Počítačový algebraický systém Maple jako pomůcka při studiu předmětu Matematika I a II. Graf funkce jedné proměnné

Funkce (přesněji jedna reálná funkce jedné reálné proměnné) je jedním z hlavních pilířů inženýrské matematiky. Graf funkce je užitečný nástroj při jejich studiu a používání, protože cvičené oko z něj snadno a rychle vyčte mnohé vlastnosti sledované funkce. Pro sestrojení grafu lze s výhodou použít moderní výpočetní techniku, je-li vybavena vhodným softwarovým nástrojem. Jedním z takových nástrojů je např. počítačový algebraický systém Maple. Ukážeme si na jednoduchých příkladech, jak lze sestrojit graf zadané funkce a jak jej lze upravovat.

Příklad 1.

Nakreslete graf funkce $f(x) = \sin(x), \quad -\pi < x < \pi.$

> plot(sin(x),x=-Pi..Pi);

Příklad 2.

Nakreslete graf funkce $f(x) = \sin(x)$, $-\pi < x < \pi$ při zachování stejného měřítka na obou osách.

> plot(sin(x),x=-Pi..Pi,scaling=constrained);

Příklad 3.

Nakreslete graf funkce $f(x) = \cos(x), -\pi < x < \pi$ tak, aby osy byly částí rámečku kolem grafu. > plot(cos(x),x=-Pi..Pi,axes=BOXED);

Příklad 4.

Nakreslete graf funkce $f(x) = tg(x), -\pi < x < \pi$.

> plot(tan(x),x=-Pi..Pi);

Zde vidíme nedostatek softwarového nástroje Maple 8. Funkce t
g není na zvoleném intervalu omezená a program použil pro rozsah hodno
ty příliš velký interval. To lze napravit tak, že sami určíme rozsah hodnot jak pro
 x, tak i proy.

> plot(tan(x),x=-Pi..Pi,y=-2..2);

Na tomto obrázku jsou nesprávně navíc svislé čáry, které vznikly spojením jednotlivých větví grafu, které nemají být spojeny. To lze odstranit volbou discont=true

> plot(tan(x),x=-Pi..Pi,y=-2..2,discont=true);

Příklad 5.

Nakreslete graf funkce $f(x) = \arctan(x), \ -3 < x < 3$ tak, aby graf byl tvořen čárkovanou křivkou

> plot(arctan(x),x=-3..3,linestyle=DASH);

Příklad 6.

Nakreslete graf funkce f(x) = 1/x, 1 < x < 10 tak, aby graf byl naznačen pouze tečkovaně.

> plot(1/x,x=1..10,style=POINT);

Příklad 7.

Nakreslete graf funkce e^{-x^2} , -3 < x < 3 tak, aby graf byl vyznačen tlustou čarou.

> plot(exp(- x^2), x=-3..3, thickness=3);

Příklad 8.

Nakreslete graf funkce obsahující absolutní hodnotu s vyznačením nadpisu

- > plot(abs((2*x+3)/(4*x-3)),x=-5..5,y=-1..5,title="Krasa je moje > hobby");

Příklad 9.

Graf funkce lze použít i pro odhad definičního oboru funkce tak, že zvolíme velký rozsah hodnot \boldsymbol{x} a graf se vykreslí pouze pro t
a $\boldsymbol{x},$ pro která je funkce definována.

> plot(sqrt(x),x=-4..4);

Příklad 10.

Nakreslete do jednoho obrázku grafy dvou různých funkcí

> plot([cos(x),sin(x)],x=0..Pi);

Příklad 11. Nakreslete křivku danou rovnicí

$$x^3 + y^3 + 3xy = 0$$

> with(plots):

Warning, the name changecoords has been redefined

> implicitplot(x^3+y^3+3*x*y=0,x=-3..3,y=-3..3,grid=[200,200]);

