to
show that it is enough to assume satisfaction of the classical Prodi–Serrin con-
ditions only by two velocity components (see e.g. [2]), id est

v1, v2 ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
≤ 1, s > 3, (5)

and similarly for their gradients (see e.g. [8]):4

∇v1,∇v2 ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
≤ 2, s ∈

(
3
2 ,∞

)
, (7)

note that this is a direct consequence of (5) for s ∈
( 3

2 , 3
)
.

Since in two dimensional setting, the regularity (and the uniqueness) of the
solutions to the Navier–Stokes equations is well established, it is natural to
search for the regularity criteria in terms of just one velocity component. The
main aim of the following parts is to give a comprehensive overview of known
results concerning one velocity component and/or its gradient.
3 Because of this article the conditions are sometimes called the Prodi–Ohyama–Serrin

conditions.
4 See also [6] where the regularity is proved for

∇v1,∇v2 ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
≤ 1, s ∈ [3,∞] . (6)
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2.1 Conditions concerning one velocity component

We would like to expose an up to date summary of global regularity criteria
to the Navier–Stokes equation in three space dimensions on the scale of the
Lebesgue spaces, involving one velocity component or its derivatives. For the
sake of clarity, we do not present the known results neither in higher space
dimensions nor those expressed in other space norms (with one exception), since
from our point of view, the proofs of these criteria usually do not bring anything
new, but only reformulate already known results in terms of a bit finer spaces.5

The very first result concerning one velocity component regularity is due to
Neustupa and Penel [23], who proved locally for suitable weak solution that if
possible blow-up point occurs then there have to be all three velocity components
unbounded. Globally this was proved independently by He [14] using the same
idea6 based on the equation for the vorticity; more precisely He showed regularity
of solution provided

v3 ∈ L∞
(
0, T,

(
L∞(R3)

))
.7 (8)

This pioneering result was then improved by a similar method upto

v3 ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
≤ 1

2 , s > 6, (9)

see Neustupa, Novotný and Penel [22] for suitable weak solution, and Zhou [36]
for a global regularity criterion for Cauchy’s problem.

In connection with the above mentioned results concerning one velocity com-
ponent, there appeared also regularity criteria involving the gradient of one
velocity component. The first result in this direction is due to He [14], who
assumed

∇v3 ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
≤ 1, s ≥ 3. (10)

This was soon improved by Pokorný [26], and independently by Zhou [35], who
proved regularity for

∇v3 ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
≤ 3

2 , s ≥ 2, (11)

(see also [30] for the special case s = 3 and t = 4). Note that for s ∈ [2, 3) it is
again just a consequence of the corresponding condition for the velocity (9).

Using a quite different technique based on the role of pressure and estimating
it by parts Kukavica and Ziane [17] proved that as a global regularity criterion
5 See e.g. [32], where even the author in the abstract claims that his result is obvious.
6 Generally speaking, it is an interesting question whether it is possible to transform

a given local regularity criterion to a global one and vice versa.
7 This can be also formally expressed as v3 ∈ Lt

(
0, T,

(
Ls(R3)

))
, 2

t
+ 3

s
= 0.
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can be taken also the condition

v3 ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
≤ 5

8 , s >
24
5 , (12)

or

∇v3 ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
≤ 11

6 , s ∈
[

54
23 ,

18
5

]
. (13)

Note that in contrary to the previous works, in this case, the second criterion is
not a direct consequence of the first one for any s.

A new approach to the problem was due to Cao and Titi [4], who by usage
of the multiplicative Gagliardo–Nirenberg inequality proved regularity assuming
only

v3 ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
≤ 2

3 + 2
3s , s >

7
2 . (14)

Let us note, that the authors proved the result for periodic boundary conditions,
which can be however directly modified to a global regularity criterion; and
further that the result is better than (12) (assuming less regularity), although it
does not correspond to the natural scaling of the Navier–Stokes equations.

Using a combination of methods from [18] and [4], Zhou and Pokorný [38]
showed the regularity even for

v3 ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
≤ 3

4 + 1
2s , s <

10
3 ,

8 (15)

and for

∇v3 ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
≤

{
19
12 + 1

2s s ∈
( 30

19 , 3
]

3
2 + 3

4s s ∈ (3,∞] ;
(16)

and then by a slightly different technique, see [37], reobtain (15), and enlarge
the regularity class concerning the gradient of one velocity component upto

∇v3 ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
≤



53
18 −

2
s , s ∈

( 90
53 ,

54
29
)
,

61
24 −

5
4s , s ∈

[ 54
29 , 2

)
,

23
12 , s ∈ [2, 3] ,
7
4 + 1

2s , s ∈
(
3, 10

3
]
,

3
2 + 4

3s , s ∈
( 10

3 ,∞
]
.

(17)

Note that except for s ∈ [2, 3] the conditions do not correspond to the natural
scaling of the Navier–Stokes equations.

8 Recently, Jia nad Zhou [16] proved also the limit case s = 10
3 .
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Recently, Skalák [31] revisited the methods used in [37] and [38], and got the
regularity assuming

∇v3 ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
≤

{
19
10 s ∈

[ 30
19 ,

10
3
]
,

7
4 + 1

2s , s ∈
( 10

3 ,∞
]
.

(18)

This is better than (17) for s ∈
( 30

19 ,
150
77
]
∪
( 10

3 ,∞
]
. Another modification of

(17) is due to Jia and Jiang, see [15], where an anisotropic regularity criterion
involving the derivatives of one velocity component was presented.

Very recently, Chemin and Zhang [7] following completely different idea with
usage of anisotropic Littlewood-Paley theory, came to the following regularity
criterion in homogeneous Sobolev space (σ denotes the order of differentiability)
rather than Lebesgue space

v3 ∈ Lt
(
0, T,

(
Hσ(R3)

))
, σ = 1

2 + 2
t
, t ∈ (4, 6). (19)

Let us emphasize that this norm is scaling invariant, and although there is a
restriction on range of σ9, it is in a certain sense on the same critical scale
as (2) and (4). Actually, the limit case t = 4 would be equivalent to ∇v3 ∈
L4 (0, T, (L2(R3)

))
.

In above mentioned article by Penel and Pokorný [25] there appeared among
others also the very first regularity criterion concerning only one component of
the gradient of one velocity component, more precisely they showed regularity
of solutions satisfying

∂3v3 ∈ L∞
(
0, T,

(
L∞(R3)

))
. (20)

Later on, this result was markedly improved using the multiplicative Gagliardo–
Nirenberg inequality independently by Zhou and Pokorný [38]

∂3v3 ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
<

4
5 , s >

15
4 , (21)

and by Cao and Titi [5], who assumed

∂3v3 ∈ Lt
(
0, T,

(
Ls(R3)

))
,

2
t

+ 3
s
≤ 3

4 + 3
2s , s > 2, (22)

in the latter article there also appeared the following condition imposing the
nondiagonal components of the velocity gradient

∂jv3 ∈ Lt
(
0, T,

(
Ls(R3)

))
, j 6= 3, 2

t
+ 3
s
≤ 1

2 + 3
2s , s > 3. (23)

We can deduce that for ∂3v3 and s > 30, the result (21) is better than (22); the
results of Cao and Titi were further slightly improved by Fang and Qian [10].
9 Lately, the authors announced that they are able to show the result for all σ ∈ (4,∞).
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Zhang [34] recently reobtain condition (22), using the method from [38], as a
special case of the following more general criterion

v3 ∈ Lt1
(
0, T,

(
Ls1(R3)

))
, ∂3v3 ∈ Lt2

(
0, T,

(
Ls2(R3)

))
2
t1

+ 3
s1

= α,
2
t2

+ 3
s2

= β, p1 <∞ or p2 <∞ (24)(
1− 1

s2

)
s1 = 1/t2 + 3/8

3/8− 1/t1
= 9/4− β
α− 3/4 > 1.

Setting t1 =∞, s1 = 2, α = 3
2 , β = 3

4 + 3
2s2

we immedietely get the result from
(22). This last criterion was further generalized by Fang and Qian [11] to aniso-
tropic Lebesque spaces concerning different integrability in different directions.

2.2 Possible generalizations

Introducing the regularity criteria concerning one velocity component, say v3,
there appeared a natural question, to what extent the choice of the component
v3 = e3 · v(t,x) is crucial in the considerations. It is clear that all the criteria
can be generalized to the corresponding condition imposed on the projection to
constant nonzero vector field b, id est b·v(t,x). However, assuming the reference
field b varying over space and time, the situation become more complex; the
smoothness of b have to be taken into account as well as the technique of the
original criterion.

This problem was first touched by Beirão da Veiga in the article [3], where
the conditions where imposed on the projection of the velocity into the vector
field changing in time.

In the article [1], the authors showed that the criteria (9) and (11) from
[26, 35, 36] for one velocity component can be generalized in such a way that
the original condition can be replaced by a corresponding criteria concerning
b(t,x) · v(t,x), with vector field b(t,x) : (0, T ) × R3 7→ R3 sufficiently regular,
but changing in time as well as in space. There remains an open problem, whether
this can be done also for all other criteria and it is probably closely connected
with possibility of transforming the criteria into a local version.
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Spiders on the vineyard with the ballooning
effect

Martin Biák and Drahoslava Janovská

Institute of Chemical Technology, Prague

Keywords: population models, predator-prey models, ballooning, Filippov
systems, sliding bifurcations

Abstract The population model of spiders hunting insect on the vine-
yard can be described as a set of four ordinary differential equations. This
type of the model is known as a predator–prey model. We show how to
integrate a human intervention into this model. We formulate Filippov
system that includes both cases - with and without the intervention.
Then we analyze this model using the piecewise-smooth dynamical sys-
tem theory. We are looking for so-called local sliding bifurcations. All
simulations are performed in Matlab. The solution diagram is computed
in Matlab, too.

1 Model equations

The insect is considered to be pest in the vineyard but it is to be harmless in
the surrounding woods. Insect population is under control of natural predat-
ors, spiders. The predator–prey model of spiders and insect on the vineyard is
described as the following set of ordinary differential equations:

ẇ =
(
b
(

1− w

W

)
− ` sw

)
w, (1)

v̇ =
(
a
(

1− v

V

)
− k sv

)
v, (2)

ṡw =
(
−c+ ˜̀

(
1− α V

V +W

)
w
)
sw + α k̃

W

V +W
svv, (3)

ṡv =
(
−e+ k̃

(
1− α W

V +W

)
v
)
sv + α ˜̀ V

V +W
sww, (4)

where v(t) is the insect population on the vineyard, w(t) is the insect population
outside the vineyard, sv(t) is the spiders population on the vineyard, sw(t) is
the population of the spiders outside the vineyard. For more information about
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this model, see [1]. If man intervenes into the ecosystem by spraying to prevent
an overgrowth of insect in the vineyard, equations (1)–(4) pass to the system

ẇ =
(
b
(

1− w

W

)
− ` sw

)
w − h (1− q)w, (5)

v̇ =
(
a
(

1− v

V

)
− k sv

)
v − h q v, (6)

ṡw =
(
−c+ ˜̀

(
1− α V

V +W

)
w
)
sw + α k̃

W

V +W
svv − hK(1− q) sw, (7)

ṡv =
(
−e+ k̃

(
1− α W

V +W

)
v
)
sv + α ˜̀ V

V +W
sww − hK q sv, (8)

where an extra term in each equation represents the mortality caused by spray-
ing. All parameters in (1)–(4) and (5)–(8) are positive real numbers.

The question is how to introduce the model that includes both cases (with
and without spraying) and that keeps the insect population on the vineyard
below a given limit. We will show that such a model is a type of Filippov system
and it can be treated using the techniques stated e.g. in [2].

We put x = (w, v, sw, sv)T. Because only the positive values of w(t), v(t),
sw(t), sv(t) have a physical meaning, our state space is

D = {x ∈ R4 : xj ≥ 0, j = 1, . . . , 4}.

Let us have a scalar function ϕ : D → R. The function ϕ divides the region D
into:

S1 = {x ∈ D : ϕ(x) > 0},
S2 = {x ∈ D : ϕ(x) < 0},
Σ = {x ∈ D : ϕ(x) = 0}.

Our aim is to keep the population v(t) of the insect on the vineyard below
the given value vm ∈ R, vm > 0. Therefore, our function ϕ(x) will be

ϕ(w, v, sw, sv) = vm − v. (9)

We define the following Filippov system F on D = S1 ∪ S2 ∪Σ,

F : ẋ =


g(1)(x) , x ∈ S1,
g(0)(x) , x ∈ Σ,
g(2)(x) , x ∈ S2,

(10)
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where ẋ = (ẇ, v̇, ṡw, ṡv)T, and where the vector fields g(i) : R4 → R4, i = 1, 2,
are

g(1) =



(
b
(

1− w

W

)
− ` sw

)
w,(

a
(

1− v

V

)
− k sv

)
v,(

−c+ ˜̀
(

1− α V

V +W

)
w
)
sw + α k̃

W

V +W
svv,(

−e+ k̃
(

1− α W

V +W

)
v
)
sv + α ˜̀ V

V +W
sww.



g(2) =



(
b
(

1− w

W

)
− ` sw

)
w − h (1− q)w,(

a
(

1− v

V

)
− k sv

)
v − h q v,(

−c+ ˜̀
(

1− α V

V +W

)
w
)
sw + α k̃

W

V +W
svv − hK (1− q) sw,(

−e+ k̃
(

1− α W

V +W

)
v
)
sv + α ˜̀ V

V +W
sww − hK q sv.


.

If ϕ(w, v, sw, sv) > 0, no spraying occurs and the vector field g(1) is in effect.
If the insect population v(t) on the vineyard exceeds the given value vm, i.e. if
ϕ(w, v, sw, sv) < 0, the spraying begins and the vector field g(2) takes place. The
spraying goes on until the value of v(t) decreases below vm, when g(1) applies
again.

Before we define the vector field g(0), which determines the behavior of system
(10) on the boundary Σ, it is necessary to distinguish two types of sets on Σ,
see [2]. We define a scalar function σ : Σ → R,

σ(x) = 〈∇ϕ,g(1)〉〈∇ϕ,g(2)〉,

and we obtain two sets on Σ:
- the crossing set Σc ⊆ Σ = {x ∈ Σ : ϕ(x) = 0 ∧ σ(x) > 0},
- the sliding set Σs ⊆ Σ = {x ∈ Σ : ϕ(x) = 0 ∧ σ(x) ≤ 0}.

In our case, the scalar function σ(w, v, sw, sv) reads

σ(w, v, sw, sv) = 〈∇ϕ,g(1)〉〈∇ϕ,g(2)〉,

〈∇ϕ,g(1)〉 = −
(
a
(

1− vm
V

)
− k sv

)
vm,

〈∇ϕ,g(2)〉 = −
(
a
(

1− vm
V

)
− k sv − h q

)
vm,

where ∇ϕ(w, v, sw, sv) = (0,−1, 0, 0).
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If x0 ∈ Σs, trajectory γx0 slides along the sliding set Σs. If x0 ∈ Σc, traject-
ory γx0 leaves the boundary and continues to S1 or S2, depending on the vectors
g(1)(x0) and g(2)(x0).

On Σc, we put
g(0) = 1

2

(
g(1) + g(2)

)
.

For x ∈ Σs, we apply the filippov convex method and define a smooth vector
field

g(0) = (1− λ) g(1) + λg(2), λ = 〈∇ϕ,g(1)〉
〈∇ϕ,g(1) − g(2)〉

, (11)

where 0 ≤ λ ≤ 1.

Such points from Σs, in which σ(w, v, sw, sv) = 0 are called tangent points.
We observe two sets of tangent points T1 and T2 on the boundary Σ:

T1 = {(w, v, sw, sv) : w ≥ 0 ∧ v = vm ∧ sw ≥ 0 ∧ sv = svT1
},

T2 = {(w, v, sw, sv) : w ≥ 0 ∧ v = vm ∧ sw ≥ 0 ∧ sv = svT2
},

where
svT1

= 1
k
a
(

1− vm
V

)
, svT2

= 1
k

(
a
(

1− vm
V

)
− h q

)
. (12)

Let us assume that svT1
≥ 0 and svT2

≥ 0. Because svT1
> svT2

, the sets T1
and T2 are planes that delimit the sliding set

Σs ⊂ Σ = {(w, v, sw, sv) : w ≥ 0 ∧ v = vm ∧ sw ≥ 0 ∧ 0 ≤ svT2
≤ sv ≤ svT1

}.

The sliding set Σs has a shape of a semi-infinite prism with the non-zero height
1
k
h q.

If we put g(0)(P) = 0 in the convex combination (11), the points P ∈ Σs are
called pseudo-equilibria of the Filippov system. They can be computed numer-
ically. We are looking for a so-called inner pseudo-equilibrium, i.e. a point that
have all its coordinates positive.

2 Simulations

In Table 1, the parameters used in all simulations are listed. In Figure 1, the
structure of the sliding segment Σs with only nine trajectories is depicted for
vm = 0.4. In the next Figure 2, more of the trajectories are added to show
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the dynamical behavior of the system F on the sliding segment Σs. The inner
pseudo-equilibrium can be seen on the sliding set Σs, in particular it can be
classified as stable pseudo-focus-node.

In Figure 3, the integral curves for vm = 0.4 (w(0) = 0.0001, v(0) = 1.01498,
sw(0) = 0.00872759, sv(0) = 0.75024) are depicted.

We have performed many simulations to determine the dependence of the
solution on the given parameter, namely the limit value of the insect population
on the vineyard vm. We have found that a local sliding bifurcation occurs for
the value vm = 0.485. The bifurcation is caused by the collision of a standard
equilibrium of the system F with the boundary Σ. The bifurcation point is called
the boundary equilibrium X and can be seen in the solution diagram in Figure 4.
All phase portraits were obtain using the event driven method in Matlab. More
information about the event driven method can be found in [3]. The solution
diagram was computed in Matlab. We used the same equations that were used
in SlideCont, see Table I in [4].

Table 1. The parameters used for the simulation of the system F .

Parameter Value Meaning

a 1.5 specific growth rate of the prey in the vineyards
b 1.0 specific growth rate of the prey in the woods
c 0.1 specific mortality rate of predators in the woods
e 0.1 specific mortality rate of predators in the vineyards
k 2 specific predation rate of predators in the vineyards
` 2 specific predation rate of predators in the woods
k̃ 0.1 specific reproduction rate of predators per 1 prey eaten

in the vineyards
˜̀ 0.1 specific reproduction rate of predators per 1 prey eaten

in the woods
α 0.5 fraction of newborns carried by the wind into the air

(so called ballooning effect)
V 1000 carrying capacity of the vineyard insect, V �W

W 10 carrying capacity of the wood insect
h 0.6 effectiveness of the insecticide against the parasites
q 0.9 portion of insecticide sprayed directly on the vineyards
1− q 0.1 portion which may accidentally be dispersed in the woods
K 0.01 smaller effect the insecticide should have on the spiders,
vm 0.4 limit of the insect population on the vineyard
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Figure 3. Integral curves for vm = 0.4.
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3 Conclusions

We have studied the structure of the sliding segment Σs and we have performed
many simulations to determine the dependence of the solution on the given
parameter (the limit value of the insect population vm on the vineyard). We
discovered the local sliding bifurcation in the population model of the spiders on
the vineyard with the so-called ballooning effect. This bifurcation is caused by a
collision of the standard equilibrium of the system F with the boundary Σ. In
the future, we plan to continue in the computations and simulations for detail
analysis of the system.
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Abstract Interval scheduling problem aims at assigning jobs to ma-
chines where the job starting and finishing times are known. If random
delays influence the job processing times, the objective can be to find
a schedule which remains feasible with the highest possible probability.
In this paper, we propose the formulations based on stochastic integer
programming and robust coloring problems. The second one leads to a
large scale binary-linear programming problem. We report first numerical
results based on simulated instances.

1 Introduction

We deal with the problem of jobs scheduling on a set of available machines.
We consider jobs with given starting and finishing times leading to a class of
scheduling problems called interval scheduling, fixed interval scheduling or fixed
jobs scheduling, cf. Kolen et al. [3], and Kovalyov et al. [4]. The goal can be to
find a feasible jobs assignment to machines, leading to an operational problem,
or to minimize the number of machines necessary to process all jobs, leading to
a tactical problem, see Kroon et al [5,6]. Such problems have many applications
and arise in various areas such as crew scheduling, vehicle scheduling, telecom-
munication, scheduling of operating rooms in hospitals, and workers assignment
to projects.

We focus on the operational problem where the number of machines is fixed.
However, the finishing times of jobs can be influenced by unpredictable cir-
cumstances leading to uncertain (stochastic) delays. Our goal is then to find a
“robust” schedule which remains feasible with the highest attainable probability.
Such problems were introduced and investigated by Branda et al. [2]. In this pa-
per, we review the mathematical programming formulations based on stochastic
integer programming and robust coloring problem. The second one leads to a
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large scale deterministic binary linear programming problem, thus it enables to
compute the schedule reliability easily than the stochastic programming one.

The paper is organized as follows. In Section 2, we propose the stochastic in-
teger programming formulation of the problem with schedule reliability maxim-
ization. A robust coloring formulation is reviewed in Section 3. A simple example
is proposed for better understanding. In Section 4, we report first numerical res-
ults based on simulated test instances. Section 5 concludes the paper shortly.

2 A stochastic integer programming formulation

In our operational problem, the number of machines is already given and the goal
is to find a schedule with the highest reliability, i.e. probability that it remains
feasible with respect to the random delays. The planning period is considered in
continuous time, i.e. T = [0, T ]. Let C denote the set of machines and J denotes
the set of jobs with known starting times sj ∈ T . We consider a random finishing
time fj(ξ) which is a sum of a prescribed finishing time f0

j ∈ T and a random
delay Dj(ξ), i.e.

fj(ξ) = f0
j +Dj(ξ).

We assume that the distribution of the random delays P is known or well es-
timated with a support Ξ and a probability mass in zero, i.e. Dj = 0 has a
positive probability. If the processing of a job j finishes at fj(ξ), a new job j′

with starting time sj′ ≥ fj(ξ) can be assigned to the same machine. Necessary
machine breaks can be incorporated directly to the finishing times.

Let xjc, j ∈ J , c ∈ C be binary variables which are equal to one if job j is
assigned to machine c, and it is equal to zero otherwise. The following random
constraints ensure that in each time at most one job is processed by a machine∑

j: sj≤t<fj(ξ)

xjc ≤ 1, t ∈ T̂ , c ∈ C,

where T̂ = {s1, . . . , s|J |} are known starting times. Branda et al. [2] introduced
stochastic integer programming formulation where the probability of schedule
feasibility with respect to the random delays is maximized:

max
x

P

(
ξ ∈ Ξ :

∑
j: sj≤t<fj(ξ)

xjc ≤ 1, t ∈ T̂ , c ∈ C
)

∑
j: sj≤t<f0

j

xjc ≤ 1, c ∈ C, t ∈ T̂ , (1)

∑
c∈C

xjc = 1, j ∈ J ,

xjc ∈ {0, 1}, c ∈ C, j ∈ J .
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The constraints ensure that there is at most one job assigned to a machine at each
time with respect to the prescribed job processing times and a job is assigned
to exactly one machine. However, the objective function leads to computation
of multivariate integral which can be numerically untractable or can be highly
time demanding, thus inappropriate for algorithms, see, e.g., Ruszczynski and
Shapiro [7], Schultz [8] for general discussions. We show below that we can avoid
this problem, although for a price of additional variables and constraints.

3 A robust coloring formulation

In this section, we propose a extended robust coloring formulation of the problem
(1), which was introduced by Branda et al. [2]. The main advantage of the model
is that the underlying randomness is transformed into penalty coefficients in the
objective function leading to a deterministic integer (binary) problem.

The robust version of the vertex coloring problem was introduced by Yanez
and Ramirez [9] and further investigated by Archetti et al. [1], and F. Wang and
Xu [10]. The extended robust coloring formulation is also based on the interval
graph which can be defined as follows. The set of jobs J corresponds to vertices
and the set of machines C to colors. The set of undirected edges E contains
all pairs of jobs {j, j′} which overlap, i.e. sj ≤ sj′ < f0

j . The complementary
(directed) edge set E contains all pairs {j, j′} such that delay of job j could
influence job j′ if it is processed by the same machine, i.e. such that f0

j ≤ sj′ .
The set E can be reduced for example in the case when the support of the
random delays is bounded. It always holds E ∩ E = ∅.

We assume that the number of available machines (colors) is greater or equal
to the chromatic number of the graph (J , E), i.e. the coloring of the graph
without taking into account the random delays is possible. Under the assump-
tion that the delays are mutually independent, Branda et al. [2] formulated an
extended robust coloring problem, which is equivalent to the stochastic program-
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ming problem (1):

min
x,y,z

∑
{j,j′}∈E

qjj′zjj′

∑
c∈C

xjc = 1, j ∈ J ,

xjc + xj′c ≤ 1, {j, j′} ∈ E,
xjc + xj′c ≤ 1 + yjj′ , {j, j′} ∈ E, (2)

yjj′ +
∑

k: {j,k}∈E & sk≥f0
j′

zjk ≤ 1, {j, j′} ∈ E,

∑
k:{j,k}∈E

yjk ≤ |J | ·
∑

k:{j,k}∈E

zjk, j ∈ J ,

xjc ∈ {0, 1}, c ∈ C, j ∈ J .

The complementary edges from the set E are penalized if the connected vertices
share the same color (machine). The binary variables xjc have the same function
as in the stochastic programming formulation. The variable yjj′ is equal to one
if the nodes j and j′ share the same color. The additional binary variables zjk
are used to identify the subsequent job on the machine, thus they are important
to set the right penalty. The following choice of the penalty coefficients was
suggested by Branda et al. [2]:

qjj′ = − ln
(
P (Dj ≤ sj′ − f0

j )
)
.

The authors obtained than that the objective function is equal to the minus
logarithm of the whole schedule reliability, i.e.

∑
{j,j′}∈E: zjj′=1

qjj′ = − ln

 ∏
{j,j′}∈E: zjj′=1

P (Dj ≤ sj′ − f0
j )

 .

Example 1. We present a simple example with five jobs and three machines, see
Figures 1, 2, 3, 4. The interval graph shows hard edges connecting jobs, which
cannot be processed by one machine, i.e.

E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {4, 5}} .

The rest of the edges belongs to the complementary set with assigned probabilities
that the delay of a job influences the possible successor:

p14 = 0.2, p15 = 0.1, p24 = 0.4, p25 = 0.2, p35 = 0.4.

We propose four feasible assignments of jobs to machines and the corresponding
coloring. Moreover, we can compute the schedule reliability explicitly. The worst
coloring can be found in Figure 1 and the best one in Figure 4.
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Figure 1. Feasible coloring with reliability (1-0.4)(1-0.4) = 0.36
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Figure 2. Feasible coloring with reliability (1-0.2)(1-0.4) = 0.48
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Figure 3. Feasible coloring with reliability (1-0.1)(1-0.4) = 0.54
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Figure 4. Feasible coloring with reliability (1-0.2)(1-0.2) = 0.64
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4 A numerical study

In this section, we report first numerical results for the robust coloring for-
mulation. The test instances were simulated using the exponential distribution
for job processing times (with parameter λ1 = 0.2) and breaks between jobs
(λ2 = 0.05). The exponential distribution (λ3 = 0.2) is also used for the delays,
where a probability mass 0.9 is added to zero, i.e. no delay appears with probab-
ility 0.9. We consider 30 random jobs assigned to 5 machines initially. We made
also computations for first 20 and 25 jobs of these instances.

We solved the problems by the CPLEX 12.1 solver available in the modeling
system GAMS 23.2. All computations were performed on PC with Intel Core
i7 2.90 GHz CPU, 8 GB RAM and 64-bit Windows 7 Professional operational
system. The results can be found in Table 1. The limit for the computations was
set to 30 minutes. If the time limit was reached already for 25 jobs, the instance
with 30 jobs was not solved. Reliability of the best found feasible solution is
reported then. The instances with 30 jobs can be seen as highly demanding.

Test instances 20 jobs 25 jobs 30 jobs
1 (time) 0:47 9:22 LIMIT
1 (rel.) 0.897 0.883 0.883

2 0:14 3:13 7:09
2 0.951 0.947 0.946
3 0:43 1:49 LIMIT
3 0.839 0.837 0.833
4 0:38 1:46 LIMIT
4 0.857 0.837 0.816
5 0:28 10:33 17:24
5 0.914 0.911 0.911
6 0:25 LIMIT -
6 0.947 0.933
7 28:51 LIMIT -
7 0.787 0.750
8 0:17 11:13 16:35
8 0.949 0.939 0.939
9 0:13 2:40 16:23
9 0.951 0.946 0.946

10 0:7 3:46 LIMIT
10 0.977 0.962 0.958

Table 1. Test instances – computational time (mm:ss) and schedule reliability
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5 A short conclusion

We have observed that the robust coloring formulation enables to solve to optim-
ality or at least to find a good feasible solution for most the simulated problems
with 30 and less jobs in a reasonable amount of time. However, the real life
problems can comprise hundreds of jobs. Thus, future research will be devoted
to new formulations as well as solution techniques.
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Abstract A numerical investigation of double diffusive natural convec-
tion within a two-dimensional, horizontal annulus has been carried out.
The A.D.I. method has been used to describe the symmetric solutions in
terms of isotherms, streamlines and iso-concentrations. In this paper, we
considered the case where the thermal and solutal buoyancy effects are
cooperating. We restrict ourselves to analyze the influence of the thermal
Rayleigh number on the flow structure and on the heat and mass transfer
in the geometry considered.

1 Introduction

Double diffusive convection refers to the problems where the fluid flow is induced
by the simultaneous presence of two diffusive components. These are the differ-
ence in temperatures and concentrations. Intensive research has been reported
on double diffusive convection in confined spaces due to its many engineering
and technological applications. Such as, the technologies involved in the chemical
vapor deposition processes for the semiconductor device fabrications. Also, the
migration of impurities in non-isothermal material processing applications has
motivated many researches in exploring the characteristics of the associated spe-
cies and energy transport process. There are also many important processes in
nature where double diffusive convection plays a crucial role. The best known is
thermohaline convection in oceans, driven by salinity gradients associated with
temperature differences. Thermosolutal convection appears in many engineering
applications, such as isotop separation in liquid and gaseous mixtures, identifica-
tion and separation of crude oil components, coating of metallic items, etc. This
phenomenon is supposed to play an important role in crystal growth. It also af-
fects component separation in oil wells, solidifying metallic alloys, volcanic lava,
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and in Earth mantle. Huppert and Turner [1] had presented an early review of
the important developpements in double diffusive convection and the result of a
close interaction between theoriticians, laboratory experimenters and sea-going
oceanographers. Most of early studies done on double diffusive convection were
focused on rectangular enclosures with aiding or opposing solutal gradient. Be-
jan [2] reported a fundamental study of a scale analysis relative to heat and mass
transfer within a rectangular enclosure when the buoyancy effect is due to dens-
ity variations caused by either temperature or solute concentration variations.
Other studies within rectangular cavities were carried by Lee and Hyun [3],
Mamou et al. [4], Bennacer and Gobin [5], [6] and Ghorayeb and Mojtabi [7].
Recently, there has been a focus on cylindrical cavities as they are very present
in the industry. For a vertical annulus, Ship et al. [8] conducted a numerical
study for steady laminar double diffusive natural convection within a vertically
mounted closed annulus with constant temperature and mass species differences
imposed across the vertical walls. Later, the same authors [9] studied the effect
of thermal Rayleigh number and Lewis number on double diffusive natural con-
vection in a closed annulus. The results illustrated that the thermal Rayleigh
number and the Lewis number were found to influence the buoyancy ratios at
which flow transition and flow reversal occurred. Teamah and Shoukri [10] stud-
ied the effect of the radius ratio, aspect ratio and buoyancy ratio on the double
diffusive natural convection in vertical annulus enclosures. Their results cover a
radius ratio from 1 to 5, aspect ratio from 1 to 4 and buoyancy ratio from 10−3

to 103. For cross double diffusive convection Shi and Lu [11] studied the double
diffusive natural convection in a vertical cylinder with radial temperature and
axial solutal gradients. Their investigation focused on the effect of the buoyancy
ratio on the evolution of the flow field, temperature and solute field in the cavity.

2 Mathematical model

The geometry of the problem is shown in Fig.1.The two horizontal cylinders
are considered long enough to neglect boundary effects and consider the flow as
two-dimensional. Both of the two cylinders are held at constant temperatures
and concentrations. The inner cylinder is considered the hot one (Tc > Tf ). The
temperature gradient generates the natural thermal diffusive force and the con-
centration gradient generates the natural solutal diffusive force. In addition, the
flow in the annular space is considered to be Newtonian, steady and laminar.
Also, all thermo-physical properties of the fluid are considered constant except
for the fluid density variation in the buoyancy term, where the Boussinesq ap-
proximation is considered to be linearly proportional to both temperature and
concentration so that :

ρ = ρ0 (1− βT (T − T0)− βS (C − C0)) (1)
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Where ρ0 is the fluid density at temperature T0 and concentration C0, and βT
and βS are respectively the coefficients of thermal and solutal expansion, T0 and
C0 are a temperature and a concentration of reference. The governing equations
are written by employing a vorticity-stream function formulation. The stream
function ψ and the vorticity ω (the unique component of the vector velocity Ω
) are defined in terms of radial velocity ur and tangential velocity uϕ as:
ur = 1

r
∂ψ
∂ϕ , uϕ = −∂ψ∂r ,ω = −∂

2ψ
∂r2 − 1

r2
∂2ψ
∂ϕ2 − 1

r
∂ψ
∂r . To cast the governing equations

Figure 1. Definition diagram

in the dimensionless form, the following dimensionless variables are introduced
to the governing equations: ra = r

ri
, ta = a

r2
i
t, Va = V

V0
, Pa = P∗

ρ0V 2
0

, Ta = T−TF
Tc−TF ,

Ca = C−C0
C1−C0

with V0 = a
ri

and P ∗ = P + ρ0gz.
On the basis of the above assumption, the conservation equation for vorticity,
stream-function, energy and species in dimensionless form are written as follows
in polar coordinate [12].
Stream-function equation:

∆ψ + ω = 0 (2)

Vorticity equation:

∂ω

∂t
+ 1
r

[
∂ψ

∂ϕ

∂ω

∂r
− ∂ψ

∂r

∂ω

∂ϕ

]
= Pr∆ω +RaTPr

(
cosϕ
r

∂T

∂ϕ
+ sinϕ∂T

∂r

)
+

+NRaTPr
(

cosϕ
r

∂C

∂ϕ
+ sinϕ∂C

∂r

)
(3)
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Energy equation:
∂T

∂t
+ 1
r

[
∂ψ

∂ϕ

∂T

∂r
− ∂ψ

∂r

∂T

∂ϕ

]
= ∆T (4)

Species equation:

∂C

∂t
+ 1
r

[
∂ψ

∂ϕ

∂C

∂r
− ∂ψ

∂r

∂C

∂ϕ

]
= 1
Le
∆C (5)

The dimensionless boundary conditions are:
r = 1: T = 1; C = 1; ψ = 0;∂ψ∂r = 0;∂

2ψ
∂r2 + ω = 0 ∀ϕ

r = R : T = 0;C = 0;ψ = 0; ∂ψ∂r = 0; ∂
2ψ
∂r2 + ω = 0 ∀ϕ

ϕ = 0 and ϕ = π: ψ = 0; ∂T∂ϕ = 0; ∂ϕ∂ϕ = 0; ω = 0 ∀r

The problem is characterized by 5 dimensionless parameters. They are: the
thermal Rayleigh number: RaT = gβ∆Tr3

i /νa ,the Lewis number: Le = a/D,
the Prandtl number: Pr = ν/a, the ratio: N = βs∆C/βT∆T , and the aspect
ratio (the cylindrical raysâĂŹ ratio): R = ro/ri.

3 Results and discussion

The numerical code has been validated both by comparing the results to the pure
thermal case and by analyzing the case of weak solutal buoyancies [13]- [14]. For
positive values of the ratio N , the buoyancy forces induced by the thermal and
solutal effects are cooperating, and their flows are aiding. In this paper, the
effect of thermal Rayleigh number on the flow structure and on the heat and
mass transfer in the geometry considered for a positive buoyancy ratio(N > 0)is
investigated in detail and compared with the convection driven only by a thermal
buoyancy (N = 0). All results were performed with Prandtl number Pr = 0.7
and aspect ratio R = 2.

3.1 Influence on the flow

The increase in thermal Rayleigh number leads always to more intense flow.
Indeed, in the equation (2), the buoyancy force term is proportional toRaT . Fig.2
represents the variation of the maximum of the stream function ψmax in function
of the thermal Rayleigh number RaT , for a value of buoyancy ratio N = 1 and
different values of the Lewis number Le. The pure thermal case corresponding
to N = 0 is represented for comparison. It is observed that for low values of
thermal Rayleigh number RaT , the flow pattern is almost conductive and the
fluid flow is not intense regarding the low values of ψmax. The increase in the
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Figure 2. Effect of RaT on ψmax for N = 1,Le = 1, 5 and 10

thermal Rayleigh number causes the increase of flowâĂŹs intensity. The figures
Fig.3 and 4 represent the effect of thermal Rayleigh number on stream lines and
isotherms. In order to highlight the effect of RaT alone, both Lewis number and
buoyancy ratio were kept constant at values equal one. When Lewis number
equals one, the thermal diffusivity equals the mass diffusivity. This means that
the isothermal lines are congruent with the isoconcentration lines. Therefore, the
isotherms were only presented. It is observed that the flow consists of a single
convective cell crescent occupying a half annulus and rotating in the clockwise
direction (we always consider the half-space on the right to represent the stream
lines). The fluid rises against the hot inner cylinder. At the top, it cools down
against the cold cylinder. Gradually, as the thermal Rayleigh number increases,
the center of the convective cell, corresponding to the maximal value of the
stream function, moves upwardly.

Figure 3. Isotherms and stream lines for RaT = 1000, N = 1 and Le = 1
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Figure 4. Isotherms and stream lines for RaT = 10000, N = 1 and Le = 1

For isotherms, there is a distortion when the thermal Rayleigh number RaT
increases moving away increasingly pure conduction for which isotherms are
concentric circles, meaning an increase in heat flux due to the increase in the
flow intensity. The thermal boundary layers are developed near the cylindrical
walls and becoming gradually thinner as the thermal Rayleigh number increases.

3.2 Influence on the heat transfer

The global Nusselt number Nug increases gradually as the thermal Rayleigh
number increases (the convective flow is accentuated). The figure Fig. 5 illus-
trates the variation of the global number of Nusselt Nug as a function of the
thermal Rayleigh number when the buoyancy ratio N is equal to 1 and for differ-
ent values of the Lewis number. The pure thermal case is shown for comparison.

Figure 5. Effect of RaT on Nug for N = 1, Le = 1, 5 and 10
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3.3 Influence on the mass transfer

The effect of the thermal Rayleigh number on the variation of the mass transfer
is illustrated in Fig.6 for the values of the buoyancy ratio N = 1, and different
values of the Lewis number. Pure thermal case is shown for comparison. It is

Figure 6. Effect of RaT on Shg for N = 1, Le = 1, 5 and 10

observed that there is also an increase in mass transfer, represented by the global
number Sherwood, when the thermal Rayleigh number increases.

4 Conclusion

The problem of double diffusive natural convection in an annular cylindrical
space with an aspect ratio of R = 2, was considered. The governing equations
were given in polar coordinate and the ADI method has been implemented and
used to describe the two-dimensional symmetric solutions in terms of isotherms,
streamlines and iso-concentrations. The case when the solutal and thermal buoy-
ancies are cooperating was considered. The work focuses on the effects of the
thermal Rayleigh number on the characters of the flow, heat and mass transfer
rates. It was shown that the increase of RaT accentuates the flow and that it
follows a simultaneous increase of heat and mass transfer within the geometry
studied.
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Solution of Advanced Model of Membrane
Diffusion Processes

Miroslava Dubcová, Miroslav Zgažar
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Abstract The aim of this paper is to propose and solve the model of
classical Fickian diffusion with dynamic correction of fluctuating concen-
tration of penetrating substance on the surface of membrane, i.e. with
the time dependent boundary condition. A generalized model of diffu-
sion fluxes defined by Fredrickson [2] will be used. To solve the diffusion
equation we apply the Laplace transform.

1 Diffusion model

The generalized model of diffusion fluxes defined by Fredrickson [2] has the form

j(t, x) = −
t∫

0

η(t− τ)dc(τ, x)
dx dτ, (1)

where η(t) is the diffusion relaxation function:

η(t) = Diδ(t) + β(D0 −Di)e−βt, (2)

where β ∈ (0, 1) is the relaxing parametr, and Di, and D0 is an initial value
and the final value of diffusion coefficient reached at infinity time, respect-
ively. For ideal diffusion cases the diffusion relaxation function (2) devolves on
η(t) = Diδ(t). This form of the diffusion relaxation function was derived based
on irreversible thermodynamics [4].
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Now let us formulate the anomalous diffusion problem for permeation with
dynamic correction c(0, t) on the first boundary:

∂c

∂t
= ∂

∂x

 t∫
0

η(t− τ)∂c(x, τ)
∂x

dτ


c(0, t) = c∞(1− e−βt), t ≥ 0

(3)c(l, t) = 0, t ≥ 0
c(x, 0) = 0, x ∈ 〈0, l〉,

where c(x, t) is the concentration profile, c∞ is the steady state concentration
on the surface of membrane reached at infinity time. The choice of the bound-
ary condition c(0, t) is based on the experiments published in [3] which suggest
that the surface concentration changes in time even though surrounding gas is
maintained at constant pressure.

2 Solving the diffusion equation using the Laplace
transform

By applying the Laplace transform to the diffusion problem (3) one derives:

d2ĉ(x,p)
dx2 − p

η̂(p) ĉ(x, p) = 0 (4)

ĉ(0, p) = c∞
β

p(p+ β) , (5)

ĉ(l, p) = lim
x→l

ĉ(x, p) = 0, (6)

where
ĉ(x, p) =

∫ ∞
0

c(x, t)ep tdt

is the Laplace transform of the concentration profile c(x, t) and the Laplace
transform of diffusional relaxation function η(t) (2) is:

η̂(p) = Di + β(D0 −Di)
p+ β

= pDi + βD0

p+ β
. (7)

The particular solution of (4) with the corresponding boundary conditions (5,
6) can be found in the form:

ĉ(x, p) = c∞
β

p(p+ β)

cosh
(√

p

η̂(p) x
)
−

cosh
(√

p
η̂(p) l

)
sinh

(√
p

η̂(p) l
) sinh

(√
p

η̂(p) x
)

(8)
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Because sinh(x− y) = sinh x cosh y − cosh x sinh y, (8) can be rewritten as

ĉ(x, p) = c∞
β

p(p+ β)

sinh
(√

p
η̂(p) (l − x)

)
sinh

(√
p

η̂(p) l
) . (9)

In fact Bromwich showed that the inverse of Laplace transform (Bromwich’s
integral) can be expressed as the contour integral

c(x, t) = 1
2πi

ω+i∞∫
ω−i∞

ĉ(x, p) eptdp, (10)

where ω is the Laplace convergence abscissa which is greater than the real part
of any of the poles in (9). However, principally the inversion of (9) will be carried
out by Cauchy’s residue theorem [1]. Therefore, the poles of (9) require further
attention. Two of the poles are p = 0 and p = −β; this can be easily derived
from the term β

p(p+β) . The other poles are given by the equation

sinh
(√

p

η̂(p) l
)

= 0 (11)

which implies

l

√
pk

η̂(pk) = i k π , k ∈ Z. (12)

The latter equation implies:

pk
η̂(pk) = −k

2π2

l2
, k ∈ N. (13)

Substitution of relation (7) into (13) results in quadratic equation

p2 +
(
β − yDi) p− yβD0 = 0, (14)

where y = −k2π2/l2 and the solution is

p±k = −β − yDi

2 ± 1
2
√

(β − yDi)2 + 4yβD0, k ∈ N. (15)

The line integral (10) with the Bromwich contour lying parallel and slightly to
the right of the imaginary axis can be converted into a closed contour using
Jordan’s lemma through the addition of an infinite semicircle joining i∞ to
−i∞ [1]:

a+i∞∫
a−i∞

ĉ(x, p) eptdp =
∮

C
ĉ(x,p) eptdp (16)
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Now Cauchy’s residue theorem can be applied
1

2πi

∮
C

ĉ(x, p) eptdp =
∑

p±k =pol

Res
[
ĉ(x,p)ept; p±k

]
(17)

and therefore the inverse of solution (9) has the following form with respect to
(15):

c(x, p) = Res
[
ĉ(x, p)ept; 0

]
+ Res

[
ĉ(x, p)ept;−β

]
+

∑
p±
k
, k∈N

Res
[
ĉ(x, p)ept; p±k

]
(18)

The first residue in (18) can be found as

Res
[
ĉ(x, p)ept; 0

]
= lim

p→0
p c∞

β

p(p+ β)

sinh
(√

p
η̂(p) (l − x)

)
sinh

(√
p

η̂(p) l
) ept

=

 c∞
l − x
l

x 6= l

0 x = l
(19)

and the second one as

Res
[
ĉ(x, p)ept;−β

]
= lim

p→−β
(p+ β) c∞

β

p(p+ β)

sinh
(√

p
η̂(p) (l − x)

)
sinh

(√
p

η̂(p) l
) ept

=

 −c∞
l − x
l

e−βt x 6= l

0 x = l
. (20)

The residues in the third term of (18) can be computed in similar way as follows:

Res
[
ĉ(x, p)ept; p±k

]
= lim

p→p±
k

(p− p±k ) c∞
(

β

p(p+ β)

) sinh
(√

p
η̂(p) (l − x)

)
sinh

(√
p

η̂(p) l
) ept

= A lim
p→p±

k

p− p±k
sinh

(√
p

η̂(p) l
) , (21)

where

A = c∞

(
β

p±k (p±k + β)

)
ep
±
k
t sinh

(√
p±k

η̂(p±k )
(l − x)

)
.

The latter limit can be computed by applying the L’Hospital rule:

lim
p→p±

k

p− p±k
sinh

(√
p

η̂(p) l
) = 1

cosh
(√

p±
k

η̂(p±
k

) l

)
l

2

√
p
±
k

η̂(p±
k

)

d
dp

(
p

η̂(p)

)
p=p±

k

(22)
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Further, by (12), the general residue is

Res
[
ĉ(x, p)ept; p±k

]
=

2 ikπc∞
(

β

p±k (p±k + β)

)
ep
±
k
t sinh

(
ikπ l−xl

)
(−1)k l2 d

dp

(
p

η̂(p)

)
p=p±

k

. (23)

By the algebraic feature of hyperbolic sinus:

sinh
(

ikπ l − x
l

)
= sinh

(
ikπ − x

l
ikπ
)

= cos (ikπ) sinh
(
−x
l

ikπ
)

= cos (kπ) sinh
(
−x
l

ikπ
)

= (−1)k sinh
(
−x
l

ikπ
)

= (−1)k+1 sinh
(x
l

ikπ
)
, (24)

the general residue can be rewritten as:

Res
[
ĉ(x, p)ept; p±k

]
=
−2 ikπc∞

(
β

p±k (p±k + β)

)
ep
±
k
βt sinh

(
ikπ xl

)
l2 d

dp

(
p

η̂(p)

)
p=p±

k

. (25)

Hence, the corresponding concentration profile of anomalous permeation can be
expressed as

c(x, t) = c∞

 l − x
l

(
1− e−βt

)
− 2
l2

∑
p±
k
, k∈N

ikπ, β
p±k (p±k + β)

ep
±
k
t sinh

(
ikπ xl

)
d

dp

(
p

η̂(p)

)
p=p±

k

 .
(26)

By applying the relation sinh
(
ikπ xl

)
= i sin

(
kπ xl

)
and by further manipulation

one obtains the final form

c(x, t) = c∞

 l − x
l

(
1− e−βt

)
+ 2πβ

l2

∑
p±
k
, k∈N

kep
±
k
t

p±k (p±k + β)
sin
(
kπ xl

)
d

dp

(
p

η̂(p)

)
p=p±

k

 .
(27)

Because

d
dp

(
p

η̂(p)

)
= d

dp

(
p(p+ β)
pDi + βD0

)
= p2Di + 2pβD0 + β2D0

(pDi + βD0)2 , (28)

one can use (27) to depict the concentration profile of anomalous permeation.
The 3D model of the concentration profile for the common values of diffusion
coefficients D0 = 1, 2.10−12m2.s−1 and Di = 1.10−13m2.s−1 together with the
unit concentration at infinity, thickness of membrane l = 60.10−6m and the
relaxing parameter β = 0, 001s−1, is included below:
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Simplified model for a rivulet spreading down an
inclined wetted plate
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Abstract Rivulet type flow down an inclined plate is of great import-
ance in many engineering areas including packed columns design and
catalytic reactors modeling. Combining a simplified solution of the Navier-
Stokes equation for a rectilinear rivulet and the Cox-Voinov law for an
axisymmetric spreading of a perfectly wetting liquid, we derived a semi-
analytical model of the liquid flow in a spreading rivulet. The proposed
model was used to characterize the flow of a liquid in dependence of
the plate inclination angle, rivulet dynamic contact angle and liquid flow
rate. The presented modeling method provides an insight on the liquid
flow properties without the necessity of numerically solving the corres-
ponding PDEs.

1 Introduction

Flow characteristics of a gravity driven, spreading trickle of a liquid, is of the key
importance throughout many areas of chemical engineering, including the ones
concerning the mass transfer [1], trickle bed reactors [2], heat exchangers [3] and
various coating processes [4].

Eventhough the rivulet type flow can be modeled using various CFD methods
[1, 5], such methods are still too complex to be used in the engineering practice
and too computationally demanding for the parametric studies of the rivulet
behavior.

A simplified solution to the problem of the rivulet type flow has been studied
since 1960’s. The pioneering studies by Towell and Rothfeld [6], Allen and Biggin
[7], Bentwich et al. [8] and Fedotkin et al. [9] have led to a substantial amount of
subsequent work on rectilinear rivulet flow. For example, Benilov [10] performed
a stability analysis for the rivulet flow down an inclined substrate and Duffy
and Moffat [11] used the solution available for the rectilinear rivulet flow to
describe the flow with prescribed volume flux and non-zero contact angle over a
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cylinder of large radius. For further informations on the topic of unidirectional
(rectilinear) rivulet flow, see [12–15] and many references therein.

The problem of the physics of the contact line region of a rivulet was first
taken into account by Davis [16] and revisited from another point of view by
Shetty and Cerro [17]. However, a literature covering the topic of modeling the
flow of a spreading rivulet is still limited to various CFD methods (e.g. [1,18,19])
or the spreading rivulet stability analysis (see [20] and references therein).

A rather different approach from the previous studies was taken in the presen-
ted work. We used the solution for the unidirectional flow of a slender and shallow
rivulet with prescribed volume flux and non-zero contact angle to describe the
locally unidirectional flow of a rivulet with slowly varying both contact angle
and width. To link the change in contact angle with development of the rivulet
width, we applied the Cox-Voinov law [21, 22] for the axisymmetric spreading
of a perfectly wetting liquid on a horizontal substrate in time coupled with an
approximative transformation from time to a spatial coordinate.

A method for simulation of the flow in a spreading rivulet was derived for
the case of a wetted plate inclined by an angle α ∈ (0;π) to the horizontal.

The studied problematics can be divided in two main parts: the specification
of the rivulet gas-liquid (GL) interface shape and the calculation of the velocity
field in it. Furthermore, it is convenient to analyze separately the case of a rivulet
flowing on an inclined plate (α < π/2), underneath it (α > π/2) and the special
case of a vertical plate (α = π/2).

For the flow on a vertical plate or for a very shallow rivulet in which the
gravity can be neglected, the problem of finding the shape of GL interface of
the rivulet was reduced from the solution of the corresponding system of the
Navier-Stokes equations to the repeated solution of one non-linear algebraic
equation. The other cases have to be treated numerically. However, the pro-
posed algorithms are all based on a solution of a single ordinary differential
equation.

The velocity field in the spreading rivulet was obtained on a purely numerical
basis. We used a technique based on a principle of particle image velocimetry
(PIV), thoroughly described in a review [24], but with followed ”particles” cre-
ated numerically.
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2 Coordinate system and simplifying assumptions

The case of a steady flow of a thin symmetric rivulet down an inclined wetted
plate was studied in the Cartesian coordinate system Oxyz with the x axis down
the line of the greatest slope, the y axis horizontal and the z axis normal to the
substrate z = 0. The used coordinate system as well as the most important
symbols are depicted in the Fig. 1.

Figure 1. Used coordinate system with the basics of rivulet spreading notation.
α is the plate inclination angle, β and βm are the apparent (dynamic) and the
microscopic contact angles, a is the rivulet half width.

The proposed method for modeling of a gravity driven spreading rivulet flow-
ing down an inclined wetted plate was derived under the following simplifications,

1. The studied liquid is Newtonian, ρ, µ and γ are constant.
2. The rivulet profile shape is constant in time. Furthermore, Q is constant not

only in time, but also in all spatial directions.
3. There is no shear between the gas and liquid phases.
4. The liquid velocities in the directions transversal and normal to the plate are

negligible in comparison to the one in its longitudinal direction, u� v ∼ w.
The inertial effects can be neglected in y and z directions.

5. The gravity is the only acting body force.
6. The rivulet is shallow. Its dynamic contact angles are assumed small, β(x)�

1, and its GL interface is nearly flat, hy(x, y)� 1.
7. There is a thin precursor film of height l on the whole studied surface. Thus

there is no contact angle hysteresis and βm = 0. The height of the pre-
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cursor film, l, can also be taken as the intermediate region length scale well
separating the inner and outer solution for the profile shape [23].

3 Specification of the GL interface shape

With the above listed simplifying assumptions, the parallel between the spread-
ing of a rivulet along an inclined plate and the spreading of a static objects in
time can be found.

At first, the system of Navier-Stokes equations for an unidirectional flow, as
presented by Duffy and Moffatt [11], is solved to obtain a local description of a
spreading rivulet. Then, the Cox-Voinov law is used to describe the evolution of
the boundary conditions, and thus the rivulet gas-liquid (GL) interface shape,
along the plate.

3.1 Static rivulet

For the case of a rectilinear steady flow of a shallow rivulet, the Navier-Stokes
equations can be simplified via ’thin-film theory’ to,

0 = −px + ρg sinα+ µuzz

0 = −py (1)
0 = −pz − ρg cosα

and integrated subject to the boundary conditions,

z = 0 : u = u(y, z) = 0
z = h : p = pA − γhyy and uz = 0 (2)
y = ± a : h = 0 and hy = ± tan β.

Solution of the system (1) with boundary conditions (2) yields the following
equation describing the shape the GL interface of an uniform rivulet for the
three cases of different plate inclination angles, α < π/2, α = π/2 and α > π/2
indicated as (i), (ii) and (iii), respectively.

h(ζ) =



a tan β√
B

(
cosh

√
B− cosh

√
Bζ

sinh
√

B

)
(i)

a tan β
2 (1− ζ2) (ii)

a tan β√
B

(
cos
√

Bζ − cos
√

B
sin
√

B

)
(iii)

, (3)
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Figure 2. Scheme of the effects of changes in the Bond number on the rivulet
GL intarface shape. In the case (i) ( ), the interface is flattened as the
gravity effects grows stronger in comparison with the surface tension. In the
case (iii) ( ) the increase of B has the narrowing effect on the rivulet GL
interface. Case (ii) ( ) is depicted for reference. Rivulet contact angle and
semi-width are fixed at β = 0.05 and a = 0.01 m.

where B is the Bond number of the problem, defined as B = a2ρg| cosα|/γ,
representing the ratio of volume and surface forces in the rivulet and ζ is the y
coordinate non-dimensionalized by the rivulet half-width, ζ = y/a.

In addition, a multiplication factor useful for non-dimensionalization of the
rivulet height arises from the case (ii) in the equation (3),

h̃(ζ) = 2h(ζ)
a tan β (4)

Case (iii) of the solution (3) has a singularity at B = π2 and thus is only
sensible if B is restricted by 0 ≤ B ≤ π2. The singularity corresponds to the
dripping of the liquid from the plate which occurs at high B, when the surface
tension forces are not strong enough to keep the rivulet in contact with the
plate. The effects of changes in the Bond number on the GL interface shape are
depicted in the Fig. 2.

106



With the liquid volumetric flux taken as a fixed parameter, the rivulet half
width, a, and its apparent contact angle, β, are bonded with the relation,

Q

a
=
∫ 1

−1

∫ h(ζ)

0
u(ζ, z) dz dζ =

∫ 1

−1

∫ h(ζ)

0

ρg sinα
2µ

(
2h(ζ)z − z2) dz dζ. (5)

After the integration, one obtains the following equation for the rivulet con-
tact angle and half width,

µQ

a4ρg sinα tan3 β
= F (B) (6)

and

F (B)=



54
√

B cosh
√

B + 6
√

B cosh 3
√

B− 27 sinh
√

B− 11 sinh 3
√

B
36B2 sinh3√B

(i)

4
105 (ii)

27 sin
√

B + 11 sin 3
√

B− 54
√

B cos
√

B− 6
√

B cos 3
√

B
36B2 sin3√B

(iii)

(7)

Again, the liquid volumetric flow rate can be non-dimensionalized using the
expression for the flow rate on a vertical plate,

Q̃ = 105µ
4a4ρg sinα tan3 β

Q = 105ρgµ cos2 α

4γ2 sinα tan3 β

Q

B2 . (8)

The dependence of the liquid dimensionless flow rate, Q̃, on the plate inclin-
ation angle, α, is shown in the Fig. 3 (a) and the dependece of Q̃ on the rivulet
Bond number, B, in the Fig. 3 (b).

In the Fig. 3 (b), a different asymptotic behavior of the solution can be
observed for the cases of a rivulet flowing on, (i), and under, (iii), an inclined
plate,

(i) : lim
B→∞

Q̃(B) = 0

(iii) : lim
B→π2

−

Q̃(B) =∞ (9)

Moreover, for rivulet flowing down a vertical plate or for a rivulet with neg-
lectable effects of the gravity on its GL interface shape, the equation (6) can be
solved analytically to obtain the following explicit relation between a and β,

a = η
1

tan3/4 β
, η =

(
4µQ

105ρg sinα

) 1
4

. (10)

For the other cases, the equation (6) has to be solved numerically.
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Figure 3. Dependence of the dimensionless flow rate, Q̃, on the plate inclination
angle, (a), and on the Bond number, (b). In the Figure on the right side are
distinguished the three different cases, (i) for α < π/2 ( ), (ii) for
α = π/2 ( ) and (iii) for α > π/2 ( ).

3.2 Spreading rivulet

In the previous section, the GL interface shape of a rectilinear steady rivulet
was studied. In this section, the obtained results are used to locally describe the
GL interface shape of a spreading rivulet. The local descriptions are bounded
together by the Cox-Voinov law to obtain an approximate shape of the GL
interface of a spreading rivulet.

The difference between a static, uniform, rivulet and the spreading one is
in the formulation of the boundary conditions (2). For a static rivulet, β and a
are constant all along the rivulet but for a spreading rivulet, these two become
functions of the problem longitudinal coordinate, x.

Hence, for being able to profit from the solution for an uniform rivulet, it
is necessary to provide a relation for the evolution of β(x) and a(x) along the
rivulet.

In the review [23], the Cox-Voinov law for the case of a symmetric 2D object
spreading on a horizontal substrate was derived in the form,

β(t)3 = 9da(t)
dt

µ

γ
ln
(
a(t)
2e2l

)
, (11)

with a(t) being the object characteristic dimension. For the case of a narrow
axially symmetric stripe of a liquid, a(t) represents its half width.
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The resulting equation is a first order ordinary differential equation for two
unknown functions, β(t) and a(t) and one free parameter, l, corresponding to
the intermediate region length scale (see Fig. 1 and [21–23]).

In the case of a steady rivulet of a liquid flowing and spreading down an
inclined wetted plate, the time coordinate in (11) can be transformed in the
spatial coordinate, x.

Neglectable effects of the gravity The main thought of the modeling of a spreading
rivulet GL interface is described using the simplest case of a vertical plate, or
neglectable effects of gravity on the GL interface shape. With an assumption
of a small contact angles all along the rivulet, β(x) � 1, ∀x ∈ 〈0;L〉, the
equation (10) can be simplified to

a
.= η

1
β3/4 . (12)

Substituting for a from (12) to (11), one arrives at

β19/4 = −Adβ
dt ln

(
B

β3/4

)
, β = β(t), A = 27

4
ηµ

γ
, B = η

2e2l
. (13)

Solution of (13) yields an implicit relation for β(t),

t− 4
15

A

β15/4

[
ln
(

B

β3/4

)
− 1

5

]
+ C = 0. (14)

The integration constant, C, is specified by the initial condition, β(0) = β0,

C = 4
15

A

β
15/4
0

[
ln
(

B

β
3/4
0

)
− 1

5

]
. (15)

Now, let us take the three phase point of one transversal cut through the
rivulet and denote it as τ . The equation (14) describes the movement of τ in the
direction of the y axis in time and the effects of this movement on the shape of
the 2D GL interface of the chosen transversal cut.

For the description of the rivulet interface shape along the plate, the relation
between the movement of τ in time and the movement of the chosen transversal
cut along the plate has to be established.

The presented transformation from time to spatial coordinate arises from
the last assumption in Coordinate system and simplifying assumptions (see
page 104). We assume the presence of a precursor film of thickness equal to
the intermediate region length scale, l, on the whole plate. Neglecting the long-
range intermolecular forces, this precursor film can be taken as a free falling
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film. The point τ is then considered not to be directly on the three phase line,
as there is, in fact none, but in the height l above the plate. Hence, τ is moving
along x axis with the speed of

uτ = ρg sinα
2µ l2. (16)

Using this estimate for the speed of τ , the needed transformation is,

t = $x, $ = 2µ
ρg sinαl2 . (17)

Substitution for t from (17) to (14) yields the equation defining the shape of
the rivulet GL interface in the dependence on the plate longitudinal coordinate,
x,

x− Ā

β15/4

[
ln
(

B

β3/4

)
− 1

5

]
+ C̄ = 0, Ā = 4

15
A

$
, C̄ = 4

15
C

$
. (18)

With effects of the gravity If effects of the gravity on the shape of the rivulet
GL interface cannot be neglected, specification of the interface shape becomes
substantially more complicated. For the cases (i) and (iii), the equation (6)
cannot be solved analytically and we cannot substitute for a = a(β) in (11) as
the relation is defined implicitly.

In the consequence, the equation (11) has to be solved numerically in the
transformed coordinates x = t/$. Moreover, the non-linear algebraic equa-
tion (6), defining the local contact angle β = β(a(x)), has to be solved in each
iterator step.

Dimensionless coordinates and simulations All the variables except x were non-
dimensionalized using the values at x = 0. For the non-dimensionalization of the
plate longitudinal coordinate, x, the plate length, L, was used,

ξ = x

L
, ζ = y

a0
, h̃ = h

h0
0
, β̃ = β

β0
, (19)

where a0 and β0 are the rivulet halw-width and dynamic contact angle at ξ = 0
tight together by the condition of a prescribed volume flux (6) and h0

0 is the
rivulet height at ζ = ξ = 0. As the rivulet is spreading down the plate, β̃(ξ)
is decreasing and B(ξ) together with ã(ξ), are increasing as it is shown in the
Fig. 4.

For the case of the plate inclination angle, α, greater than π/2, it can be
seen, that the flow Bond number converges towards π2 as the dynamic contact
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Figure 4. Change in the Bond number, B(ξ), and in the reduced dynamic con-
tact angle, β̃(ξ), along the rivulet. The three cases, (i) ( ), (ii) ( ) and
(iii) ( ) are shown.

angle, β̃, vanishes. This corresponds to the fact, that for the case (iii), the GL
interface is pulled from the plate by the gravity and

lim
ξ→K∈R+

β̃(ξ) = 0, (20)

meaning that at some finite distance, K, from the plate top, the surface ten-
sion and gravity forces reach an equilibrium and the spreading stops. This also
follows directly from the analysis of the driving force for the spreading in the
equation (11),

da(t)
dt = 0 ⇐⇒ β(t) = 0. (21)

During the simulations, we considered a shallow water rivulet on a wetted
substrate. The volume flux in the rivulet was fixed at Q = 0.01 ml s−1, the
initial dynamic contact angle at β0 = 0.05� 1 and the rivulet initial half-width,
a0, was specified by the prescribed condition of B = 1 at x = 0. The inclined
plate length, L, was taken equal to 0.1 m.

The remaining parameter of the model: the intermediate region length scale,
l, was fixed at l = 3 · 10−5 m. The selection of the value of l was based on
our previous work, [25, 26], and is in the agreement with literature on the topic
(see [22,27] and references therein).
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Figure 5. Evolution of the GL interface shape along the dimensionless plate
longitudinal coordinate, ξ. Shapes of transversal cuts through the rivulet for the
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4 Velocity field

The velocity field in a steady rectilinear rivulet with unidirectional flow of a liquid
is in a form of u = u(y, z). With the assumptions listed in Sec. 2, the velocity
field can be derived analytically by solving the Navier-Stokes equations [6, 11].
The obtained solution is in the form (consult the equation (5)),

u(ζ, z) = ρg sinα
2µ

(
2h(ζ)z − z2) . (22)

However, let us now consider a spreading but locally rectilinear rivulet. The
velocity field of such a rivulet consists of all the three components,
u(x) = (u(x), v(x), w(x)).

The u component of the velocity field is approximately defined, at each dis-
crete point of the solution of the ODE (11), by the relation (22). The contours
of the u velocity component in the water rivulet spreading down a plate inclined
by an angle α = π/3 to the horizontal are depicted int the Fig. 6. Further in-
formations on the selection of the simulation parameters can be found in the
paragraph Dimensionless coordinates and simulations in the previous section.
The u velocity field component was scaled using the velocity of the GL interface
at the rivulet centerline, ζ = 0, at the plate top, ξ = 0.

As for the v and w components of the velocity field, the presented method
does not provide any approximate analytical solution. Thus, those two velocity
components have to be simulated numerically. A technique similar to particle
image velocimetry (PIV) was chosen.

PIV is an experimental technique which allows the velocity of fluid to be
simultaneously measured throughout a region illuminated by a two-dimensional
light sheet. Seeding particles are introduced into the flow and their motion is
used to estimate the kinematics of the local fluid [24].

As the performed experiments were numerical, the seeding particles were
defined artificially in a mesh-like manner. An algorithm for following the evol-
ution of the v and w velocity field components is described bellow. The whole
proposed cycle has to be repeated for all N transversal cuts of the rivulet placed
at i δξ from the plate top, where i = 1, 2, . . . , N and δξ is the time (distance)
step prescribed by the solver used to treat the equation (11).
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Velocity field tracking algorithm

– For each subrivulet do:
1. Get the current width of the rivulet, ζi, from solution of the ODE (11).
2. Calculate the current maximal rivulet height, h̃0

i , from the equation (3).
3. Create a mesh on a domain Ωi,

Ωi =
{

(ζ, z̃) : ζ ∈ 〈0; ζi〉 | z̃ ≤ h̃i(ζ)
}
. (23)

The domain Ωi represents a right half of the rivulet at a distance i δξ
from the plate top. The left side of the rivulet can be neglected as the
problem is axisymmetric along the x axis. The mesh itself is obtained by
discretizing the domain Ωi equidistantly in each coordinate by M1 and
M2 points, respectively. The set of discrete points, Ωhi , is obtained,

Ωhi =
{

(ζj , z̃k) : ζj ∈ 〈0; ζi〉
∣∣ z̃k ≤ h̃i(ζj)}j=1,...,M1; k=1,...,M2

(24)

4. Save the current mesh, Ωhi .
– Having saved all the local meshes, Ωhi , i = 1, . . . , N , the velocity field in the
ζ− h̃ plane between individual transversal cuts can be calculated evaluating
the change in the position of each mesh point along the rivulet.

In the Fig. 7, there are depicted the resulting velocity fields for the distances
from the plate top ξ = 0.2 and ξ = 0.8 and the plate inclination angle
α = π/3. The slow down of the spreading can be observed as the contact angle,
β, decreases.

Another interesting observation would be the fact, that the increase in the
rivulet width is substantially quicker than the decrease in its height. This is due
to the prescribed constant liquid flow rate and the parabolic velocity profile in
the x axis direction.

5 Conclusion

Even with the continuous growth of the computing capacity of modern com-
puters, there is still a need for simplified solutions to the complex problems of
fluid mechanics. Such method for the simulation of a rivulet spreading down an
inclined wetted plate was derived and used to study the dependence of the li-
quid flow properties on various process parameters. Moreover, the derived model
was used to describe the spreading itself and the evolution of the flow along
an inclined plate without the necessity of solving the corresponding system of
Navier-Stokes partial differential equations with a complex boundary condition
describing the behaviour of the three phase line.
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Nomenclature

a[m] . . . . . . . . . half-width of the rivulet
A,B,C, [s,−,−,−] . . . . . . . . . constants
B[−] . . . . . . . . . . . . . . . . . . . Bond number
e[−] . . . . . . . . . . . . . . . . . Euler’s constant
g[m s−2] . . . . gravitational acceleration
h[m] . . . . . . . . . . . . . . . . . . . . . . . . . . height
l[m] . .intermediate region length scale
L[m] . . . . . . . . . . . . . total rivulet length
M1,M2[−] . . . . .number of meshpoints
N [−] . . . . . number of consecutive cuts
p[Pa] . . . . . . . . . . . . . . . . . . . . . . . . pressure
Q[m3 s−1] . . . . . . . volumetric flow rate
S[m2] . . . . . . . . . . . . size of the interface
t[s] . . . . . . . . . . . . . . . . . . time coordinate
(u, v, w)[m s−1] . . . . . . . . . .velocity field
x, y, z[m] . . . . . . . . . . coordinate system

Greek letters α[−] plate inclination
angle
β[−] . . . . . . . . . . dynamic contact angle
γ[N m−1] . . . . . . . liquid surface tension
δ[−] . . . . . . . . . . . . . . . . . .small difference
η[m] . . . . . . . . . . constant defined in the
equation (10)
ζ, ξ[−] . dimensionless x, y coordinates
µ[Pa s] . . . . . . . liquid dynamic viscosity
$[m−1 s] . . transformation from t to x
ρ[kg m−3] . . . . . . . . . . . . . . liquid density
τ [−] . . . contact point for 2D interface
Ω[−] domain of the rivulet transversal
cut
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Abstract The n + 1 coefficients of the characteristic polynomial of a
fixed real or complex matrix of order n can be expressed as a linear
combination of products of traces of that matrix. We show that these
coefficients form a matrix that has Toeplitz form. As tools we will be us-
ing results related to elementary, symmetric functions and to partitions.
There will be a separate investigation on how to compute the trace for-
mula for the determinant. Finally, we apply the theory to characteristic
polynomials of chemical graphs.

1 Introduction

There exist investigations that show that a determinant of a matrix of order
n can be expressed in form of a linear combination of all products of traces of
fixed degree n. See Abramowitz-Stegun, [1]. For computing the trace formula
for a determinant, we will alternatively develop a linear system of equations, the
solution of which gives the wanted linear combination of the product of traces. In
comparison with the standard algebraic manipulation (e.g. Krishnapriyan, [8])
of elementary, symmetric functions, the method is extremely simple and fast. We
will show that it is sufficient to know the trace representation for the determinant
up to order n, in order to find all coefficients of the corresponding characteristic
polynomials up to degree n, due to a Toeplitz form of these formulas.

Throughout the paper, we will use the notation R,C for the field of real and
complex numbers, respectively. And K will stand for R or C. We also use Z for
the integers and N for the positive integers. The set of matrices with m rows and
n columns over K will be denoted by Km×n. We will mostly be concerned with
square matrices of order n.
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Let A ∈ Km×n with entries ajk, j = 1, 2, . . . ,m; k = 1, 2, . . . , n. We say that
A has Toeplitz form if ajk = aj+`,k+` for all ` = 1, 2, . . . as long as j + ` ≤
m, k + ` ≤ n. In other words, A has Toeplitz form, if the entries of A are
constant down the diagonals parallel to the main diagonal. Matrices in Toeplitz
form are uniquely determined by the entries in the first column and first row. By
the definition, all matrices which consist only of one column or of one row have
Toeplitz form. Thus, the notion Toeplitz form is mainly of interest for square
matrices or for matrices which are close to square matrices.

2 Elementary, symmetric functions

Let t ∈ K and let x1, x2, . . . , xn ∈ K be parameters for a fixed n ∈ N. Define

f(t) := f(t;x1, x2, . . . , xn) :=
n∏
j=1

(1− xjt) (1)

= 1−σ(n)
1 t+σ(n)

2 t2−. . .+(−1)nσ(n)
n tn,where for j =1, 2,. . . , n, (2)

σ
(n)
j := σ

(n)
j (x1, x2, . . . , xn) =

∑
1≤k1<k2<···<kj≤n

xk1xk2 . . . xkj . (3)

Examples are σ
(n)
1 = x1 + x2 + · · · + xn, σ(n)

n = x1x2 · · ·xn. The functions
σ

(n)
j , j = 1, 2, . . . , n, are called elementary, symmetric functions of the variables
x1, x2, . . . , xn. They are polynomials in n variables, where each term has the
same degree j (thus, called elementary) and they are invariant under arbitrary
permutations of the n variables (thus, called symmetric).

We define another, related function

g(t) := g(t;x1, x2, . . . , xn) := tnf(1
t
) = tn

n∏
j=1

(1− xj
t

) =
n∏
j=1

(t− xj) (4)

= tn − σ(n)
1 tn−1 + σ

(n)
2 tn−2 − · · ·+ (−1)n−1σ

(n)
n−1t+ (−1)nσ(n)

n . (5)

The apparent singularity of g at t = 0 is removable. Let A ∈ Kn×n with eigen-
values λ1, λ2, . . . , λn and I the identity matrix of the same size as A. Then, the
characteristic polynomial of A is defined by

χA(t) := det(tI−A) =
n∏

j=1
(t− λj) = g(t;λ1, λ2, . . . , λn) (6)

= tn − σ(n)
1 tn−1 + σ

(n)
2 tn−2−. . .+(−1)n−1σ

(n)
n−1t+(−1)nσ(n)

n (7)

where all σ(n)
j , j = 1, 2, . . . , n, depend on λ1, λ2, . . . , λn. The polynomial χA,

defined in (6), (7) is monic, which means that the coefficient of the highest
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term, tn, is one, which implies that χA can never vanish identically. One of
the important properties of χA is expressed in the theorem by Cayley-Hamilton
which says that

χA(A) = An − σ(n)
1 An−1 + · · ·+ (−1)n−1σ

(n)
n−1A + (−1)nσ(n)

n I = 0 , (8)

where 0 is the zero matrix of order n. See Horn and Johnson, [5]. A common
technique to compute all coefficients (−1)jσ(n)

j (λ1, λ2, . . . , λn), j = 1, 2, . . . , n,
without using the eigenvalues is given by Leverrier (1840) and Faddejew (1949),
see also GantmacherŠs book, [4]. The algorithm uses n − 1 matrix × matrix
multiplications to compute all coefficients. It includes the computation of the
determinant and of the inverse of A if it exists. There is an extension by Schon-
hage, [10], to general fields of finite characteristic.

3 Partitions

Let n be a positive integer. In the sequel we will consider monomials in n variables
x1, x2, . . . , xn of the form

xk1
1 xk2

2 · · ·xknn , 0 ≤ kj ≤ k, j = 1, 2, . . . , n where k =
n∑
j=1

kj (9)

is a fixed, nonnegative integer. We say, that the monomial has degree d := k.
In order to determine all monomials of degree d = k we have to find out all

the possibilities of forming the sum
n∑
j=1

kj = k. This brings us to the area of

partitions.

Let n, as before, be a positive integer. The positive integer n can be written
as a sum of positive integers

n = n1 + n2 + · · ·+ n`, 1 ≤ nj ≤ n, j = 1, 2, . . . , ` ≤ n (10)

in various ways. Such a sum is called a partition of n. Let us assume that in
(10) we use the order n1 ≥ n2 ≥ · · · ≥ n` for all possible partitions, then the
number of all partitions is uniquely defined and the number of all such partitions
is denoted by p(n). Let us also agree that the list of all partitions is written in
lexicographic order with respect to 1, 2, . . . . Then, the whole list of all partitions
including its order is uniquely defined. Let π(n)

j be the jth partition of n. For
n = 5 we obtain the list
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1 + 1 + 1 + 1 + 1︸ ︷︷ ︸= 2 + 1 + 1 + 1︸ ︷︷ ︸= 2 + 2 + 1︸ ︷︷ ︸= 3 + 1 + 1︸ ︷︷ ︸= 3 + 2︸ ︷︷ ︸= 4 + 1︸ ︷︷ ︸= 5︸︷︷︸ .
π

(5)
1 π

(5)
2 π

(5)
3 π

(5)
4 π

(5)
5 π

(5)
6 π

(5)
7

Thus, as a byproduct, we have p(5) = 7. Some examples are given in Table 1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
p(n) 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297

Table 1. Partition numbers p(n) for 1 ≤ n ≤ 17

An algorithm for producing the whole list of partitions for a given positive
integer n in the order described above is given by Zhogbi and Stojmenović,
1998, [14]. A more recent overview and a comparison of partition generating
algorithms was given in 2009 by Kelleher and O’Sullivan, [7].

For later purpose we need some more notation. We associate with every π(n)
j

an integer vector of length n, denoted by

µ
(n)
j := (m1,m2, . . . ,mn), j = 1, 2, . . . , p(n) , (11)

which counts, in its kth component mk, how often k appears in π
(n)
j , 1 ≤ k ≤

n, 0 ≤ mk ≤ n. For n = 5, we have µ(5)
1 = (5, 0, 0, 0, 0), µ(5)

2 = (3, 1, 0, 0, 0), µ(5)
3 =

(1, 2, 0, 0, 0), µ(5)
4 = (2, 0, 1, 0, 0), µ(5)

5 = (0, 1, 1, 0, 0), µ(5)
6 = (1, 0, 0, 1, 0), µ(5)

7 =
(0, 0, 0, 0, 1). The vector µ(n)

j = (m1,m2, . . . ,mn), j = 1, 2, . . . , p(n), has the

property that
n∑
k=1

mkk = n. For all j = 1, 2, . . . , p(n), the sum

m :=
n∑
k=1

mk (12)

is a count for the number of entries in π
(n)
j . It depends on n and on j and

1 ≤ m ≤ n.

With the help of these numbers and the convention 0! := 1 we construct a
certain type of multinomial coefficients which are defined for a given partition
π

(n)
j by

M
(n)
j := n!

1m1m1! 2m2m2! 3m3m3! . . . nmnmn! , j = 1, 2, . . . , p(n), (13)
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where the quantities mk, 1 ≤ k ≤ n, are defined in (11). For this definition
see Abramowitz and Stegun, [1], and for numerical values for n ≤ 10, de-
noted by M2, see Table 24.2 in [1]. Since µ

(n)
1 = (n, 0, 0, . . . , 0), µ(n)

2 = (n −
2, 1, 0, . . . , 0), µ(n)

p(n)−1 = (1, 0, 0, . . . 0, 1, 0), µ(n)
p(n) = (0, 0, 0, . . . , 1) for n ≥ 4 we

have

M
(n)
1 =1, M (n)

2 = (n− 1)n
2 , M

(n)
p(n)−1 = (n− 2)!n, M (n)

p(n) = (n− 1)! (14)

for n ≥ 4. For n = 5 the seven values of M (5)
j are: 1, 10, 15, 20, 20, 30, 24. We will

return to the multinomial coefficients in the next section.

4 Properties of traces

Let A ∈ Kn×n. Let us denote the diagonal elements of A by a11, a22, . . . , ann.
Then the trace of A is denoted by tr and defined by

tr(A) :=
n∑
j=1

ajj . (15)

The trace is a linear function in the following sense: Let A,B ∈ Kn×n be two
matrices and let α, β ∈ K. Then

tr(αA + βB) = αtr(A) + βtr(B). (16)

Let λ1, λ2, . . . λn be the eigenvalues of A. Since the eigenvalues of Ak, k =
1, 2, . . . are λk1 , λk2 , . . . , λkn, we have

tk := tr(Ak) =
n∑
j=1

λkj , k = 1, 2, . . . , (17)

which means that tk =
n∑
j=1

λkj can be computed only on the base of the matrix

elements of A. Another central property of the trace is, that it is defined for
matrices of all orders. We will say that tk has the degree d := k and that the
product tk1 · tk2 · · · tk` of traces has the degree d := k1 + k2 + · · ·+ k`.

Example 1. Let n = 2 and A := (ajk), j, k = 1, 2, with eigenvalues λ1, λ2.
Then, the characteristic polynomial χA of A (see (7)) has the coefficients

−σ(2)
1 = −(λ1 + λ2) = −(a11 + a22) = −tr(A) = −t1,

σ
(2)
2 = λ1λ2 = det(A) = χA(0) = 1

2(t21 − t2) .
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Let n = 3 and A := (ajk), j, k = 1, 2, 3, with eigenvalues λ1, λ2, λ3. Then, the
characteristic polynomial χA of A (see (7)) has the coefficients

−σ(3)
1 = −(λ1 + λ2 + λ3) = −(a11 + a22 + a33) = −tr(A) = −t1,

σ
(3)
2 = λ1λ2 + λ1λ3 + λ2λ3 = 1

2(t21 − t2)

−σ(3)
3 = −λ1λ2λ3 = −det(A) = χA(0) = −1

6(t31 − 3t1t2 + 2t3) .

Let n = 4 and A := (ajk), j, k = 1, 2, 3, 4, has eigenvalues λ1, λ2, λ3, λ4 . Then,
the characteristic polynomial χA of A (see (7)) has the coefficients

−σ(4)
1 = −t1 ,

σ
(4)
2 = 1

2(t21 − t2) ,

−σ(4)
3 = −1

6(t31 − 3t1t2 + 2t3) ,

σ
(4)
4 = 1

24(t41 − 6t21t2 + 3t22 + 8t1t3 − 6t4) .

We see that all coefficients σ(k)
j , k = 2, 3, j = 1, 2, . . . , k, can be expressed by

linear combinations of products of traces of degree j, and the trace formulas are
the same for j = 1, 2, 3. If we include also the case n = 1 we have

σ
(4)
1 = σ

(3)
1 = σ

(2)
1 = σ

(1)
1 = t1 ,

σ
(4)
2 = σ

(3)
2 = σ

(2)
2 = 1

2(t21 − t2) , (18)

σ
(4)
3 = σ

(3)
3 = 1

6(t31 − 3t1t2 + 2t3) .

The given equations mean that the corresponding functions in each equation can
be evaluated by the same trace formula, though the domain of definition changes
and the values cannot be compared, too.

We will see in the sequel, that the results of the Example 1 show a general
feature: All coefficients of the characteristic polynomial can be expressed by
linear combinations of products of traces. And, in addition, the n − 1 trace
formulas for the coefficients of the characteristic polynomial for the case n − 1
agree with the first n − 1 trace formulas for the case n. Let n ∈ N and let π(n)

j

be the jth partition of n, where j = 1, 2, . . . , p(n), and p(n) is the number of
partitions of n. We define the following products of traces of degree n:

T
(n)
j :=

∏
k∈π(n)

j

tk, j = 1, 2, . . . , p(n) . (19)

If π(n)
j = (k1, k2, . . . , k`) then the above product is T (n)

j := tk1 · tk2 · · · tk` . We
summarize the results in the following two theorems.
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Theorem 1. Let A ∈ Kn×n and let T (n)
j be defined as in (19). Then, there

are integers x1, x2, . . . , xp(n), independent of A (but dependent on n) such that

n!det(A) =
p(n)∑
j=1

xjT
(n)
j . (20)

The integers have the property that

p(n)∑
j=1

xj = 0 for n > 1 , (21)

p(n)∑
j=1
|xj | = n! . (22)

Proof :
In Abramowitz and Stegun, [1], the last entry of Ch. 24.1.2 is

n!det(A) =

∣∣∣∣∣∣∣∣∣∣∣∣

t1 1 0 . . . 0
t2 t1 2 . . . ·

t3 t2 t1
. . . ·

...
...

...
. . . n− 1

tn tn−1 tn−2 . . . t1

∣∣∣∣∣∣∣∣∣∣∣∣
=
p(n)∑
j=1

(−1)n−mM
(n)
j T

(n)
j , (23)

where M (n)
j is defined in (13) and m in (12). We even obtain an explicit formula

for all xj . In order to show (21) put A = (ajk) and a11 = 1, ajk = 0 otherwise.
Then all traces and all T (n)

j are one and det(A) = 0, which implies (21). For
showing (22) choose A = diag(e1, e2, . . . , en) where ej are the solutions of xn +
1 = 0. Then det(A) = (−1)n, and tr(Ak) = 0 for k = 1, 2, . . . , n − 1, and
tr(An) = −n with the consequence that T (n)

j = 0 for all j = 1, 2, . . . , p(n) − 1
and T (n)

p(n) = tr(An) = −n. The result follows from (20) and from the last formula
in (14).

Remark 1. In Abramowitz and Stegun, [1], we find also an explicit expression
for xj , namely

xj = (−1)n−mM (n)
j , (24)

where M (n)
j are the multinomial coefficients, defined in (13), and m is the number

of entries in π
(n)
j defined in (12).

We will see that the knowledge of this formula is sufficient to compute all
coefficients of the characteristic polynomial.
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Lemma 1. Let A be a matrix of order n ∈ N. Then, all coefficients (−1)jσ(n)
j

of the corresponding characteristic polynomial can be expressed by linear combin-
ations of products of traces of degree j = 1, 2, . . . , n. Thus, the traces t1, t2, . . . , tn
determine the characteristic polynomial uniquely.

Proof :
See, Krishnapriyan, 1995, [8].

Theorem 2. Let

σ(n) := (σ(n)
n , σ

(n)
n−1, . . . , σ

(n)
1 , σ

(n)
0 ), σ

(n)
0 := 1 , (25)

be the vector of the coefficients of the characteristic polynomial of degree n (omit-
ting the signs) of a matrix of order n in the trace form, where σ(n)

n denotes the
constant term of the characteristic polynomial. Then the corresponding trace
formulas for a matrix of order n+ 1 satisfy

σ(n+1) = (σ(n+1)
n+1 , σ(n)

n , σ
(n)
n−1, . . . , σ

(n)
1 , σ

(n)
0 ) = (σ(n+1)

n+1 , σ(n)). (26)

Let us put the j+1 trace formulas of the coefficients listed in (25) for all matrices
of order j = 1, 2, . . . , n in row j of an (n×n+1) matrix, augmented by n−j zeros,
then this matrix, denoted by Σ, has Toeplitz form. The matrix Σ is completely
described by the trace formulas for σ(j)

j , j = 1, 2, . . . , n, or, in other words, by
the entries of the first column of Σ. See the following table.

j

1 σ
(1)
1 1 0 0 0 . . . 0

2 σ
(2)
2 σ

(1)
1 1 0 0 . . . 0

3 σ
(3)
3 σ

(2)
2 σ

(1)
1 1 0 . . . 0

4 σ
(4)
4 σ

(3)
3 σ

(2)
2 σ

(1)
1 1 . . . 0

...
...

...
...

. . . . . . . . .
...

n− 1 σ
(1)
1 1

n σ
(n)
n σ

(n−1)
n−1 σ

(n−2)
n−2 · · · σ

(2)
2 σ

(1)
1

Table 2. Coefficients of characteristic polynomials in the trace form

Proof :
The form of Σ is a consequence of (26). One has to show, that the corresponding
trace formulas are the same for

σ
(n+1)
j and for σ(n)

j , n ∈ N . (27)
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Let A ∈ Kn×n be given with eigenvalues λ(n)
1 , λ

(n)
2 , . . . , λ

(n)
n , n ∈ N . The basic

formula for σ(n)
j is given in (3). It reads here

σ
(ν)
j =

∑
11<k2<···<kj≤ν

λ
(ν)
k1
λ

(ν)
k2
· · ·λ(ν)

kj
, ν ∈ {n, n+ 1} ,

and we have

tj1 = (λ(ν)
1 + λ

(ν)
2 + · · ·+ λ(ν)

ν )j = tj + ν!σ(ν)
j +R ,

where R can be expressed independently of ν by the same trace formula.

5 Minimal polynomial

Let A ∈ Kn×n and let χA be its characteristic polynomial as defined in (6).
One of the important properties of χA is that it annihilates A, see (8). There may
be other monic polynomials of degree at most n which also annihilate A. The
uniquely defined monic polynomial with minimum degree ν which annihilates A
is called minimal polynomial of A and is denoted by µA, see Horn and Johnson
[5]. Let I be the identity matrix of the same size as A. Then,

Aj ∈ span{ I,A,A2, . . . ,Aν−2,Aν−1} , j = 0, 1, . . . , (28)

where ν is the degree of the minimal polynomial of A. Formula (28) means,
that all powers j > 0 of A, regardless of the size of j can be expressed by a
linear combination of powers of degree at most ν − 1. Or in other words, the
powers Aj , j ∈ N, span a space of dimension ν. For formula (28) see Horn
and Johnson, [5, 6]. In the next theorem we will explicitly determine the linear
combination which describes the power Aj .

Theorem 3. Let A ∈ Kn×n with n ≥ 2 be given and let

µA(t) =
ν∑
k=0

b
(ν)
k tk, b(ν)

ν = 1 , (29)

be its minimal polynomial. Then, for all integers j ≥ 0, there are numbers
β

(j)
k , k = 0, 1, . . . , ν − 1, such that

Aj =
ν−1∑
k=0

β
(j)
k Ak , where (30)

β
(`)
k := δ`,k, ` < ν (δ`,k = Kronecker symbol) , (31)

β
(`+1)
0 := −β(`)

ν−1b
(ν)
0 , (32)

β
(`+1)
k := β

(`)
k−1 − β

(`)
ν−1b

(ν)
k , k = 1, 2, . . . , ν − 1, ` = 0, 1, . . . , j − 1 . (33)
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If the coefficients b(ν)
k of the minimal polynomial are real, then also all β(j)

k are
real.

Proof :
The Cayley-Hamilton theorem (see (8)) applied to (29) implies

Aν = −
ν−1∑
k=0

b
(ν)
k Ak .

If we multiply (30) by A and replace Aν with the right hand side of the last
equation we obtain the recursion (31) to (33). That real b(ν)

k imply real β(j)
k is

obvious.

Example 2. Let

A =

 1 0 0
0 1 1
0 0 1

 .
Then the characteristic polynomial and minimal polynomial of A are

χ(t) = (t− 1)3 = t3 − 3t2 + 3t− 1 , µ(t) = (t− 1)2 = t2 − 2t+ 1,

respectively, i.e., the coefficients of the minimal polynomial are b0 = 1, b1 = −2.
The formulas of the theorem produce for Aj the two coefficients −(j − 1) and j
such that Aj = −(j − 1)I + jA, j ≥ 1. We obtain

Aj =

 1 0 0
0 1 j
0 0 1

 , j ≥ 1 .

6 Characteristic polynomials of chemical graphs

An organic molecule can be represented by a graph, which can be converted to
several matrices by using various graph characteristics. Connectivity of atoms
through bonds leads to adjacency matrices. Characteristic polynomials of these
matrices may be treated as the signature of those molecules. The eigenvalues are
also treated as molecular descriptors and have been used in studying quantitative
structure properties of these molecules.
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d d d d1 2 3 4

1

Figure 1. A molecular graph of butan

Example 3. Let us consider the graph of butane in Fig. 1. The adjacency
matrix A is

A =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 .
By formulas (18), we obtain

t1 = 0 t2 = 6 t3 = 0 t4 = 14
σ1 = 0 σ2 = −3 σ3 = 0 σ4 = 1

and the characteristic polynomial has the form χA(t) = t4 − 3t2 + 1 .

Figure 2. Petrson’s graph

Example 4. Now, let us consider the Peterson’s graph in Fig. 2. The adja-
cency matrix A is

A =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 .
By formulas (7), we obtain

t1 = 0 t2 = 10 t3 = 0 t4 = 30 t5 = 10
σ1 = 0 σ2 = −5 σ3 = 0 σ4 = 5 σ5 = −2
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and the characteristic polynomial has the form χA(t) = t5 − 5t3 + 5t− 2 .

The matrices in Examples 3 and 4 are symmetric with zero traces.
Remark 2. Square matrix Z is called a commutator if and only if Z = XY −
YX for some matrices X and Y (not determined uniquely by Z). Then trace
tr(Z) :=

∑
i zii = 0 because tr(XY) = tr(YX) for all matrices X and Y both of

whose products XY and YX are square. Conversely, if tr(Z) = 0 then Z must
be a commutator. This theorem has been proved in considerable generality; for
instance see proofs by K. Shoda (1936), [11], and [12], and by A.A. Albert and
B. Muckenhoupt (1957), [2].

j

1 0 1 0 0 0 . . . 0
2 − 1

2 t2 0 1 0 0 . . . 0

3 1
3 t3 − 1

2 t2 0 1 0 . . . 0

4 1
8 (t22 − 2t4) 1

3 t3 − 1
2 t2 0 1 . . . 0

5 1
30 (6t5 − 5t2t3) 1

8 (t22 − 2t4) 1
3 t3 − 1

2 t2 0
. . . 0

n− 1
...

. . . . . . 0 1

n σ
(n)
n σ

(n−1)
n−1 σ

(n−2)
n−2 . . . − 1

2 t2 0
Table 3. Coefficients of characteristic polynomials of a commutator

Example 5. For a commutator, the formulae in Example 1 have the following
form:

• n = 2, A :=
[

0 a12
a21 0

]
. Then, the characteristic polynomial χA of A has

the coefficients
σ

(2)
1 = t1 = 0 , σ

(2)
2 = −1

2 t2 .

• n = 3 and A :=

 0 a12 a13
a21 0 a31
a31 a32 0

 . Then the coefficients are (see (7))

−σ(3)
1 = −t1 = 0 , σ

(3)
2 = −1

2 t2 , −σ(3)
3 = −1

3 t3 .

• n = 4, A := (ajk), j, k = 1, 2, 3, 4, aii = 0 for i = 1, 2, 3, 4. Then, the charac-
teristic polynomial χA of A (see (7)) has the coefficients

−σ(4)
1 = −t1 = 0 , σ

(4)
2 = −1

2 t2 , −σ(4)
3 = −1

3 t3 , σ
(4)
4 = 1

8(t22 − 2t4) .
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Abstract We investigate two lumped parameter friction models: A dry-
friction model (in 2-D) and a Coulomb friction model (in 8-D). The aim
is a dynamical simulation of an initial value problem. Both models are
formulated by means of differential inclusions. We consider alternative
formulations which are better suited for numerical purposes: a) Standard
equations of the motion completed by implicitly defined constitutive re-
lationships. This leads to solving differential-algebraic equations (DAEs).
b) Filippov systems of ordinary differential equations (ODEs) with dis-
continuous right-hand sides. For a numerical solution one can use the
Filippov’s convex method. We try to compare both approaches.

1 Introduction

We consider two lumped parameter friction models:

1. A dry-friction model
2. A Coulomb friction model.

The friction is an important physical phenomena which is concerned with elasto-
dynamics. The parameter lumping can be understood as an averaging procedure.
We may simply think of toy-problems with small degrees of freedom reflecting
the phenomena called friction.

Both models are formulated as differential inclusions. The latter one is taken
over from [5] and it will be formulated in Section 4. The former one is formulated
as follows:

mx′′(t) ∈ −k x(t) + f(t)−F Sign x′(t) , (1)
where m, k, and F are positive constants, f = f(t) is a given function and
Sign : R⇒ R is the multivalued mapping,

Sign z =
{ z

|z|
if z 6= 0

[−1, 1] if z = 0
(2)
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see e.g. [2]. The next two sections will be devoted to alternative approaches to
a numerical solution of (1)&(2).

In Section 2 we resume basic mechanical principles leading to the notion of
dissipative force of Coulomb type. We shall follow the exposition in [3]: The
idea is to introduce implicit constitutive relationship between this force and
kinematic quantities namely the velocity. Hence, the balance of linear momentum
is to be completed by this constitutive law. It leads to a system of semi-implicit
differential-algebraic equations (DAEs). A numerical solutions of this DAEs is
proposed. Note that the term of differential inclusion will not show up in this
section. In Section 3, we formulate the problem (1)&(2) as a Filippov system
i.e., the system of ordinary differential equations (ODEs) with discontinuous
right-hand sides, [7]. The solution of this system is then defined by means of the
Filippov’s convex method, see e.g. [2]. As far as the numerical implementation
is concerned, we integrate ODEs via standard solvers and concatenate smooth
pieces of trajectories. We use a ready-made software [8]. We will try to compare
both solution approaches (namely, the DAEs from Section 2 and the Fillipov’s
one from Section 3).

In Section 4, we take on a lumped Coulomb friction model [5] which con-
siders just one point on a contact with the rigid boundary, see the corresponding
illustrative figure. The crucial issue of the analysis in [4,5] was to preserve well-
posedness of a semi-discretization scheme. We will investigate the possibility to
formulate the lumped friction model as a Filippov system. We will exploit the
ready-made solver [8].

2 Mechanical interpretation

Let m denote the mass. We represent the displacement of the mass by a function
x = x(t). The balance of linear momentum yields

x′′(t) = 1
m

(f(t)− Fs(t)− Fd(t)) , (3)

where a superposed prime denotes the time derivative. Let f = f(t) denote the
applied forces. Let Fs = Fs(t) and Fd = Fd(t), respectively, denote forces on
the mass and dissipative forces. In particular, we consider Fs(t) = kx(t) to be a
spring force where k > 0.

Following [3], we transform (3) as follows: We set v = v(t) = x′(t). Then v′(t) = 1
m

(f(t)− Fs(t)− Fd(t))

F ′s(t) = k v(t)
(4)
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and (3) are equivalent. The constitutive relationship which links Fd and v is
defined implicitly as an implicit function β : R× R 7→ R,

β (v(t), Fd(t)) = 0 ∈ R , (5)

see [11]. The system (4)&(5) is a system of semi-implicit differential-algebraic
equations (DAEs). For the analysis and the numerical solution of DAEs, see
e.g. [6].

Given vinit ∈ R and xinit ∈ R we solve the initial value problem

v(0) = x′(0) = vinit , Fs(0) = k x(0) , x(0) = xinit (6)

for DAEs (4)&(5). The objective is to solve this problem numerically by a time-
stepping scheme.

In [3], such a scheme for a mass-spring-dashpot system was proposed. In [1],
there was investigated an implicit constitutive law (5) of Coulomb-type which is
related to the dry-friction. We shall resume the law and the numerical scheme, [1].

We consider the dissipation force Fd to be a Coulomb-type force labeled
traditionally by Fc. Hence, Fd(t) = Fc(t) is defined as{

Fc(t) = F Sign v(t) for v(t) 6= 0
v(t) = 0 for |Fc(t)| ≤ F

(7)

where F is a positive constant. Obviously, (7) represents an implicit definition
of the constitutive equation.

Next, we shall discretize the DAEs (4)&(7) in the spirit of [3]. Let {tn}+∞
n=0

be the time-equidistant mesh tn = τn with a time-step τ > 0. We denote vn,
Fne , fn and Fnd ≡ Fnc , respectively, the function values v(tn), Fe(tn), f(tn) and
Fd(tn) ≡ Fc(tn). We use the implicit Euler scheme to approximate (4) i.e.,

v′(tn+1) ∼ vn+1 − vn

τ
, F ′s(tn+1) ∼ Fn+1

s − Fns
τ

and hence 
vn+1 − vn

τ
= 1

m

(
fn+1 − Fn+1

s − Fn+1
c

)
Fn+1
s − Fns

τ
= k vn+1

(8)

We conclude that(m
τ

+ τk
)
vn+1 = m

τ
vn + fn+1 − Fns − Fn+1

c (9)

and
Fn+1
s = τk vn+1 + Fns . (10)
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We define an auxiliary function a ”total force”

Fn+1
t = m

τ
vn + fn+1 − Fns . (11)

Hence (9) reads as (m
τ

+ τk
)
vn+1 = Fn+1

t − Fn+1
c . (12)

The aim is to impose the constitutive law (7) namely,{
Fn+1
c = F Sign vn+1 for vn+1 6= 0
vn+1 = 0 for

∣∣Fn+1
c

∣∣ ≤ F (13)

In other words, we need to show that the conditions (12)&(13) uniquely define
a pair

{
vn+1, Fn+1

c

}
. We need to provide an explicit formula.

Definition 1. Given a value of Fn+1
t in (11), we define the pair

{
vn+1, Fn+1

c

}
as follows:

if |Fn+1
t | ≤ F , set {

Fn+1
c = Fn+1

t

vn+1 = 0
(14)

else  Fn+1
c = F SignFn+1

t

vn+1 =
(m
τ

+ τk
)−1 (

Fn+1
t − Fn+1

c

) (15)

end.

Lemma 1. A pair
{
vn+1, Fn+1

c

}
satisfies (12)-(13) provided that the pair is

given by Definition 1.

Proof :
a) Let a pair

{
vn+1, Fn+1

c

}
be defined by Definition 1: Assuming (14) on the

condition that |Fn+1
t | ≤ F , it yields (12) and the second requirement in (13).

Consider the pair defined via (15) on the condition that |Fn+1
t | > F : If

Fn+1
t > F then (15) implies (12) and

vn+1 =
(m
τ

+ τk
)−1 (

Fn+1
t −F

)
> 0 .

If Fn+1
t < F then (15) implies (12) and

vn+1 =
(m
τ

+ τk
)−1 (

Fn+1
t + F

)
< 0 .
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Hence, vn+1 6= 0 and Sign vn+1 = SignFn+1
t . We conclude that (12) and the

first requirement in (13) hold.

b) Let a pair
{
vn+1, Fn+1

c

}
satisfy (11)-(13): Let us assume vn+1 6= 0. The

equation (12) implies the formula for vn+1 in (15). Due to the first condition in
(13), the equation (12) yields

Fn+1
t =

(m
τ

+ τk
)
vn+1 + FSign vn+1 .

We conclude that SignFn+1
t = Sign vn+1 end hence we get the formula for Fn+1

c

in (15). If vn+1 = 0, then (12) implies (14). According to the assumption (13),∣∣Fn+1
c

∣∣ ≤ F .

Based on the above analysis, namely the formulas (11), (12), and (14), (15),
we formulate a time-stepping algorithm:
Algorithm 1. Initialization: Given vinit ∈ R and xinit ∈ R, set v0 = vinit,
x0 = xinit, F 0

s = kv0. Set a stepsize τ > 0. Define a forcing function f = f(t)
at t = τn, n = 0, 1, . . .∞, as a given sequence {fn ≡ f(τn)}∞n=0.

Define the sequences {vn}∞n=0 and {Fns }
∞
n=0, (optional: record the sequences

{xn}∞n=1 and {Fnc }
∞
n=1), by the recurrence:

Given vn and Fns , set Fn+1
t = m

τ
vn + fn+1 − Fns .

if |Fn+1
t | ≤ F , set Fn+1

c = Fn+1
t , vn+1 = 0

else set  Fn+1
c = F SignFn+1

t

vn+1 =
(m
τ

+ τk
)−1 (

Fn+1
t − Fn+1

c

)
end

Fn+1
s = τkvn+1 (optional: record Fn+1

c , xn+1 = 1
k
Fn+1
s ).

Remark 1. The aim of [10] is to prove the unique solvability of the initial value
problem (6) for DAEs (4)&(5) for a class of implicitly defined constitutive laws
(5). The class includes Coulomb-type law (7) i.e., the problem (1)&(2).

We will test the performance of Algorithm 1 on an example from [8], 4.1 A
Dry-friction Oscillator.
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Example 1. Data: m = 1, k = 1, f(t) = sin(ωt), ω = 1/6, F = 0.4. The
initial condition: xinit = 4, vinit = 0, time step: τ = 10−3, the solution time
span: [0, 10 ∗ T ], T = 2π/ω. The results of the test-run of the Algorithm 1 are
resumed in Figures 1-4.
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Figure 1. A plot of x versus time t. On the right: a zoom.
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Figure 2. A plot of v versus time t. On the right: a zoom.
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Figure 3. A phase plot of v versus x. On the right: cutting of the transients
(t ≥ 200).
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Figure 4. A plot of Fc versus time t. On the right: a zoom.

3 Filippov’s method

We shall formulate the problem (1)&(2) as the system of (autonomous) ordinary
differential equations (ODEs) with discontinuous right-hand sides, [7]. It is called
Filippov system, see e.g. [2]. Let us elaborate:

We relabel the former state variables x, v ≡ x′ and time t as x1 = x, x2 = x′

and x3 = t. We introduce vector fields F1 : R3 → R3 and F2 : R3 → R3 as

F1 =


x2

− k
m
x1 + 1

m
f(x3)− 1

m
F

1

 , F2 =


x2

− k
m
x1 + 1

m
f(x3) + 1

m
F

1


and the level-set operator H12 : R3 → R,

H12(x) = x2 .

The fields F1 and F2, respectively, are defined on

S1 =
{
x ∈ R3 : H12(x) > 0

}
end S2 =

{
x ∈ R3 : H12(x) < 0

}
.

The set
Σ12 =

{
x ∈ R3 : H12(x) = 0

}
is called the discontinuity surface.

To the problem (1)&(2) we relate the Filippov system x′ = F (x),

x′ =
{

F1(x) for x ∈ S1

F2(x) for x ∈ S2
(16)
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This Filippov system can be understood as a short cut for the differential inclu-
sion

x′ ∈

 F1(x) , x ∈ S1
co(F1, F2) , x ∈ Σ12
F2(x) , x ∈ S2

(17)

where co =
{
z ∈ R3 : z = λF1 + (1− λ)F2, λ ∈ [0, 1]

}
is a convex hull.

Under generic assumptions, the solution of (17) generates a semi-flow: Let
φ denote the semi-flow. Given an initial condition x0 ∈ R3, the solution x(t) =
φ(t, x0), t ≥ 0, of the initial value problem (17) is absolutely continuous and it
is forward unique for almost all t in a finite time span, [7].

The solution can be constructed by the Filippov’s convex method, see e.g. [2],
solving ODEs on S1,S2 and on Σ12, concatenating smooth trajectories as it is
sketched in Figure 5: The trajectory here consists of nine smooth, oriented pieces.
The thick parts of the trajectory correspond to the sliding i.e., integrating on the
discontinuity surface Σ12. The relevant vector field on Σ12 is defined by a proper
convex combination of vector fields F1 and F2 via the above mentioned Filippov’s
method. The smooth trajectory pieces are numerically integrated up to points
called events. They are related to discontinuities of the vector field. From the
technical point of view, for each smooth trajectory piece there is defined a scalar
function called event function. When integrating the piece, one check for zeros
of the particular event function. The integration is stopped when a zero of the
event function is reached in a prescribed tolerance. The classical ODE solvers
can be augmented by event location tools (e.g., in the MATLAB ODE suit, [12]).
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Figure 5. Example of a Filippov’s solution of (16). Notation: v = x′1 = x2,
x = x1, t = x3. The initial condition: (1, 2, 0)T. The thick part of trajectory
corresponds to sliding.
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There is a ready-made MATLAB toolbox [8] for a numerical integration
of Filippov’s systems based on the ideas sketched above. The authors of the
package speak about an event-driven method. Running the toolbox [8] on data
from Example 1 show no apparent differences in plots of Figures 1, 2 and 3.
(Please, mind the labeling of state variables x, v, t in Section 2 and x1, x2, x3
in the current Section 3). Hence we will not present them. Nevertheless, unlike
Figure 4, no information concerning the friction force Fc = Fc(t) is supplied by
the code [8] directly. The aim is to augment the current code introducing (apart
of x ∈ R3) a new state variable Fc by means of the following

Definition 2. Given x ∈ R3, let Fc = −kx1 + f(x3).

if |Fc| ≥ F , set Fc = SignF

else, set Fc = −kx1 + f(x3) .

When computing x ∈ R3 by the current time-stepping integration [8], we define
Fc by Definition 2. The resulting Fc = Fc(t) is shown in Figure 6. Comparing
Figure 6 and Figure 4, the former one reveals finer details.
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Figure 6. A plot of Fc versus time t via [8]. On the right: a zoom.

We can conclude that instead of solving an initial value problem for the
inclusion (17) we solve an initial value problem for state variable x ∈ R3 and
Fc ∈ R which consists of three ODEs for x ∈ R3

x′ =


x2

− k
m
x1 + 1

m
f(x3)− 1

m
Fc

1

 (18)
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depending on parameter Fc. The system (18) is completed by an algebraic con-
dition for x ∈ R3 and Fc ∈ R. The algebraic condition has a form of an explicit
formula x ∈ R3 7−→ Fc ∈ R given by Definition 2. As an initial condition we
can prescribe any x0 ∈ R3 and F 0

c ∈ R such that x0
3 = 0 and F 0

c is defined by
Definition 2 for the particular x0.

Remark 2. The comparison favors the event-driven algorithm [8]: The numer-
ical tests were done on PC with Intel T2300 1.66 GHz, dual core Centrino, using
MATLAB version 7.1. As the test we considered Example 1. The performance
of

– Algorithm 1: Elapsed time = 1995.06 secs, the number of time steps = 376991
(the fixed time step = 0.001)

– The event-driven algorithm [8]: Elapsed time = 24.38 secs, the number of
time steps = 151204 (an adaptive time stepping),
AbsTol: 1.0000 e−006, MaxStep: 0.01, RelTol: 1.0000 e−006.

4 Coulomb friction

Apart from the multivalued mapping Sign we need to introduce a multivalued
mapping NR1

−
: R ⇒ R called the normal cone with respect to the set R1

− =
{z ∈ R : −∞ < z ≤ 0}. It’s action is defined as follows:

NR1
−
z = N z =

 0 if z < 0
(−∞, 0] if z = 0
∅ if z > 0

(19)

The symbol N is a short-cut for NR1
−

.

We consider a finite element model of Coulomb friction with one contact
point

f

zero Dirichlet
condition

finite
element

rigid foundation

,
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see [5]. We seek for time-dependent functions uν , uτ , λν , λτ : [0, T ] → R such
that

M
[
u′′ν(t)
u′′τ (t)

]
= A

[
uν(t)
uτ (t)

]
+
[
fν(t)
fτ (t)

]
+
[
λν(t)
λτ (t)

]
(20)

− λν(t) ∈ Nuν(t) (21)

λτ (t) ∈ F uν(t) Sign u′τ (t) (22)

almost everywhere (a.e.) in [0, T ] and an initial value condition[
uν(0)
uτ (0)

]
= u0 ,

[
u′ν(0)
u′τ (0)

]
= v0 (23)

is satisfied for any given u0 ∈ R2, v0 ∈ R2. The unknowns of the model are

– uν(t) and uτ (t) i.e., the normal and the tangential displacement
– λν(t) and λτ (t) i.e., the normal and the tangential stress

components. The data are the given fν(t) and fτ (t) i.e., the normal and the
tangential load components.

Parameters of the model: The nonnegative friction coefficient F , and the
mass and stiffness matrices

M =
[
a 0
0 a

]
, A =

[
b c
c b

]
,

a = ρl2

12 , b = −λ+ 3ν
2 , c = λ+ ν

2 ,

where ρ, l, λ and ν are positive parameters (the density, the diameter of the
element, and two Lamé coefficients).

The condition (21) is called the complementarity condition. It can be inter-
preted as the no contact or the contact{

λν(t) = 0 for uν(t) < 0 . . . no contact
λν(t) ≤ 0 for uν(t) = 0 . . . contact

(24)

with the rigid foundation. The condition (22) reads as
λτ (t) = F λν(t) for u′τ (t) > 0
λτ (t) = −F λν(t) for u′τ (t) < 0
|λτ (t)| ≤ −F λν(t) for u′τ (t) = 0

(25)

We resume that
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1. In the case of no contact in (24), the condition (25) yields λν(t) = λτ (t) = 0
2. In the case of contact in (24), the condition (25) can be interpreted as

λτ (t) = F λν(t) for u′τ (t) > 0 . . . contact-stick
λτ (t) = −F λν(t) for u′τ (t) < 0 . . . contact-stick
|λτ (t)| ≤ −F λν(t) for u′τ (t) = 0 . . . contact-slip

(26)

Let us analyze the latter case namely, assume that the body is in contact
with the rigid foundation at a particular time t0 > 0 including an open non-
empty time interval I(t0). It means that the equations (20) together with the
conditions {λν(t) ≤ 0 , uν(t) = 0} and (26) are satisfied for t ∈ I(t0).

The system (20) consists of two equations:

au′′ν(t) = buν(t) + cuτ (t) + fν(t) + λν(t) (27)

au′′τ (t) = cuν(t) + buτ (t) + fτ (t) + λτ (t) (28)

Since uν(t) = 0 for all t ∈ I(t0) then u′′ν(t) = 0 for all t ∈ I(t0). The equation
(27) reduces to an algebraic constraint:

λν(t) = −c uτ (t)− fν(t) , λν(t) ≤ 0 (29)

for t ∈ I(t0). Finally, we have to employ (26) in the equation (28).

– If u′τ > 0 then λτ = Fλν , see (26). The equations (28)&(29) yield

u′′τ = b−Fc
a

uτ + 1
a

(fτ −Ffν)

– If u′τ < 0 then λτ = −Fλν , see (26). Due to the equations (28)&(29)

u′′τ = b+ Fc
a

uτ + 1
a

(fτ + Ffν)

– If u′τ = 0 then |λτ | ≤ Fλν , see (26). We consider a convex combination of
the above equations

u′′τ = (1− 2λ) + b

a
uτ + 1

a
fτ + 1− 2λ

a
Ffν , λ ∈ [0, 1] .

Observe that the three above equations form a Filippov system for the unknowns
uτ and u′τ . We have shown that uν ≡ u′ν ≡ 0 and λν depends on uτ and fν by
means of (29).
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Let us relabel the state variables x1 = uν , x2 = u′ν , x3 = uτ and x4 = u′τ .
Accordingly, we introduce vector fields F1 : R5 → R5 and F2 : R5 → R5 as

F1 =



0
0
x4

b−Fc
a

x3 + 1
a

(fτ −Ffν)

1

 , F2 =



0
0
x4

b+ Fc
a

x3 + 1
a

(fτ + Ffν)

1


and the level-set operator H12 : R5 → R,

H12(x) = x4 .

The fields F1 and F2, respectively, are defined on

S1 =
{
x ∈ R5 : H12(x) > 0

}
end S2 =

{
x ∈ R5 : H12(x) < 0

}
.

The set Σ12 =
{
x ∈ R5 : H12(x) = 0

}
is the discontinuity surface. We consider

the Filippov system

x′ =
{

F1(x) for x ∈ S1
F2(x) for x ∈ S2

(30)

For a given initial condition x0 ∈ R5, the Filippov’s convex method gives the
solution x(t) = φ(t, x0), t ≥ 0, of the system (30) on a time span for which the
body stays in contact with the rigid obstacle i.e.,

λν(t) = −c x3(t)− fν(t) ≤ 0 .

It means that the initial condition x0 ∈ R5 has to satisfy

x0 =
[
0, 0, x0

3, x
0
4, 0
]>

, −c x0
3(0)− fν(0) < 0 . (31)

Example 2. Data: a = 1, b = −1, c = 1, F = 0.4, fτ (t) = sin(ωt), ω = 1/6,
fν = 1.3. The initial condition: x0 = [0, 0, 1, 2, 0]>. The solution time span:
[0, 10 ∗ T ], T = 2π/ω. Computation via the event-driven algorithm [8]. The res-
ults of the test-run are shown in Figures 7-10.

In this particular numerical experiment the body stays in contact with the
rigid obstacle for all times i.e., λν < 0 for any t ≥ 0, see Figure 10. We distinguish
two contact regimes:

– If x1(t) = x2(t) = 0 end x4(t) = 0 then the body is in contact-slip
– If x1(t) = x2(t) = 0 end x4(t) 6= 0 then the body is in contact-stick
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Figure 7. fν = 1.3. A plot of x3 versus time t. On the right: a zoom.
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Figure 8. fν = 1.3. A plot of x4 versus time t. On the right: a zoom. Contact
regime: If x4(t) = 0 then contact-slip. If x4(t) 6= 0 then contact-stick.
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Figure 9. fν = 1.3. A phase plot of x4 versus x3. On the right: cutting of the
transients.
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Figure 10. fν = 1.3. A plot of λν versus time t. On the right: a zoom.

regime, respectively. The former case was called the sliding in Section 3.

Consider the same data from Example 2 except for the normal load compon-
ent fν . If the value of fν is positive and comparatively small then the solution
may lose contact at a finite time:

Example 3. Data: a = 1, b = −1, c = 1, F = 0.4, fτ (t) = sin(ωt), ω = 1/6,
fν = 0.5. The initial condition: x0 = [0, 0, 1, 2, 0]>. The solution time span:
[0, 10 ∗ T ], T = 2π/ω. The first contact loss at tE = 21.6095, see Figure 11.

Figure 12 shows two solution trajectories for t ∈ [0, tE), tE = 21.6095. Note
that in the label tE the subscript E stands for an event. What is this event
(which happened in the particular time tE)? In time sequels t > tE the body
loses contact with the rigid obstacle. Hence, the model will be driven by different
equations then the model (30). It means e.g. that λν = 0 for t > tE .
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Figure 11. fν = 0.5. A plot of λν versus time t. On the right: a zoom. The first
contact loss at tE = 21.6095. Since the time tE , the solution components are
non-physical.
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Figure 12. fν = 0.5. The accepted solution trajectories in the interval [0, tE =
21.6095]: A plot of λν versus time t (on the left), a plot of x4 versus time t (on
the right).

Let us elaborate: Recall the original meaning of the state variables x1 = uν ,
x2 = u′ν , x3 = uτ and x4 = u′τ . Assume that the body is not in contact with
the rigid foundations at a particular time t0 > 0 including an open non-empty
time interval I(t0). Due to (24) (the option no contact) we can claim that
{λν(t) = 0, uν(t) < 0} for t ∈ I(t0). We already noted that λν(t) = λτ (t) = 0 for
t ∈ I(t0), as a consequence of (25). Hence, the system (20) reduces to equations

au′′ν(t) = buν(t) + cuτ (t) + fν(t) (32)

au′′τ (t) = cuν(t) + buτ (t) + fτ (t) (33)

for t ∈ I(t0) provided that uν(t) < 0. We formulate (32)&(33) as an autonomous
system adding an extra equation t′ = 1. Coming back to the variable x ∈ R5 we
introduce vector fields F3 : R5 → R5 and F4 : R5 → R5 as

F3 =



x2

b

a
x1 + c

a
x3 + 1

a
fν

x4

c

a
x1 + b

a
x3 + 1

a
fτ

1


, F4 =



0
c

a
x3 + 1

a
fν

x4

b

a
x3 + 1

a
fτ

1


The fields F3 and F4, respectively, are defined on

S3 =
{
x ∈ R5 : x1 < 0

}
end S4 =

{
x ∈ R5 : x1 = 0

}
.

The field F3 is an immediate transcription of the equations (32)&(33) to the state
variable x ∈ R5. The field F4 reduces the flow to S4. The idea is that all four
fields F1, F2, F3 and F4 will be concatenated by piecewise smooth trajectories.
It will be the subject of a forthcoming paper.
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5 Conclusions

We considered a dry-friction model (in 2-D) and a lumped parameter Coulomb
friction model (in 6-D). In case of the dry-friction model we investigated two
approaches for a numerical simulation:

– Solving DAEs, using an implicitly defined constitutive relation for the Cou-
lomb friction force

– Solving the relevant Filippov system.

The comparison clearly favours the Filippov approach: We concatenate smooth
solution branches computed by an optionally chosen ODEs solver with an ad-
aptive step size. If DAEs approach were to be competitive then an adaptive step
size should be implemented.

In case of the lumped Coulomb friction model we considered a Filippov for-
mulation only. We have shown that the dry friction model is linked with the case
of the contact-stick and the contact-slip solution modes on an open time
interval. These two solution modes should be concatenated with no contact
solution modes, which is not implemented yet. If the normal load components
fν = fν(t) is sufficiently high on an open time interval then we may expect
solution being composed of concatenated contact-stick and contact-slip
solution modes (as in Example 2).
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Abstract In this paper we deal with posets and graphs associated to
them. We concentrate on so called cover-incomparability graphs. We
prove that the C-I graph recognition problem is in general NP-complete.
Then we present several classes of graphs (distance-hereditary graphs,
Ptolemaic graphs, k-trees) for which the C-I graph recognition problem
is polynomial.

1 Introduction

We deal with posets and graphs associated to them. There are several ways how
to associate a graph G to a given poset P . The vertex set V (G) is usually the set
of points of P . Depending on the edge-set E(G), we may obtain among others:

• the comparability graph of P (x and y are adjacent if and only if x < y
or y < x),

• the incomparability graph of P (x and y are adjacent if and only if x and
y are incomparable),

• the cover graph of P (x and y are adjacent if and only if x covers y or vice
versa) or

• the cover-incomparability graph of P (x and y are adjacent if and only
if x covers y, or y covers x, or x and y are incomparable).

The incomparability graph of P is of course just the complement of the
comparability graph, while the cover-incomparability graph of P is the union of
the cover graph and the incomparability graph of G.

Example 1. Let P = (P({1, 2}),⊆) be the poset of all subsets of {1, 2} together
with the relation ⊆ (being a subset). The following picture shows various graphs
associated to this poset.
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Figure 1. Poset P and various graphs associated to it

Cover graphs, comparability graphs and incomparability graphs are stand-
ard ways how to associate a graph to a given poset, while the notion of cover-
incomparability graph (or shortly C-I graph) is new. It was introduced by Brešar
et al. in 2008 [2]. This notion was motivated by the theory of transit functions
on posets.

There are two basic ways how to approach the notion of C-I graphs. One
possibility is to study posets whose C-I graphs have special properties. Posets
whose C-I graphs are claw-free, chordal, distance-hereditary and Ptolemaic can
be characterized using forbidden subposets [2].

The other direction is to try to answer questions such as: Which graphs are
C-I graphs? Which chordal, interval, etc. graphs are C-I graphs? These questions
seem to be much harder. In Section 3 we show that the problem of recognizing
C-I graphs is in general NP-complete. On the other hand it is clearly polynomial
for instance for trees (as in any C-I graph there are at most 2 vertices of degree
1). It is natural to ask the same question for some smaller classes of graphs such
as chordal, interval, distance-hereditary or Ptolemaic graphs (see the list of open
problems in [2]).

Brešar et al. [3] concentrated on two special subclasses of chordal graphs and
proved that the recognition problem is polynomial if restricted to block graphs
or to split graphs.
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In Section 4 we continue the study of chordal C-I graphs in other direction.
We found a simple necessary condition for a graph to be a C-I graph and show
that for Ptolemaic graphs this condition is also sufficient. It follows that the
problem of recognizing C-I graphs is polynomial among Ptolemaic graphs, and
(with some more effort) also among all distance-hereditary graphs.

The last result of Section 4 is the solution of the C-I graph recognition prob-
lem for k-trees. A k-tree is a chordal graph all of whose maximal cliques are
the same size k + 1 and all of whose minimal clique separators are also all the
same size k. The k-trees are exactly the maximal graphs with a given treewidth,
graphs to which no more edges can be added without increasing their treewidth.

2 Terminology and basic properties of C-I graphs

Let P = (V,≤) be a poset. We will use the following notation. For u, v ∈ V we
write:

– u < v if u ≤ v and u 6= v.
– u C v if u < v and there is no z ∈ V such that u < z < v. We say that v

covers u.
– uCC v if u < v and ¬(uC v).
– u ‖ v if u and v are incomparable.

Definition 1. For a given poset P = (V,≤), let G(P ) = (V,E) be a graph
with E = {{u, v} | u C v or v C u or u ‖ v}. Then we say that G(P ) is the
cover-incomparability graph of P (or the C-I graph of P for short).

Note that for any u, v ∈ V (G(P )), u 6= v we have {u, v} /∈ E(G(P )) ⇔
uCC v or v CC u .

For an undirected graph G = (V,E) an orientation G is the oriented graph
D = (V,A) that arises from G by replacing each edge uv by one of the arcs −→uv
or −→vu. The orientation D is said to be transitive if for any two consecutive arcs
−→uv ∈ A(D), −→vw ∈ A(D) also −→uw ∈ A(D).

Now let us list a few easy observations about C-I graphs [2, 8]. Their proofs
follow mostly immediately from the definition.

Lemma 1. Let P = (V,≤) be a poset and G(P ) = (V,E) its C-I graph. Then

(i) G(P ) is connected.
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(ii) If U ⊆ V is an antichain in P , then U induces a complete subgraph in G(P ).
(iii) If I ⊆ V is an independent set in G(P ), then all points of I lie on a common

chain in P .
(iv) There are at most 2 vertices of degree 1 in G(P ).
(v) G(P ) (the complement of G(P)) admits a transitive orientation

(vi) G(P ) contains no induced cycles of length greater than 4.

3 The recognition problem

The problem we are concerned with is the following:

C-I testing
Instance: A graph G = (V,E) .
Question: Is there a poset P = (V,≤) such that G is the C-I graph of P , i.e.
G = G(P )?

The next theorem is the main result of this section.

Theorem 1. The C-I testing problem, i.e. the decision whether a given graph
is a C-I graph, is an NP-complete problem.

Proof :
We prove this theorem by giving a polynomial-time transformation from Cov-
ering by complete bipartite subgraphs, which is an NP-complete problem, see
e.g. [5]. This problem can be stated as follows.

Covering by complete bipartite subgraphs
Instance: A bipartite graph G = (V,E) and positive integer k ≤ |E|.
Question: Are there k subsets V1, . . . , Vk of V such that each Vi induces a com-
plete bipartite subgraph of G and such that for each edge uv ∈ E there is some
Vi that contains both u and v?

Given a bipartite graph G = (V,E) and a positive integer k, k ≤ |E| we
construct a graph H = Hk

G = (W,F ) such that H is a C-I graph if and only if
G can be covered by k complete bipartite subgraphs. The exact construction of
Hk
G together with the rest of the proof can be found in [8].

Before we close this section let us mention that the recognition problem for
cover graphs is NP-complete [10, 11] or [4], while the recognition problem for
comparability graphs (and hence also for incomparability graphs) is polynomial,
see [1].
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4 Chordal graphs and subclasses of chordal graphs

Chordal graphs present an extremely interesting class of graphs. Due to their
simple structure (the existence of perfect elimination scheme) many NP-complete
problems (as k-colorability, k-independent set, k-clique etc.) are polynomially
solvable if restricted to chordal graphs.

A graph is said to be chordal if it has no induced cycles of length greater
than 3. A vertex v is called simplicial if its neighborhood induces a complete
subgraph. It is a well-known fact [6] that a chordal graph is either a clique or it
contains a pair of independent (not adjacent) simplicial vertices.

A graph G is said to be distance-hereditary if for any two vertices u and v
belonging to a connected induced subgraph H of G, some shortest path connect-
ing u and v in G lies in H (so that the distance between u and v in H is the same
as the distance in G). Ptolemaic graphs are distance-hereditary graphs without
induced 4-cycles (i.e chordal distance-hereditary graphs).

Lemma 2. Let P be a poset and G(P ) = (V,E) its C-I graph. Let v be a
simplicial vertex in G(P ). Then v is a maximal or a minimal element of P .

Proof :
Suppose v is neither a maximal nor a minimal element of P . Then there exist
vertices x, y ∈ V (G) such that xC v C y in P . Vertices x and y are neighbors
of v not connected by an edge, a contradiction with v being simplicial.

Lemma 3. If G is a C-I graph then G does not contain 3 independent simplicial
vertices.

Proof :
Suppose there are 3 simplicial vertices in G(P ) that form an independent set.
According to Lemma 1(iii) these 3 vertices lie on a common chain in the poset P .
Hence one of them (the middle one) is neither a maximal or a minimal element
of, a contradiction with Lemma 2.

Lemma 3 gives us a simple necessary condition for an arbitrary graph to be
a C-I graph. This condition turns out to be sufficient if G is a Ptolemaic graph.

Theorem 2. Let G be a Ptolemaic graph. G is a C-I graph if and only if G does
not contain 3 independent simplicial vertices.
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Proof :
For the proof of Theorem 2, which exceeds the capacity of this article, see [9].

It is easy to see that the condition from Theorem 2 can be checked in poly-
nomial time. Hence we get the following corollary.

Corollary 1. C-I graphs can be recognized in polynomial time in the class of all
Ptolemaic graphs.

For arbitrary distance-hereditary graph we are able to proof the following
rather technical theorem (see [9] for the proof).

Theorem 3. Let G be a distance-hereditary graph. G is a C-I graph if and only
if one of the following two conditions holds:

1. diam G = 2 and the complement G is a vertex disjoint union of b complete
bipartite subgraphs and i isolated vertices and i ≥ b, or

2. diam G ≥ 3, G is chordal and G does not contain a triple of independent
simplicial vertices.

It follows that there are no other distance-hereditary C-I graphs with diam G ≥
3 other than Ptolemaic graphs. As both of these conditions can be checked in
polynomial time we immediately have the following corollary.

Corollary 2. C-I graphs can be recognized in polynomial time in the class of all
distance-hereditary graphs.

There is another interesting subclass of chordal graphs for which the recog-
nition problem is known to be polynomial. This is the class of all k-trees.

A k-tree is a chordal graph all of whose maximal cliques are the same size
k+1 and all of whose minimal clique separators are also all the same size k. The
k-trees are exactly the maximal graphs with a given treewidth, graphs to which
no more edges can be added without increasing their treewidth. The graphs that
have treewidth at most k are exactly the subgraphs of k-trees. For this reason
they are called partial k-trees. A k-path is a k-tree with at most two simplicial
vertices (or a complete graph on k + 1 vertices).

We first observe if a k-tree G is a C-I graph then G must be a k-path. This
follows immediately from Lemma 3. We further show that a k-path is a C-I graph
whenever k is odd. For k even, a k-path on n vertices is a C-I graph if and only
if n ≤ 2k+ 1. Our observations are summarized in the following theorem for the
proof see [7].
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Theorem 4. For k odd, a k-tree G is a C-I graph if and only if G is a k-path.
For k even, a k-tree G is a C-I graph if and only if G is a k-path and n ≤ 2k+ 1
where n is the number of vertices of G.
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Abstract Enzymes constitute the most important functional aspect of
all bio-chemical processes. It catalyzes numerous reactions taking place
within the living organisms. Enzymatic reactions occur through the act-
ive sites which combine with the substrates to form intermediate com-
plexes subsequently leading to products. In this research article, a single
enzyme having dual active sites has been considered. These active sites
offer room for combining with two substrates having varying reactivity
in a sequential ordered mechanism. The enzyme first combines with the
more reactive substrate to form the first intermediate complex. The com-
plex then further reacts with the second substrate to yield the ultimate
product via formation of a second intermediate complex. Mathemat-
ical modeling with its analytical and numerical analysis in this regard
provides an idea to predict the behavior of the system. In this research
article a mathematical model is formulated and approximate analytical
solution for the reaction system is determined using Variational Iteration
Method. Numerical simulation has also been done which is based on the
analytical results.

1 Introduction

Enzymes play a significant role in controlling the extent of various chemical and
biochemical reactions. It acts as a catalyst that increases the rate of a reaction
without itself undergoing any change in its quantity. It modifies the rate of a
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reaction by lowering the energy of activation required for a reaction [1]. In addi-
tion, enzymatic reactions do not leave any by-products which are an advantage
for any system under consideration. Enzymes catalyze the reactions by combin-
ing with a substrate through an active site present on it forming an intermediate
complex which ultimately leads to the product. The enzyme is reverted back at
the end of the reaction.

Bi-substrate enzyme kinetic mathematical model has a long range application
in the different fields of chemical production, drugs, pharmaceutical and poly-
mers. LONZA, one of the reputed fine chemical producers in the world, routinely
applies mathematical modeling to avoid formation of inhibiting by-products dur-
ing enzymatic synthesis of fine chemicals. Additionally, dual substrate enzyme
kinetic model provides an opportunity of a new dimension in the various sci-
entific areas of chemical engineering, mathematics, medicine and other fields of
interdisciplinary research. Catalytic power, specificity, time economization, reg-
ulation and reuse all contribute to the most important features of an enzyme in
tailoring the mode of any biochemical processes. Mathematical modeling thus
plays a considerable role in controlling the enzymatic reactions [2], [3], [4], [5]
and specifically in case of dual substrate model, it helps us to understand the
dependency of the system on system parameters [6], [7], [8].

In the present study, a model based mathematical approach with the bi-
substrate enzyme kinetic model is introduced by considering the sequence of
actions that lead to product formation [9]. With this view, a concentration rela-
tionship among the two substrates, enzyme, two complexes and the product have
been established considering the significant importance of reaction. The proposed
mathematical model for bi-substrate enzymatic reaction has been solved analyt-
ically with the help of Variational Iteration method [11]. The analytical results
are supported numerically using Matlab.

2 Assumptions and Formulation of the Mathematical
Model

Here we commence an enzyme kinetic model with two types of substrates S1, S2
and enzyme E. The kinetic reaction is given by the following schematic diagram:

E + S1
k1


k−1

ES1 + S2
k2


k−2

ES1S2
k3−→ E + P
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Here S1 and S2 are the two substrates, E is the enzyme, ES1(C1) and
ES1S2(C2) are the two intermediate enzyme-substrate complexes and P is the
product. The rate constants for the formation of enzyme-substrate complexes
C1 and C2 are denoted by k1 and k2 respectively and k3 is the catalysis rate
constant. Also we consider that the rate constant for backward reaction of the
enzyme-substrate complexes C1 and C2 are k−1 and k−2 respectively. The above
diagram states that one molecule of the substrate S1 combines with one molecule
of enzyme to form one molecule of enzyme–substrate complex C1. This complex
may decompose back into enzyme and unmodified substrate S1 or may combine
with one molecule of substrate S2 to form second enzyme–substrate complex
C2. Finally this complex is transformed into product at a rate k3 or may revert
back into enzyme–substrate complex ES1 and unmodified substrate S2 or into
ES2 and S1. On the basis of the assumption that the reaction between E and
S1 is relatively faster than that between E and S2, the first one is considered as
binding of E and S1 is much stronger than that of E and S2 at a particular time.

Considering s1, s2, e, c1, c2 and p for [S1], [S2], [E], [ES1], [ES1S2] and [P ]
respectively, where [ ] denotes the concentration of a substance, from the law
of mass action [7], the non linear system of differential equations for the above
enzymatic reaction may be enunciated as follows:

ds1

dt
= −k1es1 + k−1c1,

ds2

dt
= −k2c1s2 + k−2c2,

de

dt
= −k1es1 + k−1c1 + k3c2, (1)

dc1

dt
= k1es1 − k−1c1 − k2c1s2 + k−2c2,

dc2

dt
= k2c1s2 − k−2c2 − k3c2,

dp

dt
= k3c2

with initial conditions

s1(0) = s10, s2(0) = s20, e(0) = e0,
c1(0) = 0, c2(0) = 0 and p(0) = 0, (2)

where k1, k2, k3, k−1, k−2, s10, s20 and e0 are positive constants.
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3 Boundedness, Existences and Uniqueness of the System

The right hand side of the equation (1) are smooth functions of the variables
s1, s2, e, c1, c2, p and system parameters, as long as these quantities are non-
negative, so local existence, uniqueness and continuous properties hold. In the
next theorem we show that the linear combination of substrates, enzyme, com-
plexes and product are less than a finite quantity or in other words, the solution
of the system is bounded.

Theorem 1. The solution y(t) of (1), where y = (s1, s2, e, c1, c2, p) is uniformly
bounded for y0 ε R

6
0,+

Proof: We define the function W(t): R0,+ −→ R0,+ by

W (t) = s1(t) + s2(t) + e(t) + c1(t) + c2(t) + p(t). (2.1)

Observe that W is well-defined and differentiable on some maximal interval
(0, tf ).

The derivative of (2.1) is

dW (t)
dt = −k1es1 + k−1c1 + k3c2 − k2c1s2 + k−2c2.

dW (t)
dt +W (t) = −k1es1 + k−1c1 + k3c2 − k2c1s2 + k−2c2 + s1 + s2

+e(t) + c1(t) + c2(t) + p(t).
≤ (k3 + k−2 + 1)c2 + (k−1 + 1)c1 + s1 + s2 + p

Now since the system is closed, mass will be preserved for all time. So,

dW (t)
dt +W (t) ≤ k(s10 + s20 + e0) = kW (0) = kW0 for each t ∈ (0, tf ).

Where, total mass of the system is W0 = (s10 + s20 + e0).

and k = max(k3 + k−2 + 1, k−1 + 1).

Let G(t, y) = kW0 − y(t), which satisfies Lipschitz condition everywhere,
clearly

dW (t)
dt +W (t) ≤ kW0 for all t ∈ (0, tf ).
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Let,
dW (t)
dt = kW0 − x(t) and W (0) = W0.

This linear ordinary differential equation has the solution

x(t) = m− (m−W0)e−t,where m = kW0.

It is clear that, W (t) is bounded on (0, tf ) By comparison theorem Brikhoff
and Rota [10],

W (t) ≤ m− (m−W0)e−t.

Now, suppose tf <∞, then W (tf ) ≤ x(tf ) <∞. But in this case the solution
exists uniquely for some interval (0, tf ) by Picards− LindelofTheorem.

3.1 Basic Idea of Variational Iteration Method

Here we can solve system (7) analytically using Variational Iteration Method [11]
in the following way. Let us consider the system

Lz(t) +Nz(t) = g(t) (3)

where L is a linear operator, N is a non linear operator and g(t) is a given
continuous function. Now using variational iteration method, we construct the
correct functional form [11] as follows:

zn+1(t) = zn(t) +
∫ t

0 η[L(zn(ξ)) +N(z̃n(ξ))− g(ξ)]dξ (4)

where η is the Lagrange multiplier [12]. We can identify η by the method of vari-
ational theory [11], [13]. Here zn represents the nth order approximate solution
and z̃n the restricted variation [13] i.e., δz̃n = 0.

3.2 Detailed Analysis of the System

Now, using (4), we have the correction functional of (1) as given below,

s1,n+1(t) = s1,n(t) +
∫ t

0 η1[s′1,n(ξ) +
˜︷ ︸︸ ︷

k1en(ξ)s1,n(ξ)− k−1
˜︷ ︸︸ ︷

c1,n(ξ)s2,n(ξ)]dξ
(5a)
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s2,n+1(t) = s2,n(t) +
∫ t

0 η2[s′2,n(ξ) +
˜︷ ︸︸ ︷

k2s2,n(ξ)c1,n(ξ)− k−2
˜︷ ︸︸ ︷

c2,n(ξ)]dξ, (5b)

pn+1(t) = pn(t) +
∫ t

0 η3[p′n(ξ)− k3
˜︷ ︸︸ ︷

c2,n(ξ) (5c)

where η1, η2, η3 are Lagrange multipliers.

Here it is to be mentioned that for linear problems, using Variational Iteration
Method, it’s exact solution can be obtained by only one iteration. But for non
linear problems, it’s accurate solution can be obtained by iteration due to the
fact that the Lagrange multipliers can only be identified approximately.

Considering the variation with respect to s1,n, s2,n, pn, we have:

δs1,n+1(t) = δs1,n(t) + δ
∫ t

0 η1[s′1,n(ξ) +
˜︷ ︸︸ ︷

k1en(ξ)s1,n(ξ)− k−1
˜︷ ︸︸ ︷

c1,n(ξ)s2,n(ξ)]dξ
(6a)

δs2,n+1(t) = δs2,n(t) + δ
∫ t

0 η2[s′2,n(ξ) +
˜︷ ︸︸ ︷

k2s2,n(ξ)c1,n(ξ)− k−2
˜︷ ︸︸ ︷

c2,n(ξ)]dξ,
(6b)

δpn+1(t) = δpn(t) + δ
∫ t

0 η3[p′n(ξ)− k3
˜︷ ︸︸ ︷

c2,n(ξ) (6c)

Here
˜︷ ︸︸ ︷

s1,n(ξ)en(ξ),
˜︷ ︸︸ ︷

c1,n(ξ)s2,n(ξ) and
˜︷ ︸︸ ︷

c2,n(ξ) are considered as restricted vari-
ations. Under this consideration, the stationary conditions of the above correc-
tion functionals (6a), (6b), (6c) can be expressed as follows(here notice that
δc2,n(0) = 0, δen(0)s1,n(0) = 0, δc1,n(0)s2,n(0) = 0 )

δs1,n : 1 + η1(ξ)|ξ=t = 0,
δs1,n : −η′1(ξ) = 0. (7a)

δs2,n : 1 + η1(ξ)|ξ=t = 0,
δs2,n : −η′1(ξ) = 0. (7b)

δcn : 1 + η1(ξ)|ξ=t = 0,
δcn : −η′1(ξ) = 0. (7c)

The Lagrange multipliers can be obtained using Lagrange-Euler equations
from (13a), (13b), (13c) and (13d) as

η1(ξ) = −1,
η2(ξ) = −1,
η3(ξ) = −1.

(8)
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Using (8) and taking n=0 in the iteration formula (5a)-(5c) we have,

s1,1(t) = s1,0(t) +
∫ t

0 η1[s′1,0(ξ) +
˜︷ ︸︸ ︷

k1e0(ξ)s1,0(ξ)− k−1
˜︷ ︸︸ ︷

c1,0(ξ)s2,0(ξ)]dξ (9a)

s2,1(t) = s2,0(t) +
∫ t

0 η2[s′2,0(ξ) +
˜︷ ︸︸ ︷

k2s2,0(ξ)c1,0(ξ)− k−2
˜︷ ︸︸ ︷

c2,0(ξ)]dξ, (9b)

p1(t) = p0(t) +
∫ t

0 η3[p′0(ξ)− k3
˜︷ ︸︸ ︷

c2,0(ξ). (9c)

We now consider the initial approximate solution satisfying (2) as

s1,0(t) = s10e
−m1t, s2,0(t) = s20e

−m2t,

p0(t) = e−m3t−e−m4t

m4−m3
, e0(t) = e0e

−m5t,

c1,0(t) = e−m6t−e−m7t

m7−m6
, c2,0(t) = e−m8t−e−m9t

m9−m8
.

(10)

where mi, i = 1, 2, ..., 9 are constants.

Thus from (9a)-(9c) along with initial condition (2) we have the approximate
solution as given below:

s1(t) ≈ s10 + (a1e
−b1t − a1) + a2{( e

−b2t

b2
− e−b3t

b3
)− ( b3−b2

b2b3
)}.

(11)
s2(t) ≈ s20 − a3( e

−b2t

b2
− e−b3t

b5
− ( b3−b2

b2b3
)) + a4( e

−m9t

m9
− e−m8t

m8
− m8−m9

m8m9
)}.

(12)
p(t) ≈ a5( e

−m9t

m9
− e−m8t

m8
− m8−m9

m8m9
). (13)

where

a1 = k1s10
m1+m5

, a2 = k−1s20
m7−m6

, a3 = k2s20
m7−m6

, a4 = k−2
m9−m8

,

a5 = k3
m9−m8

, b1 = m1 +m5, b2 = m7 +m2, b3 = m6 +m2.

(14)
The system we have considered here is a closed system. So mass will be preserved
in this system for all time. Thus from system (1), equation (11-13) and initial
condition(2), we get the following expressions:

e(t) ≈ s1(t) + p(t) + (e0 − s10),
c1(t) ≈ −s1(t) + s2(t) + (s10 − s20),
c2(t) ≈ −s2(t)− p(t) + s20.

(15)

Thus equation (11) - (13) and (15) represent the complete solutions of the model
system (1).
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4 Numerical Simulation

The present study deals with kinetic reaction of two substrate enzyme kinetics.
In this section, we investigate the effect of changes in the reaction parameters
numerically which is based on analytical analysis of the reaction system. Numer-
ical analysis represents the kinetic profile of the substrates, enzyme, complexes
and product considering the parameter values as given in Table 1. All the nu-
merical results are obtained by using MATLAB programming version 8.

Table 1 Values of parameters used for models dynamics calculations [2].
Para- Definition Recommended
meter Value
k1 Rate constant for forward reaction 5 (mole/litre)−1hour−1

k2 Rate constant for forward reaction 5 (mole/litre)−1hour−1

k−1 Rate constant for backward reaction 1 hour−1

k3 Rate constant for product formation 5 hour−1

k−2 Rate constant for backward reaction 1 hour−1
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Figure 1. Normalized concentration profile of substrates, enzyme-substrate
complexes, enzyme and product by VIM.
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For numerical simulation we take m1 = 3.1;m2 = 1.1;m3 = 2;m4 = 2;m5 =
1;m6 = 1.0005;m7 = 0.94;m8 = 1;m9 = 1.03; and k1, k−1 etc. as in Table 1.
Moreover we assume that solutions of the system remain positive for all time.

Figure 1 represents the analytical expressions of concentrations of the sub-
strates, enzyme, complexes and product for the parameter values as in Table 1.
According to the enzyme behaviour of enzymatic reactions, the substrate concen-
tration decreases initially with time and levels off to extinction nearly at t = 0.25
hours. The reaction is rapid at the initial stages of the reaction due to the high
reactivity of the first substrate but it gradually falls off with time owing to its
removal from the reaction medium to form the first intermediate complex. The
concentration of the enzyme substrate complex (c1) attains a maximum value
(3.07 mole/L) at a particular intermediate step of the reaction. Henceforth, the
second substrate (s2) is triggered which interacts with the first complex and
generates the second intermediate complex (c2) in the course of reaction. Con-
centration of it gradually increase with time after reaching a maximum and
levels off at a particular value of its concentration (2.06mole/L) but it is worth
notifying that the reactivity of second substrate S2 always remains lower than
that of S1. Due to the lower reactivity of S2 at a given parametric condition as
in Table 1, a finite quantity of it remains unchanged at the end of the reaction.
The concentration profile of the second complex exhibits a much lesser variation
compared to the first complex which is again indicative of the comparatively
lower reactivity of the second complex.

Figure 2 represents the system behavior obtained by ode45 solver in MAT-
LAB, keeping the parameter values as in Table 1. From Figure 1 and Figure 2,
we have made a comparative analysis between VIM and RK4 method. A very
similar result is obtained by VIM compare to RK4 method.

5 Discussion and conclusion

In this paper, VIM method is applied to get the approximate solution of a nonlin-
ear system of differential equations. We choose the conventional RK4 method as
standard, as it is widely accepted and used. We compare our results numerically
with the results obtained by ode45 solver. From this we can conclude that VIM
method can be applied to solve linear and non-linear ode models. The obtained
results demonstrate the simplicity, reliability and efficiency of VIM method and
the faster convergence of this method as it gives continuous solution. From the
numerical solution we see that the results from the proposed method are in an
excellent agreement with the solution by ode45 solver which is based on RK4
method. VIM is the only method which gives exact solutions or solutions with

165



0 2 4 6

2

4

6

Time (Hours)

C
o

n
c

e
n

tr
a

ti
o

n
 (

m
o

l/
L

)
 

 

0 2 4 6
0

5

Time (Hours)

 

 

0 2 4 6
0

5

Time (Hours)

 

 

0 2 4 6
0

1

2

3

Time (Hours)

C
o

n
c

e
n

tr
a

ti
o

n
 (

m
o

l/
L

)

 

 

0 2 4 6
0

1

2

3

Time (Hours)

 

 

0 2 4 6
0

2

4

Time (Hours)

 

 

Enzyme (e)

Substrate (s
1
)

substrate (s
2
)

Complex (c
2
) Product (p)

Complex (c
1
)

Figure 2. Normalized concentration profile of substrates, enzyme-substrate
complexes, enzyme and product by RK4.

high accuracy in a single iteration.

In the chemical point of view, the kinetic profile of the bi-substrate reaction
using single enzyme with multiple active sites is presented and the results show
the analytical expressions for the concentration of substrates, complexes, product
and enzyme after a definite time interval. The concentration curves also reveal
significant information regarding yield of product by applying suitable reaction
parameters at definite time interval. From the analytical result and numerical
simulation of the concentration of different components, it can be concluded that
our study can be helpful to understand the dynamical behavior bi-substrate en-
zymatic system in a better way.
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Homomorphisms, Structural Ramsey Theory
and Limits

Jaroslav Nešetřil

Computer Science Institute of Charles University, Prague

Abstract

In this talk we present 3 recent theorem in 3 seemingly different areas which
nevertheless share common approach typical for structural combinatorics.
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Seven Conjectures On Lucky Numbers

Pavla Pavĺıková

Institute of Chemical Technology, Prague

Keywords: lucky number, prime number, labeling of graph, lucky and chro-
matic number of graph

Abstract The aim of this article is to present three different mathe-
matical meanings of the term lucky number (lucky number of graph,
lucky number of Ulam and lucky number of Euler) and comment seven
conjectures about this kind of numbers.

”Good mathematicians see analogies
between theorems or theories,

the very best ones see
analogies between analogies.”

Stefan Banach (1892–1945)

1 Introduction

It is very likely that you have heard that 3 or 7 are lucky numbers for somebody
and 13 seems to be unlucky (this is not the case of Italians, they believe that
17 is unlucky number). But in this sense it is strictly individual problem. In
this article we would like to present some mathematical aspects of the term
lucky number.1 We will focus on the lucky numbers in graph theory and number
theory.

2 Lucky numbers in graph theory

Let G = (V (G), E(G)) be undirected graph without loops or multiple edges. Let
f : V (G)→ N be a labeling of its vertices. We call this labeling lucky if for every
1 Please, be careful not to confuse these numbers with happy or Fortunate numbers

(see [12] for more details).
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edge {u, v} ∈ E(G) holds the condition∑
w∼u

f(w) 6=
∑
w∼v

f(w).

We demonstrate it on the next picture.
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The labeling in case a) is not lucky because∑
w∼u1

f(w) = 6 =
∑
w∼u4

f(w).

The same graph in case b) has lucky labeling f : V (G)→ {1, 2, 3, 4}. But we can
see that it is not necessary to use so ”large” set to become a lucky labeling of this
graph. In case c) we have a ”more economical” lucky labeling f : V (G)→ {1, 2}.
This leads us to the definition of a lucky number of a graph.

Definition 1. Lucky number of a graph G (denoted by η(G)) is the minimal
number k such that G has lucky labeling f : V (G)→ {1, 2, . . . , k}.

It is trivial to prove that lucky labeling exists for every undirected graph
without loops or multiple edges. In [3] the authors have presented the following
conjecture:

Conjecture 1. For every graph G with the lucky number η(G) and the chro-
matic2 number χ(G) holds the condition η(G) ≤ χ(G).

The graph which we have studied on the picture above has the lucky number
η(G) = 2 and the chromatic number χ(G) = 3 (because it involves an odd cycle).

Studying the computational complexity of the lucky number problem is far
from being easy. In [1] we can find a following theorem and subsequent conjec-
ture:
2 The chromatic number χ(G) of a graph G is the smallest number of colors needed

to color the vertices of G so that no two adjacent vertices have the same color.
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Theorem 1. It is a NP-complete problem3 to decide if for a given planar 3–
colorable4 graph G holds η(G) = 2.

Conjecture 2. It is a NP-complete problem to decide if for a given 3-regular5

graph G holds η(G) = 2.

3 Lucky numbers in number theory

In 1956 Stanislaw Marcin Ulam (1909–1984) with his colleagues Verna L. Gardi-
ner, Roger B. Lazarus and Nicolas C. Metropolis from Los Alamos Scientific
Laboratory introduced in [5] a special sequence of natural numbers generated by
a sieve6 similar to the sieve of Eratosthenes (for generating the prime numbers).

Here is the description of the sieving procedure: first we consider the se-
quence of all positive integers 1, 2, 3,. . . Then we eliminate every second term
by counting from 1. This step leads to the sequence of odd integers. The first
integer (apart from 1) remaining is 3, so we next eliminate every third number
not yet eliminated. After this step we get the sequence 1, 3, 7, 9, 13, 15, 19, 21, 25,
etc., in which the first integer after 1 and 3 is 7. So we eliminate every seventh
number (first eliminated is 19) in the next step. We can continue in this way
indefinitely long. The numbers which survive the sieving procedure are called
lucky numbers:

1, 3, 7, 9, 13, 15, 21, 25, 31, . . .

It is very interesting that lucky numbers have many properties analogous to the
prime numbers. If we denote as pn the n-th prime and ln the n-th lucky number,
then we get ( [9]) two asymptotics

pn = n logn+ n log logn+ o(n log logn)

and
ln = n logn+ 1

2n(log logn)2 + o(n(log logn)2).

3 A problem P is said to be NP-complete if it is in NP (the solution can be verified
in non-deterministic polynomial time) and every problem from NP is reducible to P
in a polynomial time. The most famous NP-complete problems are the Hamiltonian
path problem, the travelling salesman problem, the graph coloring problem, etc.

4 A graph G is said to be 3-colorable if χ(G) ≤ 3.
5 We say that a graph G is 3-regular (or cubic) if all its vertices have exactly three

neighbors.
6 Sometimes it is called ”sieve of Josephus Flavius” in the literature. The name is

derived from the similarity with a special mathematical problem, called Josephus
Problem, named after a Jewish historian Josephus Flavius (37–100). For the history
of Josephus Problem see [13].
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Then, for sufficiently large n, the condition ln > pn holds, which S. Ulam pre-
dicted in [5]. There are infinitely many lucky numbers, but it is not known
whether there are infinitely many primes among them.

Conjecture 3. There are infinitely many lucky primes.

We can call two lucky numbers which differ by 2 as twin luckies (similar
as we define twin primes). It seems that the number of twin luckies and twin
primes not exceeding given number N are almost the same. According to the
twin-primes conjecture ( [7]) we get:

Conjecture 4. There exist infinitely many twin luckies.

One of the most famous unsolved problems from number theory is the Gold-
bach conjecture7 which states that every even number greater than 2 can be
written as a sum of two prime numbers ( [8]). The team from Los Alamos stu-
died in [5] the analogy for lucky numbers and proved that it holds for every even
number up to 100 000. If it is true in general it is not known.

Conjecture 5. Every even positive integer could be written as a sum of two
lucky numbers.

Denoting L2(n) as the number of ways how to write an even number n as
a sum of two lucky numbers, Stein and Stein have found values of n for which
L2(n) = k for all k ≤ 1769 (see [14], [4]).

According to the quotation above we can write l1 = 1, l2 = 3, l3 = 7, etc.
The curious fact is that l3 = 7 and 37 is also lucky number, l4 = 9 and 49 is
also lucky number, l6 = 15 and 615 is lucky too, etc. In [2] have Ch. Ashbacher
stated this conjecture:

Conjecture 6. There exist infinitely many k ∈ Z such that lk = m is a lucky
number and km is lucky too (that means: k is written before m, not k multiplied
by m).

It is well known that there does not exist a polynomial formula with integer
coefficients generating only prime numbers (see [8]). Martin Gardner (1914–2002)
guessed in [6] the following:

Conjecture 7. There is no polynomial formula generating only lucky numbers.

Sometimes we can find quadratic formulas generating restricted sequences of
lucky numbers. If we use the method of S. Ulam, we can write the integers in
7 Tomás Oliviera e Silva have tested this conjecture on computer ( [11]) and proved

it for all n < 4 · 1018.
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a spiral (it doesn’t matter what number is in the center). From this spiral we
can see that the lucky numbers tend to line up along diagonal lines. On the next
picture there is an example of a part of such a spiral starting in number 13. The
lucky numbers are bold-faced.

· 97 98 99 100 101 102 103
· 64 65 66 67 68 69 104
· 39 40 41 42 43 70 105
· 22 23 24 25 44 25 ·
· 21 14 15 26 45 72 ·
· 20 13 16 27 46 73 ·
· 19 18 17 28 47 74
· · · · · · ·

For example, the sequence of lucky numbers 13, 15, 25, 43, 69 on a diagonal
can be generated by a quadratic formula 4x2 − 2x+ 13 (x = 0, 1, 2, 3, 4).

Very famous is a formula n2 + n + 41 of Leonhard Euler, which generates
primes by letting n = 0, 1, . . . , 39. From this point there is just a small step to
the last definition of lucky numbers.

4 Lucky numbers of Euler

Definition 2. We say that p is a lucky number of Euler if the values of a poly-
nomial n2 − n+ p are primes for every n = 1, 2, . . . , p− 1.

French chemical engineer and mathematician Franco̧is Le Lionnais (1901–
1984) stated in [10] that there exist only six such numbers, namely 2, 3, 5, 11,
17 and 41.

5 Conclusion

In spite of the fact that 70 is not a lucky number in the previous sense, we are
glad that we can celebrate the 70th anniversaries of our dear colleagues during
this colloquium and we would like to wish them that every number in their lives
be lucky.
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Fourier Invariants

Pavel Pokorny
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Keywords: Fourier transform, iteration, fixed point

Abstract The simple structure of all functions invariant under Fourier
transform is derived and illustrated.

Consider the Fourier transform F for a complex–valued smooth absolutely
integrable function s of one real argument

(Fs)(ν) =
∞∫
−∞

s(t) exp(−i2πνt)dt =
∞∫
−∞

s(t)(cos(2πνt)− i sin(2πνt))dt

for ν ∈ R, and its inverse

(F−1s)(ν) =
∞∫
−∞

s(t) exp(+i2πνt)dt =
∞∫
−∞

s(t)(cos(2πνt) + i sin(2πνt))dt

for ν ∈ R.

If s is even, i.e. s(−t) = s(t) for all t ∈ R then

(Fs)(ν) =
∞∫
−∞

s(t) cos(2πνt)dt = (F−1s)(ν)

and thus
F2s = s

where F2s = FFs and
F4s = s.

Similarly, if s is odd i.e. s(−t) = −s(t) for all t ∈ R then

(Fs)(ν) = −i
∞∫
−∞

s(t) sin(2πνt)dt = −(F−1s)(ν)
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and thus
F2s = −s

and again
F4s = s.

As any function s can be written as a sum of an even function and of an odd
function

s(t) = seven(t) + sodd(t) t ∈ R
where

seven(t) = s(t) + s(−t)
2

and
sodd(t) = s(t)− s(−t)

2
and due to linearity of F we have F4s = s for any s. Thus we can formulate the
following

Theorem 1. The function

u = s+ Fs+ F2s+ F3s (1)

is invariant under the Fourier transform.

Proof :

Fu = F(s+Fs+F2s+F3s) = Fs+F2s+F3s+F4s = Fs+F2s+F3s+s = u.

Conversely, any invariant u of F can be written in the form of (1) when we
set s = u/4.

Also, note that due to
s+ F2s = 2seven

any Fourier invariant is even.

Example 1. It is well known that the Gaussian function

g(t) = exp(−πt2)

is invariant under the Fourier transform. However, its shifted version

s(t) = exp(−π(t− 1)2)

is not invariant. Still it can be used to construct an invariant by (1). We get

(Fs)(t) = exp(−πt2 − i2πt)
(F2s)(t) = exp(−π(t+ 1)2)
(F3s)(t) = exp(−πt2 + i2πt)
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and then

u(t) = exp(−π(t− 1)2) + exp(−π(t+ 1)2) + 2 cos(2πt) exp(−πt2)).
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Enhancement of Biodiesel Production from
Jatropha Curcas oil: A Mathematical Study

through Control on Backward Reaction Process

Priti Kumar Roy and Fahad Al Basir

Center for Mathematical Biology and Ecology,
Department of Mathematics,

Jadavpur University, Kolkata 700032, India.

Keywords: Biodiesel, Jatropha Curcas Oil, Transesterification, Optimiza-
tion, Forward Reaction, Backward Reaction.

Abstract Biodiesel generates a lot of attention among the alternative
renewable energy sources in the present depleting inclinations of non-
renewable energy sources. Production of biodiesel from vegetable oil is
a reversible process. Production of biodiesel from Jatropha Curcas oil
depends considerably on reaction parameters such as temperature of re-
action, molar ratio of oil to alcohol and mixing intensity. Control on
backward reaction rate results enhancement of biodiesel production in
the stipulated time period. Here we consider a set of differential equations
for transesterification reaction kinetics. We apply mathematical control
input parameter in the backward reaction for the cost effective produc-
tion of biodiesel. Results from our analysis of the model are consistent
with numerical observation.

1 Introduction

Generally, biodiesel is produced from Jatropha Curcas oil by means of cata-
lytic transesterification process. Other methods of biodiesel production are much
slower [1]. Thus catalytic transesterification process is used as it is the most eco-
nomical and faster procedure. Jatropha Curcas oil contains mainly triglycerides
which can be converted to biodiesel through transesterification with alcohol.
Under normal condition, this reaction happens very slowly. Thus temperature,
stirring and catalysts etc. are used to speed up the forward reaction.

Transesterification of Jatropha oil and alcohol is a reversible reaction. Some
conditions (such as temperature, molar ratio etc,) increase the forward reac-
tion and some conditions increase the backward reactions. If forward reaction
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increases then production increases and if backward reaction increases then pro-
duction decreases. Reaction rate is mainly depends on temperature, molar ratio,
catalyst concentration, stirring. More explicitly, The rate of the reaction at lower
temperature is slow. If we increase the temperature, forward reaction enhanced,
which results a higher production of biodiesel. Stirrer speed is has a significant
role in biodiesel production. At 600 rpm stirrer speed, biodiesel can be obtained
at maximum level. If we increase or decrease the stirrer speed from 600 rpm, the
backward reaction increases. Again to speed up the reaction, a catalyst can be
used. It increases the rate reactions and so production can be obtained quickly.
Thus we see that controlling factors (such as temperature, molar ratio, catalyst,
stirring etc.) can be altered to increase or decrease reaction rate.

Transesterification or alcoholysis is commonly used to convert the Jatropha
oil to biodiesel. There are many research articles based on the modeling strategies
for biodiesel production. The development of kinetic models for transesterific-
ation reactions for biodiesel production were established by Noureddini and
Zhu [2], Bambase [3], Berchmans [4], Vicente [5], Paola [6], Stamenkovic [7]
and Diwekar [8]. Freedman et al., [9] observed that standard reaction conditions
for the transesterification of soybean oils are molar ratio 6 : 1 of methanol to oil,
0.5 wt.% alkali catalyst (with respect to triglycerides), 600 rpm stirrer speed,
60oC reaction temperature and 60 minute reaction time to produce maximum
methyl ester (biodiesel). Hifjur et al., [10] has shown that 99% yield of biod-
iesel having properties like diesel can be obtained from Jatropha oil at 60oC,
keeping alcohol to oil molar ratio 6 : 1 with 88 minutes as reaction time. In his
research work, Nipong showed that at 6 : 1 molar ratio, 60oC reaction temperat-
ure and 40 minutes reaction time 98.6%w/w yield of biodiesel can be obtained.
Culshaw [11] used NaOH to oil as alkaline catalyst to produce biodiesel at 60oC.
The final yield of methyl esters was 90% in 120 minute. Tiwari et al., [12] have
studied that the equilibrium conversions of triglycerides was observed to be in
the range of 50%-83% biodiesel from Jatropha oil. The equilibrium conversions
were achieved in less than 45 minutes for both oils. It was also observed that
the temperature and molar ratio had a positive influence on the reaction. But to
get maximum production of biodiesel, a mere obstruction is the revert reaction
which is the causal effect for less production of biodiesel. On that outlook control
mathematical approach in reverse reaction is very much essential, which is not
yet been explored.

It has been observed that temperature, molar ratio, catalyst concentration,
stirring are important factors for biodiesel production. To get maximum pro-
duction of biodiesel, a mere obstruction is the revert reaction which is a reason
for less production of biodiesel. On that outlook control mathematical approach
in reverse reaction is very much essential, which is not yet been explored. In
this research article we want to find out a control policy that can be changed
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with time by using the dynamic optimization. Here, the model equations are
analyzed in two different ways viz. analytical and numerical simulation. For the
determination of optimal control policy, “Pontryagin Minimum Principle” has
been adopted. Numerical simulation has been done to analyze the system con-
ditions for which the backward rate of reaction can be reduced and maximum
biodiesel production can be obtained.

2 Formulation of the Mathematical Model

Biodiesel is produced by the transesterification of triglycerides with methanol in
presence of NaOH. This reaction consists of three step wise reversible reactions,
where three moles of methanol react with one mole of triglycerides. In the first
step triglycerides (TG) is converted to diglycerides (DG), in second step digly-
cerides (DG) is converted to monoglycerides (MG) and in the final step monogly-
cerides (MG) is converted glycerol(GL). At each reaction step, one molecule of
biodiesel (BD) is produced for each molecule of methanol consumed [2], [13].
The reaction steps and overall reaction are given below by schematic diagram,
where k1 to k6 are the reaction rate constants.

TG+AL
k1


k2
DG+BD

DG+AL
k3


k4
MG+BD (1)

MG+AL
k5


k6
GL+BD

Here k1, k3 and k5 are forward reaction rate constants and k2, k4 and k6 are
backward reaction rate constants. The values of k1 to k6 are shown in Table 1. We
denote the concentrations of triglycerides, diglycerides, monoglycerides, biodiesel
(methyl ester), methanol(alcohol) and glycerol by xT , xD, xM , xB , xA and xG
respectively. Using the law of mass action, we get the following mathematical
model which characterize the stepwise reactions,
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dxB
dt

= k1xTxA − k2xDxB + k3xDxA − k4xMxB + k5xMxA − k6xGxB ,

dxT
dt

= −k1xTxA + k2xDxB ,

dxD
dt

= k1xTxA − k2xDxB − k3xDxA + k4xMxB , (2)

dxM
dt

= k3xDxA + k4xMxB − k5xMxA + k6xGxB ,

dxA
dt

= −k1xTxA + k2xDxB − k3xDxA + k4xMxB − k5xMxA + k6xGxB ,

dxG
dt

= k5xMxA + k6xGxB .

Here the reaction constants k1, k3, k5 are forward and k2, k4 and k6 are
backward reaction rate constants. Model system (2) characterizes the transes-
terification dynamics without any control inputs.
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Figure 1. Concentration profiles of BD, TG, DG, MG, AL, and GL as a func-
tion of time for various values of reaction parameters given in Table 1 (without
control).

3 The Optimal Control Problem

The reaction constants k1 − k6 can be expressed by the equation ki = aie
−bi
T ,

where T is the reaction temperature, ai is the frequency factor and bi = Eai
R in

which Eai is the activation energy for each component and R is the universal
gas constant. Here, reaction constants are functions of temperature. Backward

181



reaction constants k2, k4, k6 can be controlled by temperature. It is shown that
reaction rates depend on mass transfer resistance rate [14]. It has been shown
that reaction dynamics highly depends on mixing conditions [15]. Thus we can
consider that the backward reaction rate can be reduced using control u(t).
Here we have introduced three control parameters u1(t), u2(t) and u3(t) in the
backward reaction of first step, second step and third step respectively. The
corresponding reaction mechanism is given by the following schematic diagram:

TG+AL
k1


k2,u1

DG+BD,

DG+AL
k3


k4,u2

MG+BD, (3)

MG+AL
k5


k6,u3

GL+BD.

We apply the control inputs u1(t), u2(t) and u3(t) to reduce the rate of
backward reaction, so that we can get more biodiesel in each step of transes-
terification reaction. Here ui(t) represents control input with values normalized
between 0 and 1 [11]. Also ui(t) = 1 represents the maximal use of control and
ui(t) = 0, which signifies no control. These control parameters are introduced to
minimize the backward reaction, eventually which will maximize the production
of biodiesel concentration. From mechanism (3) and law of mass action, we have
the following control induced mathematical model of transesterification process:

dxB
dt

= k1xTxA − k2(1− u1)xDxB + k3xDxA − k4(1− u2)xMxB
+k5xMxA − k6(1− u3)xGxB ,

dxT
dt

= −k1xTxA + k2(1− u1)xDxB ,

dxD
dt

= k1xTxA − k2(1− u1)xDxB − k3xDxA + k4(1− u2)xMxB , (4)

dxM
dt

= k3xDxA + k4(1− u2)xMxB − k5xMxA + k6(1− u3)xGxB ,

dxA
dt

= −dxB
dt

,

dxG
dt

= k5xMxA + k6(1− u3)xGxB ,

with initial conditions: xB(0) = xB0 , xT (0) = xT0 , xD(0) = xD0 , xM (0) =
xM0 , xA(0) = xA0 , xG(0) = xG0 .

The cost function is thus formulated as:
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J(u1, u2, u3) =
∫ tf

ti

[Pu2
1(t) +Qu2

2(t) +Ru2
3(t)− Sx2

B(t)]dt. (5)

The parameters P, Q and R are the positive weight constants on the benefit
of the cost of production and S is the penalty multiplier. The benefit is based on
the minimization of cost together with maximization of biodiesel concentration.
Our aim is to find out the optimal control triplet u∗=(u∗1, u∗2, u∗3) such that

J(u∗1, u∗2, u∗3) = min (J(u1, u2, u3) : (u1, u2, u3) ∈ U),

where U = U1 × U2 × U3,
U1 = {u1(t) : u1 is measurable and 0 ≤ u1 ≤ 1, t ∈ [ti, tf ]},
U2 = {u2(t) : u2 is measurable and 0 ≤ u2 ≤ 1, t ∈ [ti, tf ]},

and U3 = {u3(t) : u3 is measurable and 0 ≤ u3 ≤ 1, t ∈ [ti, tf ]}.

Here we use “Pontryagin Minimum Principle” [16] to find u∗(t). The Hamilto-
nian is given by

H = [Pu2
1(t) +Qu2

2(t) +Ru2
3(t)− Sx2

B(t)] +
ξ1{k1xTxA − (1− u1)k2xDxB + k3xDxA − (1− u2)k4xMxB

+k5xMxA − k6(1− u3)xGxB}+ ξ2{−k1xTxA + (1− u1)k2xDxB}
+ξ3{k1xTxA − (1− u1)k2xDxB − k3xDxA + (1− u2)k4xMxB}
+ξ4{k3xDxA + (1− u2)k4xMxB − k5xMxA + (1− u3)k6xGxB}
+ξ5{−(k1xTxA − (1− u1)k2xDxB + k3xDxA − (1− u2)k4xMxB

+k5xMA− k6(1− u3)xGxB)}+ ξ6{k5xMxA

+k6(1− u3)xGxB}. (6)

Where, ξ1, ξ2, ξ3, ξ4, ξ5 and ξ6 are adjoint variables.

Theorem 1. The objective cost function J(u∗1, u∗2, u∗3) over U is minimum for
the optimal control u∗ corresponding to the interior equilibrium (x∗B, x∗T , x∗D,
x∗M , x∗A, x∗G) and also there exist adjoint variables ξ1, ξ2, ξ3, ξ4, ξ5 and ξ6 which
satisfy the following equations:
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dξ1

dt
= −[−SxB + ξ1(−k2(1− u1)xD − k6(1− u3)xG − k4(1− u2)xM +

ξ2k2(1− u1)xD + ξ3(−k2(1− u1)xD + k4(1− u2)xM ) +
ξ4(−k4(1− u2)xM + k6xG) + ξ5(k2xD + k6(1− u3)xG)
+ξ6(−k6(1− u3)xG))],

dξ2

dt
= −[ξ1k1xA + ξ3k1xA − ξ5k1xA],

dξ3

dt
= −[−ξ1k4(1− u2)xB + ξ1k3xA + ξ2k2(1− u1)xB − ξ3k2(1− u1)xB
−ξ3k3xA + ξ4k3xA + ξ5(k2(1− u1)xB − k3xA)],

dξ4

dt
= −[−ξ1k4(1− u2)xB + ξ3k4(1− u2)xB + ξ4(−k5xA

−k4(1− u2)xB) + ξ5(−k5xA + k4(1− u2)xB) + ξ6k5xA],
dξ5

dt
= −[ξ1(k1xT + k3xD + k5xM )− ξ2k1xT − ξ3k3xA + ξ4(k3xD

−k5xM ) + ξ5(−k1xT − k3xA − k5xM ) + ξ6k5xM ],
dξ6

dt
= −[−ξ1k6(1− u3)xB + ξ4k6(1− u3)xB + ξ5k6(1− u3)xB
−ξ6k6(1− u3)xB ], (7)

along with the transversality condition ξi(tf ) = 0 for i = 1, 2, 3, 4, 5, 6.

According to the Pontryagin Minimum Principle [17], the unconstrained op-
timal control variables u∗1, u∗2 and u∗3 satisfy

∂H

∂u∗i
= 0, i = 1, 2, 3. (8)

Thus from (6) and (8), we have

u∗1(t) = k2xBxD(ξ2 + ξ5 − ξ1 − ξ3)
P

,

u∗2(t) = k2xBxM (ξ3 + ξ5 − ξ1 − ξ4)
Q

,

u∗3(t) = k2xBxG(ξ4 + ξ5 − ξ1 − ξ6)
R

. (9)

Due to the boundedness of the standard control [11],
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u∗1(t) =


0, k2xBxD(ξ2+ξ5−ξ1−ξ3)

P ≤ 0,
k2xBxD(ξ2+ξ5−ξ1−ξ3)

P , 0 < k2xBxD(ξ2+ξ5−ξ1−ξ3)
P < 1,

1, k2xBxD(ξ2+ξ5−ξ1−ξ3)
P ≥ 1.

Hence the compact form of u∗1(t) is

u∗1(t) = max(0, min(1, k2xBxD(ξ2 + ξ5 − ξ1 − ξ3)
P

)). (10)

In a similar way, we have the compact form of u∗2(t) and u∗3(t) as

u∗2(t) = max(0, min(1, k2xBxM (ξ3 + ξ5 − ξ1 − ξ4)
Q

)), (11)

u∗3(t) = max(0, min(1, k2xBxG(ξ3 + ξ5 − ξ1 − ξ4)
Q

)). (12)

According to “Pontryagin Minimum Principle” [16], we can write

dξi
dt

= −∂H
∂xi

, i = 1, 2, 3, 4, 5, 6. (13)

where xi ≡ (xB , xT , xD, xM , xA, xG)
and the necessary condition satisfying the optimal control u∗(t) are

H(xi(t), u∗(t), ξi(t), t) = min
u∈U

(H(xi(t), u(t), ξi(t), t)), i = 1, 2, 3, 4, 5, 6. (14)

So the system of equations (7) can be obtained from the relation (13). According
to Pontryagin Minimum Principle, the adjoint variables satisfied the condition
ξi(tf ) = 0, (i = 1, 2, 3, 4, 5, 6).

Table 1. Values of parameters used for numerical simulation at 323K [8]

Parameters Recommended Value (Unit)
k1 0.0500 (mol−1lit min−1)
k2 0.1099 (mol−1lit min−1)
k3 0.1220 (mol−1lit min−1)
k4 0.2147 (mol−1lit min−1)
k5 0.2420 (mol−1lit min−1)
k6 0.0070 (mol−1lit min−1)

185



4 Numerical Simulation

The reaction system equations of transesterification are analyzed using numerical
methods in MATLAB. The present study deals with the application of control
theory with an objective to maximize the biodiesel production. In this section, we
have investigated the change of reaction dynamics with the parameters through
the optimal control approach.

Figure 1 represents the concentration profile of the BD, TG, DG, MG, AL
and GL in the absence of any control parameters. TG concentration falls off with
time as it is consumed with the progress of the reaction. However the consump-
tion is rapid at the initial stages due to initial higher rate of collision between
alcohol and triglycerides but gradually becomes slow with time possibly due to
the backward reversible reaction. Biodiesel concentration increases rapidly at
the beginning due to higher rate of collision between alcohol and triglycerides
but gradually becomes slow. After 60 minute of reaction time, there is no signi-
ficant change in biodiesel concentration due to the backward reversible reaction.
Same situation is also happens for other components. there is no further change
occurs after reaching this time. That means the system is in equilibrium con-
dition. If control input is applied to backward reversible reaction in each step
to reduce the reaction rate, the production of biodiesel is maximized. Further-
more, TG concentration is expected to be minimum implementing control policy.

Optimization and quantization of biodiesel is quite valuable by applying con-
trol theoretic approach. Our numerical results reveal that the production of
biodiesel through control measures from initial stage of reaction is much higher
rather than the final phase of reaction. So it is obvious to get maximum biodiesel
within a short period of time by adopting this approach.

Figure 2 illustrates how the control triplet (u∗1, u∗2, u∗3) act on the system with
time. From this figure we see that the control approach on third step is more
essential except the other two steps. Glycerol is produced in this step. If we
replace it then the backward rate of reaction will decrease.

Finally, Figure 3 represents the concentration profile of biodiesel. Here we are
comparing the concentration profiles in two different venues which are mentioned
as without control and at the optimal control level. From this figure, it is observed
that the control induced system give more production of biodiesel with respect
to time. Our result shows that at 50 minute of reaction time, the concentration
of biodiesel at optimal level reaches its maximum value as 2.961 mole, while the
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Figure 2. Optimal control effect u∗(t) is plotted as a function of time.
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maximum concentration is 2.854 mole if there is no control policy like change of
temperature, molar ratio, catalyst, stirring etc. present on the reaction.

5 Discussion and Conclusion

In this research article, optimal control approach is applied to get maximum
biodiesel through transesterification process. Pontryagin minimum principle is
used to solve the optimal control problem. The advantage of this method is that
it avoid the solution of second order differential and partial differential equations
that are required in other methods, such as dynamic programming and calculus
of variation. Based on our analytical results, numerically we see that, 50 minutes
of reaction time is required to reach the maximum concentration of biodiesel. It
is also exposed that in this period the concentration value of biodiesel increased
about 8%. It should be noted here that the concentration with optimal control
reached 2.961 mole at 50 minute, which is implied a reduction of 10 minute of
reaction time. Analytically, it can be easily established that the optimal control
triplet are unique and derive the condition for which the system has its unique
optimal control variables.

The control induced model of transesterification provide an idea of obtaining
the maximum amount of biodiesel. This concept of experimental researches for
biodiesel production is based on that prediction. Hence if we introduce the con-
trol in backward reaction of transesterification, then it will be helpful to produce
maximum amount of biodiesel in the global aspect.
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and some of its applications
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Abstract In [1] the problem of existence and uniqueness of L-splines
was transformed to a general multipoint boundary value problem for
a system of linear ordinary diferential equations

x′(t) + A(t)x(t) = f(t) a.e. in (a, b),

where the components of A(t) and f(t) are Lebesque integrable and the
boundary conditions cover the mixed and transition cases∑

a≤ξ+
i
<b

Mi x(ξ+
i ) +

∑
a<ξ−

i
≤b

Ni x(ξ−i ) = m .

In this paper the theory giving the conditions under which the solu-
tion exists and is unique will be applied to some problems taken from
mechanics.

1 Problem formulation

First, the multipoint boundary value problem is specified for a system of linear
ordinary diferential equations

x′(t) + A(t)x(t) = f(t) a.e. in (a, b), (1)

where x(t) and f(t) are vectors of lenght S, and A(t) is a matrix of type S × S
(generally complex with a real t). The components of A(t) and f(t) are assumed
to be Lebesque integrable functions on (a, b).

The formulation of the boundary conditions is more general than the stand-
ard approach. This enables to cover also transition conditions at inner points of
the interval, where the relations between the limit values of the solution from
the left and from the right-hand sides are prescribed. Moreover, we consider a
possibility of binding these conditions. The following definitions are necessary
for the determination of the set of solutions we are looking for.
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Definition 1. We shall say that a function x is piecewise absolutely con-
tinuous (PAC) on the interval 〈a, b〉 with respect to the partition {ti}Ni=1,
where a = t1 < t2 < · · · < tN = b, iff there exist functions xi, i = 1, . . . , N − 1,
such that for i = 1, . . . , N − 1 holds:

1. the functions xi are absolutely continuous on 〈ti, ti+1〉

2. x(t) = xi(t) for t ∈ (ti, ti+1).

Definition 2. We say that a vector x(t) is PAC on 〈a, b〉 with respect to the
partition {ti}Ni=1 of 〈a, b〉 iff all components of x(t) are PAC on 〈a, b〉 with respect
to {ti}Ni=1.

Definition 3. Let us suppose that N points {ξi}Ni=1 are given in the interval
〈a, b〉 which form the partition ∆

a = ξ1 < ξ2 < · · · < ξN = b. (∆)

Let matrices M(p), p = 1, . . . , 2(N − 1), be of the J × S type and a vector m of
lenght J . The problem of finding the vector function x(t) for which the following
conditions a)-c) hold is said to be the N -point boundary value problem
(N-BVP ) iff:

a) x(t) is PAC on 〈a, b〉 with respect to {ξi}Ni=1,

b) x(t) satisfies the differential equation (1),

c) x(t) satisfies J boundary conditions

N−1∑
i=1

M(2i−1)x(ξ+
i ) +

N−1∑
i=1

M(2i)x(ξ−i+1) = m, (2)

where x(ξ+
i ) and x(ξ−i ) denote the respective one-side limits.

The matrices M(p) with odd indices operate on the limit values of the vector
x(t) at the points {ξi}N−1

i=1 from the right-hand side, and similarly for even indices
they operate on the limit values of x(t) at the points {ξi}Ni=2 from the left-hand
side.

The conditions (2) formally represent J equations with 2S(N−1) unknowns.
It is resonable to require the system be solvable for any right-hand side m,
regardless of the differential equation (1). This will be the case if the rank of the
matrix of the system

M ≡ [M(1),M(2), . . . ,M(2N−2)] (3)
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is maximal, i.e., is equal to the number of its rows. Therefore, further on we shall
assume r(M) = J.

Now, let’s suppose real functions pi = pi(t), i = 0, . . . , n, are given such that
1
p0
, p1, . . . , pn are from L(a, b). Let ` be a differential operator defined by the

formal expression

` ≡
n∑
i=0

(−1)i d i

d ti
(
pn−i

d i( )
d ti

)
. (4)

Throughout the paper we will deal with the N -point boundary value problem
only for the differential equation of the order 2n

`y(t) = q(t) a.e. in (a, b). (5)

Then let us transform this 2n-order equation (5) to the system of 2n ordinary
linear differential equations by the standard way and formulate the N -BVP for
the equation (5).

Let us define H(t) ≡ H of the type 2n× 2n,

H =



0 −1 0 . . . 0 0 . . . . . . . . . 0
...

. . . . . .
...

...
...

...
. . . . . . 0

...
...

...
. . . −1 0 . . . . . . . . . 0

0 . . . . . . . . . 0 −1/p0 0 . . . . . . 0

0 . . . . . . 0 −p1 0 1 0 . . . 0
... · · 0

...
. . . . . .

...
... · · ·

...
...

. . . . . . 0

0 · ·
...

...
. . . 1

−pn 0 . . . . . . 0 0 . . . . . . . . . 0


and the vector of length 2n

f(t) =


0
...
0
−q(t)

 . (6)
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Now we shall consider the problem of finding a solution of N -BVP, where
the matrix H(t) replaces A(t) in (1) and f(t) is given by (6). Such a system with
the boundary conditions (2) we shall denote by Ψ .
Further, denote the components of the solution x of this problem with y(t) =
(y1(t), . . . , y2n(t))> . By specifying the equation

y′(t) + H(t)y(t) = f(t) a.e. in (a, b). (7)

we obtain the following relations valid a.e. on (a, b):

y2 = y′1 R1
y3 = y′2 = y′′1 R2

...
yn = y′n−1 = y

(n−1)
1 R(n− 1)

yn+1 = p0y
′
n = p0y

(n)
1 Rn

...
yn+k+1 = pkyn−k+1 − (yn+k)′ =

∑k
i=0(−1)i(pk−iy(n−k+i)

1 )(i) R(n+ k)
...

q = pny1 − (y2n)′ =
∑n
i=0(−1)i(pn−iy(i)

1 )(i). R2n

Obviously y(t) = y1(t). The functions yi(t), i = 1, . . . , 2n, are said to be quasid-
erivatives of y of the order i − 1. We shall denote by y[k], k = 0, . . . , 2n − 1 the
quasiderivatives of the order k of the function y(t), i.e.

y =

 y[0]

...
y[2n−1]

 .
For this technique see [3]. Each of R1 − R(2n − 1) equations represents the
equality between absolutely continuous functions. These equations hold a.e. on
(a, b). Let us define the 2n-th quasiderivative of y as

y[2n] ≡ pny[0] − (y[2n−1])′.

Then from the equation (5) we can write y[2n] = q a.e. in (a, b). Further on we
shall restrict ourselves to functions y that satisfy y[2n] ∈ L2(a, b).

Definition 4. For an arbitrary ∆ and functions pi, i = 0, . . . , n, with properties
mentioned above we define the following set of functions
D = {y : there exists a PAC vector y of quasiderivatives of y on 〈a, b〉
with respect to ∆ and the functions pi, i = 0, . . . , n, and y[2n] ∈ L2(a, b)}.

We denote by Λ the operator that corresponds to the conditions (2), i.e.:

Λy =
N−1∑
i=1

M(2i−1)y(ξ+
i ) +

N−1∑
i=1

M(2i)y(ξ−i+1). (8)
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We call the solution of N-BVP Ψ a function y from D that satisfies the
N -BVP Ψ : (5) and Λy = m .

Remark 1. The boundary conditions of the type (2) Λy = m cover all conditions
represented as a linear combination of (quasi)derivatives (one sided (quasi)deriva-
tives) at a point ξi. They include also the transition conditions at the partition
points ∆. These conditions can describe, e.g., the continuity of quasiderivatives
at the point ξi of ∆.

The coefficients in the differential expression (4) can have discontinuities.

Let us deal with the problem Ψ . In practice, it is necessary to know the
conditions on Λ that guarrantee the existence and uniqueness of the solution of
the problem. In [1], [2] it was shown that there exists a large class of conditions
on the matrix M for which the existence and uniqueness of the N -BVP Ψ is
fulfilled and the required assumptions on the operator Λ are easy to verify.

By introducing the notation yi,2j−1, yi,2j , i = 1, 2, j = 1, . . . , N − 1,

y1,2j−1 =

 y(ξ+
j )
...

y(n−1)(ξ+
j )

 , y2,2j−1 =

 y[n](ξ+
j )

...
y[2n−1](ξ+

j )

 ,

y1,2j =

 y(ξ−j+1)
...

y(n−1)(ξ−j+1)

 , y2,2j =

 y[n](ξ−j+1)
...

y[2n−1](ξ−j+1)

 .
and y>1 ≡ (y>1,1, . . . ,y>1,2(N−1)) , y>2 ≡ (y>2,1, . . . ,y>2,2(N−1)), we have a map that
assigns each function y ∈ D to the vector y, of lenght 4n(N − 1),

y ≡
[

y1
y2

]
. (10)

It is useful to introduce the antidiagonal matrix T =
[

0 1
1 0

]
of type n×n

and matrices B (type 2n(N − 1)× 2n(N − 1)) and A ( 4n(N − 1)× 4n(N − 1))

B ≡



−T 0

T
. . .

−T

0 T


, A ≡

[
0 −B
B 0

]
. (11)
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2 The existence of the N-BVP solution

Let L ≡ (DL, `) denote an operator L restricted to the domain DL determined
by 4n(N − 1) homogeneous conditions DL = {y ∈ D;y = 0}. Theorem 1
characterizes all self–adjoint extensions of the operator L.

Theorem 1. For every self–adjoint extension L̃ ≡ (DL̃, `) of the operator L
there exists a matrix W such that the domain DL̃ satisfies

DL̃ = {ϕ ∈ D; Wϕ = 0} (12)

and the matrix W has the following properties

(i) W is of the type J × 2J , where J = 2n(N − 1),

(ii) r(W) = 2n(N − 1),

(iii) WAW∗ = 0 (for A see (11)).

Conversely, if the matrix W with the properties (i), (ii), (iii) is given then
the self–adjoint extension of the operator L exists such that in its domain DL̃

the relation (12) holds.

Remark 2. If W = (W1,W2), where Wi, i = 1, 2 are matrices of the type
J × 2n(N − 1), J ≤ 4n(N − 1), then the assumption (iii) can be written in the
following way

(iii′) W1BW∗
2 −W2BW∗

1 = 0, i.e. W1BW∗
2 is a Hermitian matrix.

The boundary conditions are usually given by M(p), p = 1, . . . , 2(N − 1).
Let us rewrite these matrices in the form M(p) = (M(p)

1 ,M(p)
2 ), where M(p)

i ,
i = 1, 2 are of the type J × n. Further, let W1 ≡ (M(1)

1 ,M(2)
1 , . . . ,M(2N−2)

1 ),
W2 = (M(1)

2 ,M(2)
2 , . . . ,M(2N−2)

2 ).

Now, we can rewrite Λy = m as an equivalent relation

Wy = W1y1 + W2y2 = m. (2′)

Let us have the N -BVP: (5), (2’). Let us denote the corresponding operator
by LΛ, i.e., LΛ ≡ (D, `) , where D = {y ∈ D; Wy = 0}, W is a matrix of the
type J × 4n(N − 1), r(W) = J .

In [2] we proved that the conditions (i), (ii), (iii) in Theorem 1 are also
necessary conditions for LΛ to be a self–adjoint operator.
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Further suppose that the functions pi satisfy

pi ≥ 0 a.e. in (a, b) for all i = 0, . . . , n (13)

and the operator LΛ is self-adjoint. The next theorem specifies the condition for
the positive–semidefiniteness of LΛ , i.e.

(`y, y) ≥ 0 for all y ∈ D. (14)

Theorem 2. Let a self–adjoint operator LΛ ≡ (D, `) be defined on the set of
functions determined by the matrices W = (W1,W2). Then LΛ is a positive–
semidefinite operator, if the matrices W1, W2 fulfil the condition

(iv) W1BW∗
2 = W2BW∗

1 is a positive–semidefinite matrix.

Moreover the condition (iv) is a necessary condition for the operator LΛ to
be positive–semidefiniteĹ for all coefficients in (4) satisfying (13).

The following theorem characterises all matrices W that determine the self–
adjoint operator with the condition (iv). These matrices W directly imply the
existence of solutions of N -BVP Ψ problem.

Theorem 3. Let the matrix U of the type 2n(N − 1)× 2n(N − 1) be Hermitian
and let its spectrum σ(U) fulfil

σ(U) ⊂ 〈0, 1〉 , (15)

then the matrix
W = K

(
U , (I −U)B

)
, (16)

where K is any regular matrix, is a matrix with the properties (i) – (iv).

On the contrary, all W that fulfil (i) – (iv) can be written in the form (16),
where K is regular and U is some Hermitian matrix (type 2n(N−1)×2n(N−1)),
the spectrum of which fulfils (15).

3 The uniqueness of the N-BVP solution

When investigating the uniqueness of the solution of N -BVP Ψ for any q and m,
it is sufficient, due to linearity, to study only the case when the homogeneous
problem: `y = 0 a.e. in (a, b) and Λy = 0 has only the zero solution.

The operator LΛ being positive semidefinite, we would be interested in finding
for which functions y from the set D = {y ∈ D : Wy = 0} the following equality
holds

(`y, y) = 0. (17)
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Before stating the theorem on the uniqueness of the solution let us introduce
the following notation:

To every interval (ξi, ξi+1) we will assign a number li: If

–
∫ ξi+1
ξi

pn d t > 0, then li ≡ 0.
– pn = · · · = pn−k−1 = 0 a.e. in (ξi, ξi+1) and

∫ ξi+1
ξi

pn−k d t > 0, where
k ∈ {1, . . . , n}, then li ≡ k.

Such an assignment always exists, because p0 > 0 a.e. in (ξi, ξi+1) ∀i.

Further we denote by Rk =


0 1 0

. . . . . .
. . . 1

0 0

 the matrix of the type k× k.

We shall distinguish two disjunctive cases:

a) li = 0 for ∀i = 1, . . . , N − 1,
b) the set of indices A = {i : 1 ≤ i ≤ N − 1, li 6= 0} is not empty.

For i ∈ A we define matrices Si and Ui, of type n×li, li < n, by the prescription

Si ≡
[

eξiRli

0n−li,li

]
, Ui ≡

[
eξi+1Rli

0n−li,li

]
,

where 0k,j is the null matrix of the type k × j.

If li = n, let Si ≡ eξiRli , Ui ≡ eξi+1Rli . Let’s denote d ≡
∑N−1
i=1 li.

In caseĹ b), it holds d =
∑
i∈A li > 0 and we can define the matrix F of type

2n(N − 1) × d by F ≡

 F1
...

FN−1

, where Fi, i = 1, . . . , N − 1 are matrices of

the type 2n× d that

– if li = 0, then Fi ≡ 02n,d
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– if li 6= 0, then

Fi =
[
02n,

∑
p<i

lp

∣∣∣∣ SiUi

∣∣∣∣ 02n, d−
∑

p≤i
lp

]
. (18)

Theorem 4. Let us have the N -BVP Ψ , resp. (5), (2′) where pi satisfy (13) and
the boundary conditions are determined by a matrix W = (W1,W2) satisfying
(i) – (iv).

If a) holds, the problem has a unique solution. In case of b), the problem has
an unique solution in the set D iff

(v) r(W1F) =
∑N−1
i=1 li.

Moreover, if the problem is uniquely solvable, the operator LΛ is positive–definite.

Example of a 2-point boundary problem with mixed conditions

`y = −(p0y
′)′ + p1y = q a.e. in (a, b), where 1/p0, p1 ∈ L(a, b) (19)

α1y(a) + β1p0(a)y′(a) + γ1y(b) + δ1p0(b)y′(b) = m1,
α2y(a) + β2p0(a)y′(a) + γ2y(b) + δ2p0(b)y′(b) = m2,

(20)

where αi, βi, γi, δi ∈ R (i = 1, 2).

In this case N = 2, n = 1, y[1] = p0y
′ and

y =


y(a+)
y(b−)
y[1](a+)
y[1](b−)

 .
The corresponding operator LΛ is self–adjoint iff the matrix

W = (W1,W2) =
[
α1 γ1 β1 δ1
α2 γ2 β2 δ2

]
satisfies (i), (ii) and (iii) of Theorem 1, i.e., the rows of the matrix W are linearly
independent and

α2β1 − α1β2 = γ2δ1 − γ1δ2

(see e.g. [4], Chap. XI, Ex. 1.).

Now let’s investigate when the operator is positive semidefinite. For that,
suppose pi ≥ 0, i = 0, 1, a.e. in (a, b).

Theorems 2 and 3 say that the operator will be positive semidefinite for all
admissible coefficients p0, p1 if and only if W = K

(
U, (I −U)B

)
, where K is
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an arbitrary regular matrix (2× 2), B =
[
−1 0
0 1

]
, and where the symmetric

matrix U =
[
α1 α2
α2 γ2

]
is such that all its eigenvalues lie in the interval 〈0, 1〉,

i.e.
0 ≤ γ2 + α1 +

√
(γ2 − α1)2 + 4α2

2 ≤ 2
0 ≤ γ2 + α1 −

√
(γ2 − α1)2 + 4α2

2 ≤ 2.
(21)

Every matrix W of boundary conditions satisfying (i) – (iv) is characterised only
by three numbers α1, α2, γ2 and these conditions can be written in the original
form

α1y(a)− (1− α1)p0(a)y′(a) + α2y(b)− α2p0(b)y′(b) = m1,
α2y(a) + α2p0(a)y′(a) + γ2y(b) + (1− γ2)p0(b)y′(b) = m2,

(20′)

where the coefficients α1, α2, γ2 fulfil (21).

Particularly, all separated boundary conditions (α2 = 0) guaranteeing the
validity of (i) – (iv) are given by the conditions of the form (or by their linear
combinations):

α1y(a)− (1− α1)p0(a)y′(a) = m1,
γ2y(b) + (1− γ2)p0(b)y′(b) = m2,

(20′′)

where 0 ≤ α1 ≤ 1 and 0 ≤ γ2 ≤ 1.

If
∫ b
a
p1 d t > 0, then the problem (19), (20′), resp. (19), (20′′), is uniquely

Ĺsolvable for all right–hand sides q and m =
[
m1
m2

]
.

If p1 = 0 a.e. in (a, b), then the problem (19), (20′), resp. (19), (20′′), is
uniquely solvable iff

r(U F) = r

([
α1 α2
α2 γ2

] [
1
1

])
= r

[
α1 + α2
α2 + γ2

]
= 1

(see Theorem 4). It will be the case only when

α1 + α2 6= 0 or α2 + γ2 6= 0.

4 An application of the theory of N-BVP

Boundary value problems for ODE arise in different areas of applied mathematics
and physics. Some applications can be written as the N -BVP Ψ , i.e., in the form:
`y = q a.e. in (a, b), where q ∈ L2(a, b), and

Λy =
2(N−1)∑
j=1

M(j)Yj = m.
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For a special differential operator `, where p0 ≡ 1, p1 = · · · = pn = 0, the
vectors Yk, describing the left- or right-hand side limits of the derivatives of y
at {ξj}N−1

j=2 , are in the following form

Y2j−2 =



y(ξ−j )
...

y(n−1)(ξ−j )
y(n)(ξ−j )

...
(−1)n−1y(2n−1)(ξ−j )


, Y2j−1 =



y(ξ+
j )
...

y(n−1)(ξ+
j )

y(n)(ξ+
j )

...
(−1)n−1y(2n−1)(ξ+

j )


j = 2, . . . , N − 1.

The investigation of the existence and uniqueness of the Ψ solution reduces
to checking simple conditions on matrices that define the boundary problem.

Multipoint boundary conditions are often separated and can be expressed in
the matrix form as

E(1)Y1 = w1

E(2j−2)Y2j−2 + E(2j−1)Y2j−1 = wj , j = 2, . . . , N − 1
E(2N−2)Y2N−2 = wN ,

where E(k), k = 1, . . . , 2N − 2, are matrices with 2n columns, matrices E(2j−2)

and E(2j−1), j = 2, . . . , N − 1 have equal number of rows and w1, . . . ,wN are
given vectors.

As an example of a multipoint boundary problem in physics one can mention
that of a thin beam on the interval 〈a, b〉 in the equilibrium state. The deflection
of the beam can be described by a function y = y(x) on 〈a, b〉 that satisfies a
fourth-order differential equation

d 2

dx2

[
E(x)I(x) d 2y

dx2

]
+Q(x)y = f(x) in (a, b), (22)

where E is the modulus of elasticity, I the moment of inertia of the cross section
about its bending axis, Q the coefficient of pliability of the subsoil, and f is the
vertical load of the beam, which may have discontinuities. This can be rewritten
in the form

(p0y
′′)′′ + p2y = q(x) for x ∈ (a, b) \ {ξi}Ni=1, (23)

where p0, p2, f are PAC functions.

For the deflection y to be uniquely given it is necessary to specify the bound-
ary conditions.
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Example 1. The simply supported beam at {ξi}N−1
i=2 clamped at a = ξ1 and

b = ξ2 and loaded with piecewise continuous force q = q(t).

We seek the solution of

(p0y
′′)′′(t) = q(t) a.e. in (a, b),

where p0 = p0(t) > 0 is piecewice constant with respect to the partition ∆, such
that

1. y(ξi) = vi, for given positions vi

2. y is continuous in 〈a, b〉

3. y′ is continuous in 〈a, b〉

4. p0y
′′ is continuous in 〈a, b〉, y′′′ is continuous in (a, b) \ {ξi}N−1

i=2 .

In case of a cantilever beam at a and b the conditions are:

y(a) = y′(a) = y(b) = y′(b) = 0. (24)

Because of y[2] = p0y
′′, it must hold at the partition points that

y[2](ξ−i )− y[2](ξ+
i ) = 0,

whereas for y[3] = −(p0y
′′)′ at ξi no condition is required. The matrix notation

of the boundary conditions is:

E(1) = E(2N−2) = [I2,022]

E(2j−2) =


1 0 0
0 0
0 1 0 0
0 0 1 0

 , E(2j−1) =


0 0 0
1 0
0 −1 0 0
0 0 −1 0

 .

Example 2. The beam on elastic supports ξi, i = 1, . . . , N , and under the load
of piecewise continuous force q. The solution of

y(4)(t) = q(t) a.e. in (a, b), (25)

is sought so that the (quasi)derivatives y, y′, y′′ are continuous on 〈a, b〉 and
(quasi)derivative y′′′ is continuous in (a, b) \ {ξi}N−1

i=2 and has jumps described
by

y′′′(ξ−j )− y′′′(ξ+
j ) = kj

(
y(ξj)− vj

)
, j = 2, . . . , N − 1, (26)

where the coefficients kj are the characteristics of spring stiffness and vj are
specified values of the equilibrium positions.
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Then n = 2, ` ≡ d 4

d t4 , p0 ≡ 1, p2 ≡ 0. The matrix notation of the boundary
conditions is:

E(1) = E(2N−2) = [I2,022], E(2j−2) = I4,

E(2j−1) =


−1 0 0 0

0 −1 0 0
0 0 −1 0
kj 0 0 −1

 , where j = 2, . . . , N − 1,

wT
j = [0, 0, 0, kjvj ].

Example 3. The simplified three–point boundary problem for the clamped beam,
where the angular deflection of the beam in ξ2 (a = ξ1 < ξ2 < ξ3 = b) satisfies
the condition

y′(ξ2) = v, v is a given value,

can be written as (25), (24) where the (quasi)derivatives y, y′, y′′′ are continuous
on 〈a, b〉, the (quasi)derivative y′′ is continuous on 〈a, b〉 \ ξ2, whereas for y′′(ξ2)
no condition is required.

As in Example 2, n = 2 and ` ≡ d 4

d t4 , and the notation of E(k), k = 1, . . . , 4
would be similar.

Sometimes it is better to try to formulate the boundary conditions directly
in the matrix form as W = [U, (I −U)B], where U is a Hermitian matrix with
the property (15). Then it is not necessary to verify the properties (i) – (iv).

We can write the conditions in Example 3 as:

U =



1 0 0
0 1

1/2 0 −1/2 0
0 1 0 0
−1/2 0 1/2 0

0 0 0 1
0 1 0
0 0 1


,

(I −U)B =



0 0 0
0 0

0 1/2 0 −1/2
0 0 0 0
0 1/2 −1/2
0 0 0 0

0 0
0 0 0


,
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where U is a Hermitian matrix satisfying σ(U) ⊂ 〈0, 1〉.

The verification of the condition (i) is trivial. When investigating (ii), the
rank of W is usually known. In Examples 1, 2, and 3 the condition (ii) is obvi-
ously satisfied. Often it happens that all matrices in (iii′) are null (Example 1,
3). Then the conditions (iii) and (iv) hold true automatically. In Example 2 this
is the case if kj ≥ 0, ∀j = 2, . . . , N − 1.

The difficulty of verifying the condition (v) depends on the integrals of coef-
ficients pi, i = 0, . . . , n, over the subintervals (ξj , ξj+1), j = 1, . . . , N − 1. In
Example 2 and 3 the matrix F can be constructed more or less easily, because
p0 ≡ 1, p1 ≡ 0, p2 ≡ 0 in the whole interval 〈a, b〉. So,

F =



1 ξ1 0
0 1
1 ξ2
0 1

. . .
1 ξN−1
0 1
1 ξN

0 0 1


and the condition (v), guaranteeing the uniqueness of the solution, can be easily
verified.
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One example of correspondence between
deterministic and stochastic differential

equations
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Abstract Although it is possible to reduce the problem of finding solu-
tion to one type of stochastic differential equation to the problem of
solving certain deterministic differential equation in the Wiener case,
this technique fails in the case of fractional Brownian motion.

1 Introduction

Let (Ω,F ,P ) be a complete probability space and let W = {Wt, t ≥ 0} and
BH = {BHt , t ≥ 0} be centered Gaussian processes with covariance functions

E [WtWs] = min{s, t}, s, t ≥ 0,

E [BHt BHs ] = 1
2
(
s2H + t2H − |s− t|2H

)
, s, t ≥ 0,

respectively. Process W is called Wiener process or Brownian motion and
BH is called fractional Brownian motion with Hurst parameter H ∈ (0, 1).
Fractional Brownian motion is a generalization of a Wiener process because

B1/2 = W

holds. Nevertheless this generalization is not trivial because BH is not a semi-
martingale nor a Markov process for H 6= 1/2. These processes have Hölder
continuous trajectories P− a.s. with exponent α < H and the trajectories are
nowhere differentiable P− a.s..

Let V be a separable Hilbert space. Consider the equations

dXW
t = AXW

t dt+BXW
t dWt, X

W
0 = x0, (1)

dXB
t = AXB

t dt+BXB
t dBHt , XB

0 = x0, (2)
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where A : Dom(A) ⊂ V → V and B : Dom(A) ⊂ V → V are linear operators
and x0 ∈ V is a deterministic initial value. The stochastic integral in equation (1)
is supposed to be a classical Itô–type integral. Equation (2) is considered in the
regular case only (i.e. H > 1/2) and the stochastic integral is understood in the
Skorokhod sense. For the definitions and basic properties see e.g. monographs [4]
and [1]. Note that the Skorokhod integral is a generalization of the Itô one for
integrands which may not be necessarily progressively measurable.

The solutions to equations (1) and (2) can be viewed as random processes
with values in a separable Hilbert space V and corresponding to the deterministic
theory there are three notions of the solution – strong, weak and mild. However,
in this paper, the concept of the strong solution will only be discussed.

Suppose that

(A) linear operator A is closed and densely defined with the domain D :=
Dom(A).

Definition 1. A
(
B([0, T ]) ⊗ F

)
–measurable stochastic process {Xt, t ∈ [0, T ]}

is said to be a strong solution to the equation (1) or (2) if Xt ∈ D P− a.s.
for all t ∈ [0, T ] and

Xt = x0 +
∫ t

0
AXrdr +

∫ t

0
BXrdWr P − a.s.

for all t ∈ [0, T ], or

Xt = x0 +
∫ t

0
AXrdr +

∫ t

0
BXrdBHr P − a.s.

for all t ∈ [0, T ], respectively.

Note that strong solutions exist very rarely. In the Wiener case (1) the prob-
lem of existence of a strong solution can be reduced to finding a solution to the
corresponding deterministic equation. Unfortunately, this technique can not be
applied to the fractional Brownian motion case (2) due to the term with the
Malliavin derivative.

The solution to the equation (1) for V = R is well–known geometric Brownian
motion which is important in many fields. The solution to the equation (2) is its
fractional analogue called fractional Brownian motion.

2 Itô formula

The analogue of a deterministic chain rule is a stochastic chain rule called Itô
formula.
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Suppose that Y is a strong solution to the equation (1) or (2) with operators
Ã, B̃ and initial value x̃0. Let V : [0, T ]× V → R be in C1,2([0, T ]× V ). Define

L
(
V (t, Yt)

)
= ∂V

∂t
(t, Yt) +

〈
ÃYt, DxV (t, Yt)

〉
V

+ 1
2
〈
D2
xxV (t, Yt)B̃Yt, B̃Yt

〉
V

or

L
(
V (t, Yt)

)
= ∂V

∂t
(t, Yt) +

〈
ÃYt, DxV (t, Yt)

〉
V

+
〈
D2
xxV (t, Yt)B̃Yt, Dϕ

t Yt
〉
V
,

respectively, where

Dϕ
t Yt =

∫ T

0
ϕ(t, r)DH

r Ytdr

and DH
· F is the Malliavin derivative of a random variable F : Ω → V (for the

definition see [1]) and

ϕ(t, r) = H(2H − 1)|t− r|2H−2.

Then the process {V (t, Yt), t ∈ [0, T ]} is a strong solution to the equation

dV (t, Yt) =
(
LV
)
(t, Yt)dt+ 〈DxV (t, Yt), B̃Yt〉V dWt, V (0, Y0) = V (0, x̃0),

or

dV (t, Yt) =
(
LV
)
(t, Yt)dt+ 〈DxV (t, Yt), B̃Yt〉V dBHt , V (0, Y0) = V (0, x̃0),

respectively.

3 Reduction to deterministic system

Assume that

(B) linear operator B is closed and densely defined and generates a strongly
continuous group {SB(u), u ∈ R} on V ,

(AB) Dom((B∗)2) is dense in V where B∗ is the adjoint operator of B and D ⊂
Dom(B2).

The technique how to pass from the deterministic system

v′(t) = SB(−Wt)
(
A− 1

2B
2
)
SB(Wt)v(t), v(0) = x0, (3)

to the stochastic system (1) is described in [2], Chapter 6.
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Theorem 1. Assume that (A), (B) and (AB) hold. Let v be a classical solution
to the equation (3) P− a.s. which is a predictable process with trajectories in
C1([0, T ];V ) P− a.s. Then the process {Xt, t ∈ [0, T ]} given as

Xt = SB(Wt)v(t), t ∈ [0, T ],
is a strong solution to the equation (1).

Proof :
Let ζ ∈ Dom((B∗)2). Define the process Zζ = {Zζ(t), t ∈ [0, T ]} as

Zζ(t) = S∗B(Wt)ζ, t ∈ [0, T ].
Clearly, applying the Itô formula to the process 〈Zζ(t), ξ〉V (for any fixed ξ ∈ V )
one gets that Zζ is a strong solution to the equation

dZζ(t) = 1
2(B∗)2Zζ(t)dt+B∗Zζ(t)dWt, Zζ(0) = ζ.

Set
Y = (v, Zζ),

V (t, Yt) =
〈
v(t), Zζ(t)

〉
V
, t ∈ [0, T ],

Ā(t) =
(

SB(−Wt)
(
A− 1

2B
2)SB(Wt) 0

0 1
2 (B∗)2

)
, B̄ =

(
0 0
0 B∗

)
,

and let
W = (W1,W )T

be a two–dimensional Wiener process. Then the process Y is a strong solution
to the equation

dYt = Ā(t)Ytdt+ B̄dW t, Y0 = (x0, ζ).
Since

Ā(t)Yt =
(
SB(−Wt)

(
A− 1

2B
2
)
SB(Wt)v(t), 1

2(B∗)2Zζ(t)
)T

,

B̄Yt =
(
0, B∗Zζ(t)

)T
,

then 〈
Ā(t)Yt, DxV (t, Yt)

〉
V

=
〈
SB(−Wt)

(
A− 1

2B
2
)
SB(Wt)v(t), Zζ(t)

〉
V

+
〈
v(t), 1

2(B∗)2Zζ(t)
〉
V

=
〈(

A− 1
2B

2
)
Xt, ζ

〉
V

+ 1
2
〈
B2Xt, ζ

〉
V

= 〈AXt, ζ〉V ,
1
2
〈
D2
xxV (t, Yt)B̄Yt, B̄Yt

〉
V

= 1
2

(〈
0, B∗Zζ(t)

〉
V

+
〈
0, B∗Zζ(t)

〉
V

)
= 0,

〈DxV (t, Yt), B̄Yt〉V =
〈
0, Zζ(t)

〉
V

+
〈
v(t), B∗Zζ(t)

〉
V

= 〈BXt, ζ〉V .
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Thus applying again the Itô formula to the process
{
V (t, Yt), t ∈ [0, T ]

}
the

equality

dV (t, Yt) = d
〈
v(t), Zζ(t)

〉
V

= d〈Xt, ζ〉V
= 〈AXt, ζ〉V dt+ 〈BXt, ζ〉V dWt,

〈
v(0), Zζ(0)

〉
V

= 〈x0, ζ〉V ,

holds P− a.s. for all t ∈ [0, T ]. Since Dom((B∗)2) is dense in V and ζ ∈
Dom((B∗)2) was chosen arbitrary the process {Xt, t ∈ [0, T ]} is a strong solution
to the equation (1).

Remark 1. Under some additional assumptions the statement of Theorem 1
can be reversed, i.e. given a strong solution to the equation (1) there exists a
classical solution to the equation (3) for almost all ω ∈ Ω defined as

v(t) = SB(−Wt)Xt, t ∈ [0, T ].

If one wants to follow the previous procedure in the case of fractional Brownian
motion the problems with the form of Itô formula for fractional Brownian motion
appear. The process Zζ = {Zζ(t), t ∈ [0, T ]} is now defined as

Zζ(t) = S∗B(BHt )ζ, t ∈ [0, T ].

It can be shown that it is a strong solution to the equation

dZζ(t) = Ht2H−1(B∗)2Zζ(t)dt+B∗Zζ(t)dBHt , Zζ(0) = ζ.

The corresponding deterministic equation is

v′(t) = SB(−BHt )
(
A−Ht2H−1B2)SB(BHt )v(t), v(0) = x0.

Redefine the operator Ā and the process W̄

Ā(t) =
(

SB(−BHt )
(
A−Ht2H−1B2)SB(BHt ) 0

0 Ht2H−1(B∗)2

)
,

B̄H = (BH1 , BH)T,

respectively, where B̄H is a two–dimensional fractional Brownian motion. Since

DH
r Yt =

(
DH
r v(t), DH

r Zζ(t)
)T =

(
DH
r v(t), B∗Zζ(t)I[0,t](r)

)T
,

where I[0,t] denotes the indicator function of the interval [0, t], the equality〈
D2
xxV (t, Yt)B̄Yt, Dϕ

t Yt
〉
V

=
〈
0, Ht2H−1B∗Zζ(t)

〉
V

+
〈∫ T

0
ϕ(t, r)DH

r v(t)dr,B∗Zζ(t)
〉
V

holds. Unfortunately, the second summand is not in general equal to zero because
v is not a constant process P− a.s. and therefore the Malliavin derivative of v is
not zero.
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Remark 2. Since v is a solution to the equation

v(t) = x0 +
∫ t

0
SB(−BHu )

(
A−Hu2H−1B2)SB(BHu )v(u)du,

DH
r v(t) can be described as a solution to the equation

DH
r v(t) =

∫ t

0
−BSB(−BHu )I[0,u](r)

(
A−Hu2H−1B2)SB(BHu )v(u)du

+
∫ t

0
SB(−BHu )

(
A−Hu2H−1B2)BSB(BHu )I[0,u](r)v(u)du

+
∫ t

0
SB(−BHu )

(
A−Hu2H−1B2)SB(BHu )DH

r v(u)du.

Hence the Itô formula for fractional Brownian motion applied to the process{
V (t, Yt), t ∈ [0, T ]

}
yields

d
〈
v(t), Zζ(t)

〉
V

= 〈Xt, ζ〉V = 〈AXt, ζ〉V dt+ 〈BXt, ζ〉V dBHt

+
〈∫ T

0
ϕ(t, r)DH

r v(t)dr,B∗Zζ(t)
〉
V

dt,〈
v(0), Zζ(0)

〉
V

= 〈x0, ζ〉V ,

where
Xt = SB(BHt )v(t), t ∈ [0, T ],

so that this technique does not give the desired result in the case of fractional
Brownian motion.

Remark 3. These difficulties can be overcome by modification of this technique
and adding some natural assumptions, e.g.

(AB1) the system of operators {A − Ht2H−1B2, t ∈ [0, T ]} generates a strongly
continuous evolution system {U(t, s), 0 ≤ s ≤ t ≤ T} (for the definition see
e.g. [5]),

(AB2) the operators A and {SB(u), u ∈ R} commute on the domain D, i.e.

SB(u)Ay = ASB(u)y

for any u ∈ R and y ∈ D.

Then the process
Xt = SB(BHt )U(t, 0)x0, t ∈ [0, T ],

is a strong (and also weak) solution to the equation (2). For the details see [3] in
the regular case H > 1/2. The singular case H < 1/2 is more complicated and
only a weak solution can be obtained (see [6]).
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The condition (AB2) is satisfied e.g. in examples of partial differential equations
where

– the operators A and B are differential operators,
– A generates an analytical semigroup on V and B is an identity operator.
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Abstract Let r be a positive integer, then the r-coloring of a finite group
G is a mapping χ : G → {1, . . . , r}. A coloring χ is symmetric if there
exists g ∈ G such that χ(gx−1g) = χ(x) for any x ∈ G. We compute the
number of symmetric r-colorings and the number of equivalence classes
of symmetric r-colorings of the dihedral group D4.

1 Introduction

The subject discussed in this paper is related to colorings of algebraic and geo-
metric objects endowed with certain symmetries. In 1931 S. Sidon posed the
following problem: given a subset A ⊂ N and a number n ∈ N estimate the
quantity of solutions (x, y) ∈ A×A of the equation x+ y = n. Essentially it is a
question about symmetric subsets of A, since the set S(n) = {x ∈ A : n−x ∈ A}
is symmetric with respect to the point n

2 and its cardinality is the number of
solutions of the original equation. Thus the Sidon question can be reformulated
in terms of symmetry: given a subset A ⊂ N estimate the size of a maximal
symmetric subset of A. We shall treat symmetry using the methods of Ramsey
Theory (see [2] and references therein), but instead of partitions of A into r
pieces, it is more convenient to speak about colorings of A in r colors.

Let G be a finite group and r be a positive integer. A coloring (an r-coloring)
of G is any mapping χ : G → N (χ : G → {1, . . . , r}). The group G naturally
acts on the colorings, namely for any g ∈ G, the coloring χg is defined by

χg(x) = χ(xg−1).
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As usual [χ] and St(χ) denote the orbit and the stabilizer of a coloring χ, that
is,

[χ] = {χg : g ∈ G} and St(χ) = {g ∈ G : χg = χ}.

In particular we have that

|[χ]| = |G : St(χ)| and St(χg) = g−1St(χ)g.

Let ∼ denote the equivalence on the colorings corresponding to the partition into
orbits, that is, χ ∼ ϕ if and only if there exists g ∈ G such that χ(xg−1) = ϕ(x)
for all x ∈ G.

Obviously, the number of all r-colorings of G is r|G|. To calculate the number
of equivalence classes of r-colorings of G we apply Burnside’s Lemma [1, I, S3]

1
|G|

∑
g∈G

r|G:〈g〉|.

Here 〈g〉 is the subgroup generated by g.

Suppose G is an Abelian group, then analogously to Sidon question we call a
coloring χ of G symmetric with respect to an element g ∈ G if χ(2g−x) = χ(x)
for any x ∈ G. In the case of regular polygon with n vertices (i.e. G = Zn)
we obtain the following geometric interpretation of the symmetric coloring: a
coloring is symmetric if it is invariant in respect to some mirror symmetry with
an axis crossing the center of polygon and one of its vertices. Generalizing it to
the case of non-abelian group we say that a coloring χ of G is symmetric if there
exists g ∈ G such that

χ(gx−1g) = χ(x)

for all x ∈ G. That is, a coloring is symmetric if it is invariant under some
symmetry, and a symmetry is any mapping of the form

G 3 x 7→ gx−1g ∈ G,

where g ∈ G. A coloring equivalent to a symmetric one is also symmetric (see [5,
Lemma 2.1]). Let Sr(G) denote the set of all symmetric r-colorings of G.

Theorem 1. [3, Theorem 1] Let G be a finite Abelian group. Then

|Sr(G)| =
∑
X≤G

∑
Y≤X

µ(Y,X)|G/Y |
|B(G/Y )| r

|G/X|+|B(G/X)|
2 ,

|Sr(G)/ ∼ | =
∑
X≤G

∑
Y≤X

µ(Y,X)
|B(G/Y )|r

|G/X|+|B(G/X)|
2 .
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Here, X runs over subgroups of G, Y over subgroups of X, µ(Y,X) is the
Möbius function on the lattice of subgroups of G, and B(G) = {x ∈ G : x2 = e}.

Given a finite partially ordered set, the Möbius function is defined as follows:

µ(a, b) =


1 if a = b

−
∑
a<z≤b µ(z, b) if a < b

0 otherwise.

See [1, IV] for more information about the Möbius function.

In case of Zn formulas can be reduced to elementary ones [3, Theorem 2].

Recently Theorem 1 was generalized to an arbitrary finite group G [5]. The
approach is based on constructing the partially ordered set of so called optimal
partitions of G.

Given a partition π of G, the stabilizer and the center of π are defined by

St(π) = {g ∈ G : for every x ∈ G, x and xg−1 belong to the same cell of π},
Z(π) = {g ∈ G : for every x ∈ G, x and gx−1g belong to the same cell of π}.

St(π) is a subgroup of G and Z(π) is a union of left cosets of G modulo St(π).
Furthermore, if e ∈ Z(π), then Z(π) is also a union of right cosets of G modulo
St(π) and for every a ∈ Z(π), 〈a〉 ⊆ Z(π). We say that a partition π of G is
optimal if e ∈ Z(π) and for every partition π′ of G with St(π′) = St(π) and
Z(π′) = Z(π), one has π ≤ π′. The latter means that every cell of π is contained
in some cell of π′, or equivalently, the equivalence corresponding to π is contained
in that of π′. The partially ordered set of optimal partitions of G can be naturally
identified with the partially ordered set of pairs (A,B) of subsets of G such that
A = St(π) and B = Z(π) for some partition π of G with e ∈ Z(π). For every
partition π, we write |π| to denote the number of cells of π.

Theorem 2. [5, Theorem 2.11] Let P be the partially ordered set of optimal
partitions of G. Then

|Sr(G)| = |G|
∑
x∈P

∑
y≤x

µ(y, x)
|Z(y)| r

|x|,

|Sr(G)/ ∼ | =
∑
x∈P

∑
y≤x

µ(y, x)|St(y)|
|Z(y)| r|x|.

The partially ordered set of optimal partitions π of G together with paramet-
ers |St(π)|, |Z(π)| and |π| can be constructed by starting with the finest optimal
partition {{x, x−1} : x ∈ G} and using the following fact:
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Let π be an optimal partition of G and let A ⊆ G. Let π1 be the finest
partition of G such that π ≤ π1 and A ⊆ St(π1), and let π2 be the finest
partition of G such that π ≤ π2 and A ⊆ Z(π2). Then the partitions π1 and π2
are also optimal.

In this note we compute explicitly the numbers |Sr(D4)| and |Sr(D4)/ ∼ |
where D4 = {e, a, a2, a3, s, sa, sa2, sa3} is the dihedral group of order 8, a4 = e,
s2 = e, sai = a−is, i = 0, 1, 2, 3. For the number of symmetric colorings of the
quaternion group, see [4].

2 Optimal partitions of D4

Recall that the Hasse diagram of D4 is the following:
2 3 2 3{e, a, a , a , s, sa, sa , sa }

2 2{e, a , s, sa } 2 3
{e, a, a , a }

2 3{e, a , sa, sa }

{e}  

{e, s}

2{e, sa }
2{e, a }

{e, sa}
3{e, sa }

Now we list all optimal partitions π of D4 together with St(π), Z(π).

The finest partition:

π : {e}, {s}, {sa}, {sa2}, {sa3}, {a2}, {a, a3},
St(π) = {e}, Z(π) = {e, a2},
|St(π)| = 1, |Z(π)| = 2.

Three partitions with six cells:

π : {e, a2}, {s}, {sa}, {sa2}, {sa3}, {a, a3},
St(π) = {e}, Z(π) = {e, a, a2, a3},
|St(π)| = 1, |Z(π)| = 4.
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Three partitions with five cells:

π : {e, a2}, {s, sa2}, {sa}, {sa3}, {a, a3},
St(π) = {e}, Z(π) = {e, a, a2, a3, sa, sa3},
|St(π)| = 1, |Z(π)| = 6.

Four partitions with three cells:

π : {e, s}, {a, sa3, a3, sa}, {a2, sa2},
St(π) = {e, s}, Z(π) = {e, a2, s, sa2},
|St(π)| = 2, |Z(π)| = 4.

One partition with four cells:

π : {e, a2}, {s, sa2}, {a, a3}, {sa, sa3},
St(π) = {e, a2}, Z(π) = D4,

|St(π)| = 2, |Z(π)| = 8.

Three partitions with two cells:

π : {e, a, a2, a3}, {s, sa, sa2, sa3},
St(π) = {e, a, a2, a3}, Z(π) = D4,

|St(π)| = 4, |Z(π)| = 8.

And the coarsest partition

π : {D4},
|St(π)| = 8, |Z(π)| = 8.

The picture below represents the partially ordered set of optimal partitions π,

to each vertex π we assign a vector
[
|St(π)|, |Z(π)|, |π|

µ(a, 1)

]
, where µ is a Mobius

function.
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8,8,1
1

4,8,2
-1

2,8,4
2

1,6,5
0

1,4,6
0

1,2,7
0

2,4,3
0

Finally, by the formulae from Theorem 2, we obtain that

|Sr(D4)| = |D4|
∑
x∈P

∑
y≤x

µ(y, x)
|Z(y)| r

|x|

= 8(1
2r

7 + 3r6(1
4 −

1
2) + 3r5(1

6 −
2
4 + 1

2) + r4(1
8 −

3
6 + 3

4 −
1
2)

+ 4r3(1
4 −

1
4 + 01

2) + r2(1
8 −

1
8 + 03

6 + 03
4 + 01

2)

+ 2r2(1
8 −

1
8 −

2
4 + 03

6 + 02
4 + 2

4 + 01
2) + r(1

8 −
3
8 + 2

8 + 03
6 + 04

4 + 03
4 + 01

2))

= 8(r
7

2 −
3
4r

6 + r5

2 −
r4

8 + 0r3 + 0r2 + 0r)

= 4r7 − 6r6 + 4r5 − r4,

|Sr(D4)/ ∼ | =
∑
x∈P

∑
y≤x

µ(y, x)|St(y)|
|Z(y)| r|x|

= 1
2r

7 + 3r6(1
4 −

1
2) + 3r5(1

6 −
2
4 + 1

2) + r4(2
8 −

3
6 + 3

4 −
1
2)

+ 4r3(2
4 −

1
4 + 01

2) + r2(4
8 −

2
8 + 03

6 + 03
4 + 01

2)

+ 2r2(4
8 −

2
8 −

4
4 + 03

6 + 02
4 + 2

4 + 01
2)

+ r(8
8 −

12
8 + 4

8 + 03
6 + 08

4 + 03
4 + 01

2)

= 1
2r

7 − 3
4r

6 + 1
2r

5 + r3 − 1
4r

2.
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Proposition 1. For every r ∈ N,

|Sr(D4)| = 4r7 − 6r6 + 4r5 − r4,

|Sr(D4)/ ∼ | = 1
2r

7 − 3
4r

6 + 1
2r

5 + r3 − 1
4r

2.

The number of all r-colorings of D4 is r8 and the number of equivalence
classes of all r-colorings of D4 is

1
|D4|

∑
g∈D4

r|D4/〈g〉| = 1
8(r8 + 5r4 + 2r2).

In particular, the number of all 2-colorings of D4 is 28 = 256, the number of
equivalence classes of all 2-colorings of D4 is 1

8 (28 +5 ·24 +2 ·22) = 43, while the
number of all symmetric 2-colorings of D4 is |S2(D4)| = 240 and the number of
equivalence classes of all symmetric 2-colorings of D4 is |S2(D4)/ ∼ | = 39. The
list of all asymmetric 2-colorings of D4 up to equivalence is below.

D4
2 3e   a   a  a

2 3s   sa   sa  sa

1)

2)

3)

4)
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Abstract We introduce some facts about U -statistics of union of inter-
acting line segments and integral formulas for moments of characteristics
of union of interacting line segments. Further we illustrate a behavior of
lengths of segments driven by different choices of multidimensional para-
meter.

Modelling in stochastic geometry has many applications in seismology, neuro-
physiology, urban development, etc. This paper is a brief summary of selected
results from [1] and doctoral thesis [6]. At first we set some basic definitions from
theory of point processes, in the second part the model of interacting segments is
defined and in the last section is a small simulation study. The proofs of Lemma
1 and Theorem 1 one can find in [6] and more theory of U - statistics in [2].

1 Definitions

Definition 1. Let E be separable locally compact complete metric space equipped
with Borel σ-field B = B(E). Locally finite measure on E is such measure which
is finite on all bounded Borel sets of E. We denote M the set of all locally finite
measures on (E,B(E)).

Definition 2. On space (E,B(E)) let us define set N of all locally finite meas-
ures taking the non-negative integer values or infinity

N ≡ {µ ∈M; µ(B) ∈ N ∪ {0,∞} for all B ∈ B}.

On spaces M,N define σ-fields

M = σ{µ 7→ µ(B) measurable, B ∈ B},
N = {M ∩N : M ∈M}.
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M is the smallest σ-field on M for which the mapping M −→ R, µ 7→ µ(B) is
measurable for all B ∈ B.

Definition 3. Let (Ω,A,P) be a probability space. Point process on E is a
measurable mapping µ : (Ω,A,P) −→ (N ,N).
Distribution of point process is a probability measure pµ given by pµ(B) = P(µ ∈
B), B ∈ N.
We say that point process is simple if P(µ ∈ N ∗) = 1, where

N ∗ = {γ ∈ N : γ({x}) ≤ 1; ∀ x ∈ E}.

Definition 4. Let Λ ∈ M and let η be a point process on E such that for all
n ∈ N and bounded B1, . . . , Bn ∈ B pairwise disjoint

(i) the random variables η(B1), . . . , η(Bn) are independent,
(ii) for all i ∈ N has η(Bi) Poisson distribution with parameter Λ(Bi).

Then η is called Poisson point process on E with intensity measure Λ.

Definition 5. Let Λ be the intensity measure such that there exists its density
with respect to Lebesgue measure, i.e. Λ(A) =

∫
A
λ(x)dx, A ∈ B, then λ is called

intensity function.

Definition 6. Point process µ on E is finite if µ(E) <∞ almost surely.

Definition 7. Let η be the Poisson point process with an intensity measure Λ.
A point process µ is given by a density p : N → R with respect to the Poisson
point process η if

p(µ ∈ B) =
∫
B

p(x)pη(dx), B ∈ N.

Definition 8. Let µ : N −→ E be a finite point process and k ∈ N. Define
random variable F (µ) as

F (µ) =
∑

(x1,....xk)∈µk6=

f(x1, . . . , xk),

where f is a symmetric function from L1(Λk) and (x1, . . . .xn) ∈ µk6= denotes all
k−tuples of pairwise different points from µ. Then F (µ) is called U -statistic of
order k.

2 Segment point processes

Each line segment s of finite length in R2 can be uniquely represented by its
reference point z ∈ R2 (e.g. lexicographical minimum or maximum), positive
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length l and direction ψ. Let S ∈ R2 be a bounded set and 0 < Do < ∞. Then
segment point process on S can be identified with the points in S×(0, Do]×[0, π).

Denote η a stationary Poisson segment process on S with intensity measure
Λ(ds) = ρ(z)dzD(dl)ϑ(dψ), where ρ is an intensity function of reference points,
D the length distribution with support in a bounded set (0, Do) and ϑ distribu-
tion of directions. Now consider a process µ of interacting line segments given
by density function p with respect to the process η. Assume that for any finite
configuration y is the density in exponential form

px(y) = c−1
x exp(θ · T (Uy)), (2.1)

where Uy denotes union of segments in configuration y, T (Uy) vector of geomet-
rical characteristics of the union Uy and c−1

x is a normalising constant. In Figure
1 are drawn the realizations of process µ with various choices of parameter x.

For the remaining text assume that

T (Uy) = (N(Uy), L(Uy), Nis(Uy)),

where

N . . . number of intersection of Uy
L. . . total length of all segments in Uy
Nis. . . number of isolated segments in Uy.

For statistics N and L we can define random variables N(η), N(µ) and L(η),
L(µ), respectively, by formulas

L(µ) =
∑
x∈µ

l(x)

N(µ) = 1
2

∑
(x1,x2)∈µ2

6=

I[x1∩x2 6=∅].

Obviously these variables are U -statistics of orders 1 and 2, respectively. The
following lemma says for which values of parameter x is the distribution of µ
well defined.

Lemma 1. Let x ∈ R× (−∞, 0]× R. Then we have

(i) p ∈ L2(pη)
(ii) L(η), N(η), Nis(η) ∈ L2(pη),

Definition 9. A function f : N −→ R is called hereditary if for all finite
configurations x, x̃ ∈ N such that x̃ ⊂ x, it holds that f(x̃) > 0 whenever
f(x) > 0.
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Definition 10. Let µ be a point process with a hereditary density p with respect
to a Poisson point process η. For x ∈ N define Papangelou conditional intenzity
of order n

λ∗n(u1 . . . un,x) = p(x ∪ {u1 . . . un})
p(x) , u1 . . . un ∈ E.

Since L and N are U -statistics the following integral formulas for their first,
second and mixed moments can be derived.

Theorem 1. For L(µ), N(µ) ∈ L2(pη) and p ∈ L2(pη) we have

EL(µ) =
∫
E

l(x)E [λ∗1(x;µ)]Λ(dx)

EL2(µ) =
∫
E

l2(x)E [λ∗1(x;µ)]Λ(dx)

+
∫
E2
l(x1)l(x2)E [λ∗2(x1, x2;µ)]Λ(d(x1, x2))

EN(µ) = 1
2

∫
E2

I[x1∩x2 6=∅]E [λ∗2(x1, x2;µ)]Λ(d(x1, x2))

EN2(µ) = 1
2

∫
E2

I[x1∩x2 6=∅]E [λ∗2(x1, x2;µ)]Λ(d(x1, x2))

+
∫
E3

I[x1∩x2 6=∅]I[x1∩x3 6=∅]E [λ∗3(x1, x2, x3;µ)]Λ(d(x1, x2, x3))

+ 1
4

∫
E4

I[x1∩x2 6=∅]I[x3∩x4 6=∅]E [λ∗4(x1, . . . , x4;µ)]Λ(d(x1, . . . , x4))

EL(µ)N(µ) =
∫
E2
l(x1)I[x1∩x2 6=∅]E [λ∗2(x1, x2;µ)]Λ(d(x1, x2))

+ 1
2

∫
E3
l(x1)I[x2∩x3 6=∅]E [λ∗3(x1, x2, x3;µ)]Λ(d(x1, x2, x3)).

3 Length intensity

To provide the reader an idea of behavior of lengths of segments in µ for various
choices of parameter x we introduce a length intensity of the process.

Definition 11. For point process µ define length intensity

γ = E
∫
H1(x ∩ [0, 1]d)µ(dx),

where H1 denotes Hausdorff measure of dimension 1.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Simulated models with interacting line segments with various para-
meters x, S is a square of size 10×10. Here D is uniformly distributed on (0, 10),
the ditribution of directions is uniform on [−π/2, π/2) and ρ = 1.5 is constant.
Number of iterations It = 100.000. The parameter vector (a) x = (0,−1, 0),
(b) x = (3, 0, 0), (c) x = (0, 0,−10), (d) x = (3, 0,−10), (e) x = (3, 0, 1), (f)
x = (3,−1,−3).

223



For Poisson segment process with intensity function ρ(z) = ρ

γ = ρEl

holds. The natural estimation of length intensity γ in a bounded observation
window |W | is then

γ̂ = 1
|W |

∑
x∈µ

H1(x ∩W ).

Figure 2 shows the changes of length intensity of the process for various choices
of parameter x. Recall that parameter of the number of intersection cannot take
positive values, in the other case the density p would not be integrable with
respect to the intensity measure Λ.
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Figure 2. The estimation of length intensity for various development of para-
meter x. (1) The parameter of total length L grows from zero to one, (2) the
parameter of total length L grows from −0.5 to 0.5 and the parameter of number
of intersections N decreases from 0 to −0.5, (3) contrariwise to (2). A straight
line denotes the length intensity of reference Poisson process. The observation
window is a square of size 10× 10.

4 Conclusion

Analogical integral formulas can be derived for another models of interacting
particles, e.g. for union of intercating circular surfaces in R3, see [6]. On the
other hand the geometrical characteristics of the union of interacting discs in R2

( [3]) are not fully observable through any k−tuples of discs and that is why the
theory of U -statistics cannot be used for estimation of their moments. In the
present, unions of interacting particles are in a great field of study, see e.g. [4]
or [5].
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L. Borská Institute of chemical technology Prague, Czech Republic
borskal@vscht.cz

M. Branda Charles University in Prague, MFF, Czech Republic
branda@karlin.mff.cuni.cz

B. Cheddadi University Hassan II, Morroco
bcheddadi@hotmail.com
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M. Loučka Institute of chemical technology Prague, Czech Republic
louckam@vscht.cz

I. Marek Czech Technical University Prague, Czech Republic
marek@ms.mff.cuni.cz
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P. Pokorný Institute of Chemical Technology Prague, Czech Republic
pavel.pokorny@vscht.cz

T. B. Rahimkay Frida Abaka Foundation, South Africa
fridaabakafoundation@yahoo.fr

P. K. Roy Jadavpur University, India
pritiju@gmail.com

I. Sankoh Africhild Foundation For Peace and rebuilding, Sierra Leone
officeuse33@gmail.com

P. Selyshchev University of Pretoria, SA
selyshchev@gmail.com

I. Schreiber Institute of chemical technology Prague, Czech Republic
igor.schreiber@vscht.cz
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