
NUMERICAL METHODS AND ALGORITHMS

Milan Kub́ıček, Drahoslava Janovská, Miroslava Dubcová

-4 -2 2 4
x

-1

-0.5

0.5

1

y

Translation from the Czech
Drahoslava Janovská, Pavel Pokorný, Miroslava Dubcová
Original: NUMERICKÉ METODY A ALGORITMY,

Milan Kub́ıček, Miroslava Dubcová, Drahoslava Janovská,
VŠCHT Praha 2005.

4

Contents

1 Numerical algorithms of linear algebra 8
1.1 Fundamental terms in matrix theory . 8
1.2 Direct methods for solving systems of linear equations 10

1.2.1 Conditioning of a system of linear equations 10
1.2.2 Gaussian elimination . 13
1.2.3 Systems with tridiagonal matrix . 15

1.3 Iterative methods for linear systems . 15
1.3.1 Point iterative methods . 15
1.3.2 Block iterative methods . 17

1.4 Eigenvalues and eigenvectors of a matrix . 18
1.4.1 Location of eigenvalues . 22
1.4.2 Methods for determining the eigenvalues and eigenvectors 23

2 Interpolation, numerical differentiation and integration 26
2.1 Formulation of the interpolation problem 26
2.2 Lagrange interpolation polynomial . 27
2.3 Hermite interpolation polynomial . 31
2.4 Interpolation by spline functions . 31
2.5 Difference formulas . 35

2.5.1 Difference formulas for equidistant grid 35
2.5.2 Method of unknown coefficients . 36
2.5.3 Richardson extrapolation . 37

2.6 Quadrature formulas . 41
2.6.1 Equidistant nodes - Newton-Cotes formulas 41
2.6.2 Method of unknown coefficients . 43

3 Numerical solution of nonlinear algebraic equations 44
3.1 Equation with one unknown . 44

3.1.1 General iteration method . 44
3.1.2 Bisection method and secant method 46
3.1.3 Newton method . 47

3.2 Numerical solution of systems of nonlinear equations 48
3.2.1 Newton method . 48

4 Numerical solution of ordinary differential equations - initial value problem 51
4.1 Euler method and the method of Taylor expansion 52
4.2 Runge-Kutta methods . 55
4.3 Multi step methods . 59

5

4.4 Adams formulas . 60
4.5 Numerical methods for stiff systems . 62

4.5.1 Semi-implicit single-step methods . 64

5 Boundary value problem for ordinary differential equations 66
5.1 Difference methods . 66

5.1.1 Difference approximation for systems of differential equations of the first order 68
5.2 Conversion to initial value problem . 69

5.2.1 Problem of order 1 . 71
5.2.2 Problem of higher order . 73

6 Parabolic partial differential equations 79
6.1 Canonical form of second order equations with two independent variables . 79
6.2 Numerical solution of parabolic equations with two independent variables . 81

6.2.1 Grid methods for linear problems . 81
6.2.2 Grid methods for nonlinear problems 93
6.2.3 Method of lines . 98

6.3 Numerical solution of parabolic equations with three independent variables 100

6

7

Chapter 1

Numerical algorithms of linear
algebra

The methods of the linear algebra count among the most important areas used at the
solution of technical problems: the understanding of numerical methods of linear algebra
is important for the understanding of full problems of numerical methods.

In the numerical algebra we encounter two basic variants of problems. The solution of
systems of linear equations and the algebraic eigenvalue problem.

The whole range of technical problems leads to the solution of systems of linear equa-
tions. The first step in numerical solution of many problems of linear algebra is a choice of
an appropriate algorithm

At first we inform readers about the most important knowledge of the numerical linear
algebra.

1.1 Fundamental terms in matrix theory

Let us denote �m×n the linear space of all real m×n matrices. Let to A ∈ Rm×n, A = (aij),
i = 1, . . . ,m; j = 1, . . . , n. If m �= n then this matrix A is called a rectangular matrix , if
m = n then the matrix is called a square matrix. We denote furthermore the zero matrix
O , i.e. the matrix, all of whose element are zero. The square identity matrix is denoted
by the symbol E, i.e. E = (eij), i, j = 1, . . . , n, eii = 1, eij = 0 for i �= j.

Let a matrix has relatively few non-zero elements, then this matrix is called the sparse
matrix. A matrix with ”few” zero elements is called the dense matrix. Some sparse matrices
have a special structure, which we can utilize for algorithmization.

Let A = (aij) ∈ �n×n. We say the matrix A is

• the diagonal, if aij = 0 for j �= i; we write A = diag(a11, a22, . . . , ann)
• the upper triangular matrix, if aij = 0 for i > j

• strictly upper triangular matrix, if aij = 0 pro i ≥ j

• lower triangular matrix , if aij = 0 for i < j

• strictly lower triangular matrix, if aij = 0 for i ≤ j

• upper bidiagonal matrix, if aij = 0 for j �= i, i+ 1
• lower bidiagonal matrix, if aij = 0 for j �= i, i− 1
• tridiagonal matrix, if aij = 0 for i, j, such that |j − i| > 1

8

• band matrix , if aij �= 0 for only i − ml ≤ j ≤ i + mk, where ml and mk are two
natural numbers; the number ml +mk + 1 is called bandwidth of the matrix A

• upper Hessenberg matrix, if aij = 0 for i, j such that i > j+ 1; accordingly we define
lower Hessenberg matrix

• permutation matrix, if the columns of a matrix A are permutations of the columns
of the identity matrix E (every row and column of permutation matrix involves one
and only one unity, others elements are zero.)

• block diagonal matrix, if the matrix is a block matrix in which the blocks off the
diagonal are the zero matrices, and the diagonal matrices are square matrices, we
write

A = diag (A11,A22, . . . ,Ann)

• the block tridiagonal matrix, if the matrix is special block matrix having square
matrices (blocks) in the lower diagonal, main diagonal and upper diagonal, with all
other blocks being zero matrices.

If a matrix A ∈ �m×n has the elements aij , i = 1, . . . ,m, j = 1, . . . , n, then the matrix
AT ∈ �

n×m with the elements aji, j = 1, . . . , n, i = 1, . . . ,m we call transposed matrix of
matrix A. If AT = A, we say that A is symmetric. If ATA = AAT , we say that A is
normal. If QTQ = QQT = E we say that Q is orthogonal.

If a matrix A ∈ �n×n, detA �= 0, we say that A is regular (nonsingular) . In such case
a matrix A has an inverse matrix A−1, i. e. matrix, for that hold A−1A = AA−1 = E.

We say that a square matrix A is

• diagonally dominant matrix if

|aii| ≥
n∑

j=1,j �=i

|aij |, i = 1, . . . , n; (1.1.1)

• strictly diagonally dominant if

|aii| >
n∑

j=1,j �=i

|aij |, i = 1, . . . , n. (1.1.2)

A square matrix A is called reducible if exists a permutation matrix P such that a
matrix PT AP is block upper triangular :

PT AP =

(
A11 A12

0 A22

)
.

A square matrix that is not reducible is said to be irreducible..
We say that a matrix A ∈ �n×n is

• positive definite if xTAx > 0 for all nonzero x ∈ �n;
• positive semidefinite if xTAx ≥ 0 for all x ∈ �n;
• negative definite if xTAx < 0 for all nonzero x ∈ �n;
• negative semidefinite if xTAx ≤ 0 for all x ∈ �n;
• indefinite if exist nonzero vectors x and y that such xTAx is negative and yTAy is

positive.

9

1.2 Direct methods for solving systems of linear equations

Numerical methods for solving systems of linear equations divide into two categories: direct
methods and iterative methods. Direct methods would give exact solution of problem
after finite number of elementary algebraic operations without rounding error. Such direct
method is for example Cramer rule for calculation of solution of systems with a nonsingular
matrix. This rule is not too practical because calculation of many determinants is needed.

Iterative methods find a solution x of a given system of linear equations as a limit of a
sequence of ”approximate” solutions xk.

Literature dealing with solution of linear equations is very extensive. A reader will
find detailed description of algorithms (direct and iterative methods) in books [8], [3], [24].
We limit ourself to only selected problems and methods which are important in chemical
engineering.

1.2.1 Conditioning of a system of linear equations

We do not compute accurately because of rounding errors, which affect results of calcu-
lations. If, measurements than the elements of the matrix and the right-hand side of the
system are usually not accurate numbers. In this section we will study how the solution
process is affected by small changes in the problem. Usually this involves concept known
as ”conditioning”.

Example 1.2.1 Consider two systems of two equations in two unknowns:

u+ v = 2 u+ v = 2
u+ 1.0001v = 2.0001 u+ 1.0001v = 2.0002

Solution: u = 1, v = 1 u = 0, v = 2

This example demonstrates that the change of the fifth digit of one right-hand side gives
totally different solution.

Analyze now a solution of a system of linear equations Ax = b where A ∈ �n×n is
nonsingular, b ∈ �

n. We will examine how small changes in elements of A and b affect
the solution x = A−1b. The sensitivity of a system is obviously measured by a condition
number of the matrix A. Let us mention a vector norm. The vector norm on �n is a
function || · || : Rn → �1 with the following properties:

||x|| ≥ 0, x ∈ �
n, ||x|| = 0 ⇐⇒ x = 0 , (1.2.1)

||x + y|| ≤ ||x|| + ||y||, x, y ∈ �
n , (1.2.2)

||αx|| = |α| · ||x||, α ∈ R1, x ∈ �
n . (1.2.3)

Hereafter we will use particularly following norms:

||x||p =

(
n∑

i=1

|xi|p
)1/p

, p ≥ 1, (1.2.4)

especially

||x||1 = |x1| + |x2| + . . . + |xn| (1.2.5)

10

||x||2 =

√√√√ n∑
i=1

(xi)2 (Euclidean norm) (1.2.6)

||x||∞ = max
1≤i≤n

|xi|. (1.2.7)

We introduce analogously a matrix norm, for matrices A ∈ �n×n, by

||A||p = max
x �=0

||Ax||p
||x||p . (1.2.8)

Hereafter we will us particularly the following norms:

||A||1 = max
x �=0

||Ax||1
||x||1 = max

j=1,...,n

n∑
i=1

|aij | (column norm), (1.2.9)

||A||∞ = max
i=1,...,n

n∑
j=1

|aij | (row norm). (1.2.10)

Remark that from the equality (1.2.8) follows

||Ax|| ≤ ||A|| · ||x||. (1.2.11)

The equality holds at least for one non-zero x.
Examine now how the solution x of a system Ax = b, A ∈ �n×n, b ∈ �n, changes as the

matrix A and the right-hand-side vector b change. Let us consider the following system:

(A + εF)x(ε) = b + εg, (1.2.12)

where F ∈ �
n×n, g ∈ �

n, ε is a ”small” parameter. If A is nonsingular the map x(ε) is
differentiable in the neighbourhood of zero

x(ε) = (A + εF)−1(b + εg)

ẋ(ε) =
(

d
dε

(A + εF)−1
)

(b + εg) + (A + εF)−1g

ẋ(0) = −A−1FA−1b + A−1g

ẋ(0) = A−1(g − Fx(0))

and thus the Taylor expansion of x(ε) at the point 0 gives

x(ε) = x(0) + εẋ(0) + O(ε2).

The symbol O(ε2) characterizes the remainder of the Taylor expansion of the map x(ε) at
the point 0. If R(ε) is this remainder then the equality R(ε) = O(ε2) means that there
exist constants α > 0 and A > 0 such that |R(ε)| ≤ Aε2 for all |ε| < α.
We obtain estimation, see [8]:

||x(ε) − x(0)||
||x(0)|| ≤ |ε|||A−1||

(||g||
||x(0)|| + ||F||

)
+ O(ε2). (1.2.13)

For a square nonsingular matrix A the condition number is defined by κ(A) = ||A|| ·
||A−1||. If A is singular, then κ(A) = +∞. According to (1.2.11) ||b|| = ||Ax(0)|| ≤
||A|| · ||x(0)|| and thus we can rewrite inequality (1.2.13) in the form

||x(ε) − x(0)||
||x(0)|| ≤ κ(A)(rA + rb) + O(ε2),

11

where rA = |ε| ||F||
||A|| and rb = |ε| ||g||||b|| are relative errors in A and b.

The relative error of the solution x(0) is thus approximately equal to κ(A) multiple of
sum of relative errors of A and b. In this sense the number κ(A) measures the sensitivity
of the problem Ax = b. Remark that the condition number depends on the used norm.
E.g., if λ1, . . . , λn are the eigenvalues of a matrix ATA then the spectral norm is defined
as ||A||∗ = maxi=1,...,n

√
λi. Since the inverse matrix has reciprocal eigenvalues it holds for

regular matrix A

κ(A) =
max

i=1,...,n

√
λi

min
i=1,...,n

√
λi
.

The reader will find enough details e.g. in [8], [3], [14].
It is possible to show that for every matrix A hold

κ(A) ≥ 1, (1.2.14)
κ(A) = κ(A−1), (1.2.15)
κ(αA) = κ(A), α ∈ �, α �= 0. (1.2.16)

If κ(A) is ”low” we say the system is well-conditioned ; it is better conditioned if the
condition number κ(A) is nearer to 1. If κ(A) is ”high” we say the system is ill-conditioned.
There are methods for decreasing the condition number, e.g. balancing matrix, see [29],
[30].

Example 1.2.2 Let us compute the condition number of the matrix of the system from
example 1.2.1:

A =

(
1 1
1 1.0001

)
, A−1 = 104

(
1.0001 −1
−1 1

)
,

‖A‖∞ = 2.0001 , ‖A−1‖∞ = 104 · 2.0001 , κ(A) = ‖A‖∞ · ‖A−1‖∞ = 40004.001 .

The condition number is relatively high, this indicates that the systems is ill-conditioned.
The value of detA = 0.0001 could indicate it, too. However, unlike (1.2.16) is det(αA) =
αn detA. Generally, there is no relation between det(A) and condition number κA, this
illustrates the following example.

Example 1.2.3 Let

Bn =

⎛⎜⎜⎜⎜⎝
1 −1 . . . −1
0 1 . . . −1
...

...
. . .

...
0 0 . . . 1

⎞⎟⎟⎟⎟⎠ ∈ �
n×n ⇒ B−1

n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2 4 8 . . . 2n−2

0 1 1 2 4 . . . 2n−3

. . . .

. . . .

. . . .
0 1 1
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We can easily get

det(Bn) = 1, ||Bn||∞ = max
1≤i≤n

n∑
j=1

|bij | = n,

||B−1
n ||∞ = max

1≤i≤n

n∑
j=1

|̂bij | = 2 +
n−2∑
j=1

2i = 2n−1.

Finally κ(Bn) = n · 2n−1, depends on n while det(Bn) not.

12

Example 1.2.4 Let

Dn = diag(10, . . . , 10) ∈ �
n×n ⇒ D−1

n = diag (0.1; 0.1; . . . ; 0.1).

Then
det(Dn) = 10n, ||Dn||∞ = 10, ||D−1

n ||∞ = 0.1.

Therefore
κ(Dn) = 1.

For calculation of the condition number of a given matrix A, we would have to know
the inverse matrix A−1. But the most affective algorithm for calculation of inverse matrix
is three times laborious than solving problem by elimination (see subsection 1.2.2). For our
purposes the estimation of condition number κ(A) is sufficient. Let us reason the vector
norm (1.2.7) and the corresponding matrix norm (1.2.10). The calculation of ||A|| is easy.
The basic idea of estimation of ||A−1|| consists in following relations: if Ay = d then from
inequality (1.2.11) results

||y|| = ||A−1d|| ≤ ||A−1|| · ||d||, i. e. ||A−1|| ≥ ||y||
||d|| ,

and for condition number we can obtain an estimation

κ(A) = ||A|| · ||A−1|| ≥ ||A|| ||y||||d|| . (1.2.17)

The large number on the right-side (1.2.17) indicates the probable ill-conditioning of the
matrix A. The reader will find enough details e.g. in [8], [14].

1.2.2 Gaussian elimination

Elimination methods are based on an addition of a multiple of some row to the given row
so that the matrix of the system is simplified. Let us illustrate the whole method by the
following algorithm.

Let us consider the systems of equations

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

... (1.2.18)
an1x1 + an2x2 + · · · + annxn = bn .

Let us suppose a11 �= 0. We divide first equation by this coefficient:

a12

a11
→ a12,

a13

a11
→ a13, · · · , a1n

a11
→ a1n,

b1
a11

→ b1, 1 → a11 .

Let us eliminate the unknown x1 from 2-nd, 3-rd to n-th row of the system (1.2.18). We will
subtract the relevant multiple of the new first equation from 2-nd, 3-rd to n-th equations:

ai2 − ai1a12 → ai2, ai3 − ai1a13 → ai3, . . . , ain − ai1a1n → ain,
bi − ai1b1 → bi, 0 → ai1 i = 2, 3, . . . , n .

13

Let us go over to the second equation: let us suppose now the new element a22 �= 0. Again
we will divide second equation by this element:

a23

a22
→ a23,

a24

a22
→ a24, · · · , a2n

a22
→ a2n,

b2
a22

→ b2, 1 → a22 .

Similarly to the previous step we will eliminate the unknown x2 from 3-rd, 4-th to n-th
equation:

ai3 − ai2a23 → ai3, ai4 − ai2a23 → ai4, . . . , ain − ai2a2n → ain,
bi − ai2b2 → bi, 0 → ai2 i = 3, 4, . . . , n .

Thus we go until (n− 1)-th equation, which we divide by the element an−1,n−1 �= 0. Then
we eliminate (n− 1)-th unknown from n-th equation , so the matrix of the final system has
the form (the elements below the main diagonal are zero):

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a12 a13 . . . a1n

1 a23 . . . a2n

1 . . . a3n

. . .
...

1 an−1,n

ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Reducing the original matrix A into the upper triangular form is called forward elimination.

From the last equation we compute xn easily:

bn
ann

→ xn .

From the (n− 1)-st equation we obtain xn−1:

bn−1 − an−1,nxn → xn−1.

The same way we obtain all xi. The process of progressively solving for the unknowns
xn−1, xn−2, . . . , x1 is called backward elimination step of Gaussian elimination. Number of
multiplications and divisions necessary to find the solutions of the system of n equations
using previous algorithm is 1

3n(n2 + 3n − 1). Previous algorithm is not universal. During
computation we suppose that the diagonal elements of matrix A are not zero. If these
elements are near to zero we can decrease an accuracy of calculation. Thus the Gaussian
elimination is to be modified so that we choose to transfer (e. g. by interchanging rows)
to the diagonal a proper element with the largest absolute value (so-called pivot).

The algorithm with pivoting is relatively complicated. There is Gaussian elimination
without backward solution step (so-called Gauss-Jordan elimination). In this method we
eliminate coefficients not only below leader (”diagonal”) elements but also above this ele-
ment. In the method without pivoting the identity matrix results after forward step of the
method, in the method with pivoting is the permutation matrix results.

Gaussian elimination can be also used to computation of determinants. The determinant
of matrix A is equal to the product of leader elements (before division of row by this element)
in the Gaussian elimination without pivoting and is equal to the product of leader elements
times determinant of permutation matrix in case of Gauss-Jordan elimination.

14

1.2.3 Systems with tridiagonal matrix

Frequently, we meet with systems of equations with tridiagonal matrix (see 1.1). These
systems arise by the construction of difference analogy for boundary value problem of
ordinary differential equations (see chapter 5).

If we write the systems of equations in the matrix form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 h1

s2 d2 h2

s3 d3 h3 0
. . .

0 sn−1 dn−1 hn−1

sn dn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3
...

xn−1

xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
b2
b3
...

bn−1

bn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.2.19)

The tridiagonal matrix algorithm (TDMA), also known as the Thomas algorithm, is a
simplified form of Gaussian elimination that can be used to solve tridiagonal systems of
equations. Zero elements are not saved in the memory and also the operations ”0−x.0 → 0”
are not realized. This leads to significant computer memory and time savings. Analogously
we can derive algorithms for five-diagonal systems or for tridiagonal systems with few
nonzero elements out of diagonal etc.

1.3 Iterative methods for linear systems

In contrast to the direct methods of Section 1.2 are the iterative methods. For an arbitrary
starting vector x(0), these methods generate a sequence of approximate solutions {x(k)},
k > 0, that converges to the solution of the given problem. The quality of an iterative
method depends on how quickly the iterates x(k) converge to the solution.

In this Section, we present only a particular class of iterative methods, so called point
iterative methods (only one entry of the vector is corrected per one iteration) and block
iterative methods (a group of entries of the vector is corrected in one iteration).

More details about iterative methods for solution of linear systems can be found for
example in [8], [24], [3].

1.3.1 Point iterative methods

The simplest point iterative scheme for the solution of the system of linear equations

Ax = b, A = (aij)i,j=1,...,n , A ∈ �
n×n, b ∈ �

n, (1.3.1)

is the Jacobi method. It is defined for matrices A that have nonzero diagonal elements.
One iteration step that produces an improved approximation x(k+1) from the previ-

ous x(k) represents a solution of i−th equation in (1.3.1) with respect to xi. All other
components xj are transferred to the right-hand side of the i−th equation:

x
(k+1)
i =

1
aii

(bi −
n∑

j=1,j �=i

aij x
(k)
j) , i = 1, . . . , n .

↑ ↑
(k + 1) − st k − th

iteration iteration

(1.3.2)

15

Jacobi method has a disadvantage: it requires us to keep all the components of x(k)

until the calculation of x(k+1) is complete. A much more natural idea is to start using
each component of the new vector x(k+1) as soon as it is corrected. At the moment we are
computing x(k+1)

i we can use already updated components

x
(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
i−1 .

We obtain the iteration procedure called the Gauss–Seidel method:

x
(k+1)
i =

1
aii

⎛⎝bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

⎞⎠ , i = 1, . . . , n . (1.3.3)

For the Gauss–Seidel method, the latest approximations to the components of x are used
in the update of subsequent components. It is convenient to overwrite the old components
of x(k) with those of x(k+1) as soon as they are computed.

Let us remark that in application of Jacobi method we don’t need to care about the
order of corrected components in the vector x(k). On the contrary, in the Gauss–Seidel
method the order of unknowns is fixed (here i = 1, . . . , n).

The convergence rate of the Gauss–Seidel method often can be improved by introducing
a relaxation parameter ω. The method is called SOR (successive overrelaxation) method.
It is defined by

x
(k+1)
i =

ω

aii

⎛⎝bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

⎞⎠ + (1 − ω)x(k)
i , i = 1, . . . , n . (1.3.4)

Let xGS
i denote the (k + 1)−st iteration of the Gauss–Seidel method, i.e. xGS

i is the right-
hand side of (1.3.3). Then the equation (1.3.4) for the (k + 1)−st iteration of the SOR
method can be written in the form

x
(k+1)
i = x

(k)
i + ω(xGS

i − x
(k)
i), i = 1, . . . , n .

Let us try to rewrite the methods (1.3.2), (1.3.3) and (1.3.4) in a matrix form.
A general technique to derive an iterative method is based on a splitting of the matrix

A, A = B − (B − A), being B a suitable nonsingular matrix (called the preconditioner of
A). Then Bx = (B − A)x + b. Correspondingly, we define the following general iterative
method

x(k+1) = B−1
(
(B − A)x(k) + b

)
, k ≥ 0. (1.3.5)

The matrix G = B−1(B − A) = E − B−1A is called the iteration matrix associated with
(1.3.5).

Let A = (aij) ∈ �n×n be written in the form

A = D− L − U ,

where D = diag(a11, . . . , ann) is the diagonal of A, L = (lij) is the strictly lower triangular
matrix whose non null entries are lij = −aij, i = 2, . . . , n, j = 1, . . . , i − 1, and U = (uij)
is the strictly upper triangular matrix whose non null entries are uij = −aij, i = 1, . . . , n−
1, j = i+1, . . . , n. Let A have nonzero diagonal entries. On the contrary, the matrix L+U
has all diagonal entries equal to zero.

16

If B in (1.3.5) is taken to be the diagonal D of A then the corresponding iteration
procedure

x(k+1) = D−1
(
(L + U)x(k) + b

)
. (1.3.6)

is the Jacobi method.
The Gauss–Seidel method corresponds to the choice B = D − L, i.e. for ordering

i = 1, . . . , n we obtain
Dx(k+1) = b + Lx(k+1) + Ux(k) ,

therefore
x(k+1) = (D− L)−1

(
Ux(k) + b

)
. (1.3.7)

Now, let B = D−ωL, where ω ∈ � is the relaxation parameter. Since L = D−U−A
we have

D− ωL = (1 − ω)D + ωU + ωA .

In matrix terms, the SOR step is given by

x(k+1) = (D− ωL)−1((1 − ω)D + ωU)x(k) + ω(D− ωL)−1b . (1.3.8)

The relaxation parameter ω in the SOR method has to satisfy ω ∈ (0, 2). For a few
typical problems, the optimal value of the relaxation parameter is known, see Section
xxx7.1.1.1xxx. In more complicated problems, however, it may be necessary to per-
form a sophisticated eigenvalue analysis in order to determine an appropriate ω. Let us
remark that for ω = 1 the SOR reduces to the Gauss–Seidel method. The methods of this
Section are treated for example in [24], [3], [8]. We will discuss the application of these
methods for solving of the elliptic partial differential equations in Section xxx7.1.1.1xxx.

1.3.2 Block iterative methods

Block versions of the Jacobi, Gauss–Seidel, and SOR iterations are easily defined. In one
iteration, the block relaxation methods update more than one components of the solution
vector. To illustrate, we consider an example of the matrix A ∈ �6×6:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, x =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, b =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

b1
b2
b3
b4
b5
b6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We divide the matrix A into blocks. Correspondingly, we divide also the vectors x a b:

A =

⎛⎜⎝ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞⎟⎠ , x =

⎛⎜⎝ ξ1

ξ2

ξ3

⎞⎟⎠ , b =

⎛⎜⎝ β1

β2

β3

⎞⎟⎠ ,

where Aij , i, j = 1, 2, 3, are blocks of the original matrix, ξi a βi are vectors of the corre-
sponding size. For example

A13 =

(
a14 a15 a16

a24 a25 a26

)
, ξ3 =

⎛⎜⎝ x4

x5

x6

⎞⎟⎠ , β1 =

(
b1
b2

)
.

17

Similarly as in the point iterative methods, we rewrite the matrix A as

A = D − L − U,

where in this case

A =

⎛⎝ A11 O O
O A22 O
O O A33

⎞⎠ , L = −
⎛⎝ O O O

A21 O O
A31 A32 O

⎞⎠ , U = −
⎛⎝ O A12 A13

O O A23

O O O

⎞⎠ .

Now we can define the block Jacobi iterative method as the method that in one iteration
updates some of the vectors ξi:

Aiiξ
(k+1)
i = (L + U)ξ(k)

i + βi, i.e.

ξ
(k+1)
i = A−1

ii

(
(L + U)ξ(k)

i

)
+ A−1

ii βi, i = 1, 2, 3.

Similarly as in (1.3.6), we obtain:

x(k+1) = D−1
(
(L + U)x(k) + b

)
. (1.3.9)

The only difference is that the matrices D, L and U represent the block analog of the
matrices in (1.3.6).

The block versions of the Gauss–Seidel and SOR methods are defined likewise.
We will investigate the block iterative methods and their convergence properties in

Section xxx7.1xxx within the context of the solution of the partial differential equations
by making use of finite differences. Namely, the matrices arising from finite difference
approximations of partial derivatives are often block tridiagonal matrices.

1.4 Eigenvalues and eigenvectors of a matrix

The eigenvalue problem is a problem of considerable theoretical interest and wide-ranging
applications. For example, this problem is crucial in solving systems of differential equations
and in the stability analysis of nonlinear systems. Eigenvalues and eigenvectors are also
used in estimates for the convergence rate of iterative methods (not only in Linear Algebra).

Let a real or complex n×n matrix A be given. A number λ ∈ � is called an eigenvalue
of the matrix A if there exists a non-zero vector x such that

Ax = λx. (1.4.1)

Every such vector x is called an eigenvector of A associated with the eigenvalue λ. The set
of all eigenvalues is called the spectrum of A.

Algebraically, the eigenvectors are just those vectors such that multiplication by A has
a very simple form – the same as multiplication by a scalar (the eigenvalue). Geometrically
it means that the linear transformation y = Ax doesn’t change the direction of the vector
x �= 0; in general only its length is changed.

If x �= 0 is an eigenvector associated with the eigenvalue λ of A then any nonzero scalar
multiple of x is also an eigenvector. If the eigenvalue λ has a nonzero imaginary part then
also the associated eigenvector is, in general, complex–valued (not real).

18

The equation (1.4.1) can be written in the form

a11x1 + a12x2 + · · · + a1nxn = λx1 ,
a21x1 + a22x2 + · · · + a2nxn = λx2 ,

...
...

an1x1 + an2x2 + · · · + annxn = λxn ,

(1.4.2)

i.e. as a homogeneous system of linear equations with the matrix⎛⎜⎜⎜⎜⎝
a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n
...

...
an1 an2 . . . ann − λ

⎞⎟⎟⎟⎟⎠ = A − λE. (1.4.3)

The system (1.4.2) has a nonzero solution x if and only if the determinant of the matrix
(1.4.3) is equal to zero, i.e.

det(A − λE) = 0 . (1.4.4)

The equation (1.4.4) is called the characteristic equation of the matrix A and

P (λ) = det(A − λE) (1.4.5)

is the characteristic polynomial of the matrix A.
Recall that a k−by−k principal submatrix of n× n matrix A is one lying in the same

set of k rows and columns and that a k−by−k principal minor is the determinant of such
a principal submatrix. There are (nk) different k−by−k principal minors of A.

The characteristic polynomial P (λ) has degree n,

P (λ) = (−1)n
(
λn + p1λ

n−1 + p2λ
n−2 + . . .+ pn

)
, (1.4.6)

where pk , k = 1, . . . , n , is (up to the sign (−1)k) equal to the sum of all k−by−k principal
minors of A, in particular

− p1 = a11 + a22 + . . . + ann = trace of A , (1.4.7)
pn = (−1)n detA . (1.4.8)

The roots λ1, λ2, . . . , λn of the characteristic equation (1.4.4) are the eigenvalues of the
matrix A. Due to the well-known relations between the zeroes of a polynomial and its
coefficients we obtain

λ1 + λ2 + . . . + λn = −p1 = a11 + a22 + . . .+ ann (1.4.9)

and
λ1λ2 · · ·λn = (−1)npn = detA. (1.4.10)

Let us remark that if we compare the solution of a system of linear equations Ax = b
and the computation of eigenvalues of the matrix A, Ax = λx, there is a substantial
difference: If we solve a system of equations with a real matrix then the solution is also
real, but the eigenvalues of a real matrix might have a nonzero imaginary part.

If λ1, . . . , λk are the distinct zeros of the characteristic polynomial P (λ), then P (λ) can
be represented in the form

P (λ) = (−1)n(λ− λ1)α1(λ− λ2)α2 · · · (λ− λk)αk .

The integer αi is called the (algebraic) multiplicity of the eigenvalue λi , i = 1, . . . , k .

19

Example 1.4.1 Determine all the eigenvalues, and an associated eigenvector for each,
of the matrix

A =
(

2 1
3 0

)
. (1.4.11)

The matrix A has the characteristic polynomial

det(A − λE) =
∣∣∣∣ 2 − λ 1

3 −λ
∣∣∣∣ = λ2 − 2λ− 3.

The zeros of this quadratic polynomial, i.e. the eigenvalues are λ1 = 3, λ2 = −1. The
(algebraic) multiplicity of both these eigenvalues is equal to 1 .
Let us find the associated eigenvectors:

Ax1 = λ1x1 =⇒ Ax1 = 3x1 =⇒ (A − 3E)x1 = 0.

The matrix A− 3E is singular,

A− 3E =
(−1 1

3 −3

)
.

The eigenvector associated to the eigenvalue λ1 = 3 is for example the vector x1 = (1, 1)T .
Analogously, the associated eigenvector to the eigenvalue λ2 = −1 is for example the vector
x2 = (1,−3)T .

Example 1.4.2 Let us find the eigenvalues and the associated eigenvectors of the matrices

A =
(

3 0
0 3

)
, B =

(
3 1
0 3

)
, (1.4.12)

The matrix A has the characteristic equation (3 − λ)2 = 0, i.e. A has the only eigenvalue
λA = 3 with the (algebraic) multiplicity 2. For the associated eigenvector we obtain

(A− 3E)x = 0 , i.e.
(

0 0
0 0

)
x = 0.

The solution of this equation consists of all two–dimensional space and as the associated
eigenvectors may serve any two linearly independent vectors, for example x1 = (1, 0)T ,
x2 = (0, 1)T .

The matrix B has also the only eigenvalue λB = 3 with the (algebraic) multiplicity 2,
but in this case we find only one (up to a nonzero scalar multiple) associated eigenvector
x = (1, 0)T .

Example 1.4.3 Consider the matrix

A =
(

2 1
−5 0

)
. (1.4.13)

It has the characteristic polynomial

det (A− λE) =

∣∣∣∣∣ 2 − λ 1
−5 −λ

∣∣∣∣∣ = λ2 − 2λ+ 5.

The roots of this quadratic polynomial are λ1 = 1 + 2i, λ2 = 1 − 2i, i.e. in this case, the
matrix A has a complex conjugate pair of eigenvalues. The multiplicity of both eigenvalues

20

is 1.
Let us calculate the associated eigenvectors:

Ax1 = λ1x1 =⇒ Ax1 = (1 + 2i)x1 =⇒ (A − (1 + 2i)E)x1 = 0.

Since
A − (1 + 2i)E =

(
1 − 2i 1
−5 −1 − 2i

)
,

the eigenvector x1 associated to the eigenvalue λ1 = 1 + 2i is (up to a nonzero multiple)
the vector x1 = (−1, 1 − 2i)T . Similarly, the eigenvector associated to λ2 = 1 − 2i is the
vector x2 = (−1, 1+2i)T , that is the entries of the associated eigenvectors are also complex
conjugate.

We will present two methods for finding coefficients of the characteristic polynomial of
the higher degree.

The first one, Krylov method, is based on the Cayley–Hamilton theorem. This theorem
is often paraphrased as ”every square matrix satisfies its own characteristic equation”,
but this must be understood carefully: The scalar polynomial P (t) is first computed as
P (t) = det(A − tE) , and one forms the matrix P (A) from the characteristic polynomial.
Then

P (A) = 0, (1.4.14)

or equivalently
An + p1An−1 + · · · + pn−1A + pnE = 0. (1.4.15)

Our aim is to find the coefficients p1, p2, . . . , pn in (1.4.6). We multiply the equation
(1.4.15) from the right by a nonzero vector x(0):

Anx(0) + p1An−1x(0) + · · · + pnx(0) = 0. (1.4.16)

We obtain a system of equations⎛⎜⎜⎜⎜⎜⎝
x

(n−1)
1 x

(n−2)
1 . . . x

(0)
1

x
(n−1)
2 x

(n−2)
2 . . . x

(0)
2

...
...

...
...

x
(n−1)
n x

(n−2)
n . . . x

(0)
n

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
p1

p2
...
pn

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
−x(n)

1

−x(n)
2
...

−x(n)
n

⎞⎟⎟⎟⎟⎟⎠ , (1.4.17)

where we denoted x(k) = Akx(0) , x(k) = (x(k)
1 , x

(k)
2 , . . . , x

(k)
n) , k = 0, 1, . . . , n . Since

Akx(0) = AAk−1x(0) = Ax(k−1), it is not necessary to compute the powers of the ma-
trix A; to obtain the vector x(k) we have only to multiply the vector x(0) k−times by the
matrix A from the left. If the system (1.4.17) for p1, . . . , pn is uniquely solvable then this
solution gives the desired coefficients of the characteristic polynomial. If the system (1.4.17)
is not uniquely solvable we have to choose a different vector x(0). The system (1.4.17) can
be solved for example using the Gaussian elimination.

Example 1.4.4 Using the Krylov method, compute the characteristic polynomial of the
matrix (1.4.11).
Let us set x(0) = (1, 0)T . Then

Ax(0) = x(1) =
(

2
3

)
, Ax(1) = x(2) =

(
7
6

)
.

21

The system (1.4.17) has the form(
2 1
3 0

)(
p1
p2

)
=

(−7
−6

)
,

i.e. the coefficients of the characteristic polynomial are p1 = −2, p2 = −3, the same result
as in the Example 1.4.1.

Let us briefly discuss the second method for computing the coefficients of the characte-
ristic polynomial, so called interpolation method. For a given n× n matrix A ,

P (λ) = det(A − λE)

is the characteristic polynomial of A. Its degree is n. If we choose n+ 1 different values λ:

λ(0), λ(1), . . . , λ(n)

and compute
P (λ(i)) = det (A − λ(i)E), i = 0, 1, 2, . . . , n ,

we can construct explicitly the Lagrange interpolation polynomial (see the part Lagrange
interpolation). In view of the uniqueness of polynomial interpolation this must be also the
characteristic polynomial. The coefficient by λn should be equal to (−1)n , if it is not the
case then the other coefficients are also not correct.

Example 1.4.5 We compute the characteristic polynomial of the matrix (1.4.11) using
the interpolating method.
Let us set λ(0) = 0, λ(1) = 1, λ(2) = 2. The corresponding determinants are

P (0) =
∣∣∣∣ 2 1

3 0

∣∣∣∣ = −3, P (1) =
∣∣∣∣ 1 1

3 −1

∣∣∣∣ = −4, P (2) =
∣∣∣∣ 0 1

3 −2

∣∣∣∣ = −3.

Then the Lagrange interpolation polynomial is

L2(λ) = −3
(λ− 1)(λ − 2)

(−1) · (−2)
− 4

λ(λ− 2)
1 · (−1)

− 3
λ(λ − 1)

2 · 1 = λ2 − 2λ− 3 ,

i.e. the result is again the same as in Example 1.4.1.

1.4.1 Location of eigenvalues

It is natural to ask whether one can say anything useful about the eigenvalues of a given
matrix. For example in some differential equations problems involving the long–term sta-
bility of an oscillating system, one is sometimes interested in showing that the eigenvalues
{λi} of a matrix all lie in the left half–plane, that is, that (λi) < 0 . Sometimes in statistic
or numerical analysis one needs to show that a Hermitian matrix is positive definite, that is,
that all λi > 0 . We give a simple estimate for eigenvalues. It may serve, e.g. to locate the
eigenvalues of a matrix and to study their sensitivity with respect to small perturbations.

We know that the characteristic polynomial has exactly n in general complex–valued
roots. We are able to choose the largest one in absolute value. If λk are the eigenvalues of
the n× n matrix A, then

ρ(A) = max
1≤k≤n

|λk|

22

is called the spectral radius of A.
The following theorem (often called the Gershgorin disc theorem) gives a simple esti-

mate of the spectral radius.
Let A = (ajk) be a given n× n matrix. The union of all discs

Kj = {μ ∈ �, |μ− ajj| ≤
n∑

k=1,k �=j

|ajk| } (1.4.18)

contains all eigenvalues of the matrix A.
Let us notice that the sets Kj = (Sj, rj) are discs centered at Sj = ajj with radius

rj =
n∑

k=1,k �=j

|ajk|. Moreover, since A and AT have the same eigenvalues (they have the same

characteristic equation), to obtain more information about the location of the eigenvalues
we can apply (1.4.18) to A as well as to AT .

Example 1.4.6 Matrices (1.4.11) and (1.4.12) have the spectral radius ρ(A) = 3. The
Gershgorin discs for the matrix (1.4.13) are:

K1 ≡ (S1, r1) ≡ (2, 1), K2 ≡ (S2, r2) ≡ (0, 5).

Therefore, two eigenvalues of the matrix (1.4.13) are located in the union K1 ∪ K2. The
spectral radius of this matrix is ρ(λ) =

√
5 and eigenvalues λ1,2 = 1± 2i lie in the disc K2.

1.4.2 Methods for determining the eigenvalues and eigenvectors

Throughout this section, we will suppose that the matrix A is n × n, where n > 5. For
n ≤ 5, it has no sense to use complicated numerical methods, since the eigenvalues can be
computed exactly as roots of the characteristic polynomial.

Let x �= 0 be an eigenvector associated to the eigenvalue λ, i.e. Ax = λx. Let T be an
arbitrary nonsingular n× n matrix and let y = T−1x, i.e. x = Ty . Then

T−1ATy = T−1Ax = λT−1x = λy, y �= 0,

which implies that y is an eigenvector of the transformed matrix B = T−1AT associated
with the same eigenvalue λ. Such transformations are called similarity transformations and
B is said to be similar to A , B ∼ A. Similarity of matrices is an equivalence relation.
Similar matrices have not only the same eigenvalues, but also the same characteristic poly-
nomial. Moreover, the multiplicity of the eigenvalues remains the same.On the other hand,
let us notice that having the same eigenvalues is a necessary but not sufficient condition for
similarity.

The most common methods for determining the eigenvalues and eigenvectors of a dense
matrix A proceed as follows. By means of a finite number of similarity transformations one
first transforms the matrix A into a matrix B of simpler form,

B = Am = T−1AT, T = T1 · T2 · · ·Tm,

and then determines the eigenvalues λ and eigenvectors y of the matrix B , By = λy. For
x = Ty, since B = T−1AT, we then have Ax = λx, i.e., to the eigenvalue λ of A there
belongs the eigenvector x .

The matrix B is chosen in such a way that

23

• the determination of the eigenvalues and eigenvectors of B is as simple as possible
(i.e., requires as few operations as possible);

• the eigenvalue problem for B is not worse conditioned than that for A.

For symmetric matrices, we have the following very useful result of Schur:
If A ∈ �n×n is symmetric , then there exists a real orthogonal matrix Q such that

QTAQ = Λ = diag (λ1, λ2, . . . , λn), (1.4.19)

the diagonal entries of the matrix Λ are eigenvalues λi, i = 1, . . . , n , of the matrix A,
and these eigenvalues are real. The i−th column xi of Q is an eigenvector belonging to
the eigenvalue λi: Axi = λixi . A thus has n linearly independent pairwise orthogonal
eigenvectors.

Since Q is orthogonal, we have Q−1 = QT . The theorem says that any real symmet-
ric matrix A is orthogonally similar to a diagonal matrix. The matrix A is said to be
diagonalizable by an orthogonal similarity transformation.

On this idea, Jacobi method, one of the earliest matrix algorithms for computation of
eigenvalues of a symmetric matrix, is based. This technique is of current interest because it
is amenable to parallel computation and because under certain circumstances it has superior
accuracy.

The method of Jacobi employs similarity transformations with the special unitary ma-
trices, so called (Givens or Jacobi) plane rotation matrices. For a given real symmetric
matrix A, it produces an infinite sequence of matrices Ak, k = 0, 1, 2, . . ., converging to a
diagonal matrix

D =

⎛⎜⎝ λ1

. . .
λn

⎞⎟⎠ ,

where the λj , j = 1, . . . , n are just the eigenvalues of A.
As a result of Jacobi method we obtain the similarity transformation

D = VT AV,

where D is diagonal and V is orthogonal. More precisely, the diagonal matrix D is the limit
of the sequence of matrices Ak for k → ∞ and V is the product of all rotation matrices
that were used for the diagonalization. The k−th column of the matrix V is the eigenvector
associated to the eigenvalue λk. Therefore although Jacobi mathod does not, in general,
terminate after finitely many plane rotations, it produces a diagonal matrix as well as an
orthonormal set of eigenvectors.

Jacobi method is designed to solve the complete eigenvalue problem of the real symmet-
ric matrix. It might work also in nonsymmetric cases, but then the sequence of, in general
complex, matrices Ak converges to an upper triangular matrix.

The mostly used iterative method for computing eigenvalues of a general matrix is the
QR method. The algorithm is based on the QR decomposition of a sequence of matrices.

Let A be a given real matrix. Let us set A0 = A and find the QR decomposition of
the matrix A0 , i.e., we decompose the matrix A0 into a product of an orthogonal matrix
Q0 and an upper triangular matrix R0 , A0 = Q0R0 Now we interchange the order of the

24

multiplication and set A1 = R0Q0. The matrix A1 is orthogonally similar to the matrix
A0:

QT
0 A0Q0 = QT

0 (Q0R0)Q0 = A1,

i.e. the matrices A0 and A1 have the same eigenvalues. Note that a QR decomposition al-
ways exists and that it can be computed in a numerically stable way using e.g. Householder
matrices.

In general, the k−th iterative step of the QR method can be described as follows:

a) we decompose the matrix Ak : Ak = QkRk, QT
k Qk = E , (1.4.20)

b) the next approximation Ak+1 : Ak+1 = RkQk. (1.4.21)

If all the eigenvalues of A are real and have distinct absolute values, the matrices Ak

converge to an upper triangular matrix as k → ∞ . Moreover, the diagonal elements of Ak

converge to the eigenvalues in their natural order, |λ1| > |λ2| > . . . > |λn| .
If A has any nonreal eigenvalues or if two eigenvalues have the same modulus the QR

method has to be modified, see e.g. [29], [8].
We just described the original form of the QR method. It has some drawbacks, e.g. the

convergence is very slow if some quotients |λj/λk| of A are close to 1. The method will be
improved substantially if

• one applies the QR method only to reduced matrices, namely, matrices of Hessenberg
form, or in case of symmetric matrices, to symmetric tridiagonal matrices. A general
matrix, therefore, must first be reduced to one of these forms by means of suitable
Givens rotation matrices or Householder reflection matrices;

• one applies so-called shift strategy;
• one implements the double implicit shift strategy if the matrix has nonreal eigenvalues.

We will not discuss this technique here.

Let us turn our attention to the QR method with shifts. Let the number αk is ”closed”
to an eigenvalue of the given matrix A. We replace the equations (1.4.20) and (1.4.21) by:

Ak − αkE = QkRk, (1.4.22)
Ak+1 = RkQk + αkE. (1.4.23)

The number αk is referred to as a shift (of the spectrum) of the matrix Ak. The matrix
Ak+1 is again orthoganally similar to the matrix Ak:

QT
k AkQk = QT

k (QkRk + αkE)Qk = Ak+1.

Let us suppose that our matrix is tridiagonal or Hessenberg matrix. In practical imple-
mentation, the shift parameter αk is chosen as the (n, n) entry of the matrix Ak. If we
shift by this quantity during each iteration then the convergence of the (n, n− 1) entry to
zero, i.e., the convergence of the (n, n) entry to the smallest eigenvalue λn, is quadratic, for
symmetric tridiagonal matrix even cubic.

A lot of different methods for computation of eigenvalues and eigenvectors can be find
in literature. We can recommend for example [8], [3], [29].

∗ ∗ ∗
For additional references and a detailed description of eigenvalues, eigenvectors and of
efficient methods for their computation, see e.g. [3], [8], [24], [26], [29], [14].

25

Chapter 2

Interpolation, numerical
differentiation
and integration

In this section, we will study the approximation of values, derivatives and integrals of the
functions, which are not given analytically but only by their function values at given points.
Occasionally, the values of their derivatives at these points are also prescribed. Here, we
will be interested only in the case when we have ”just enough” information to approximate
the function. The case when we have more information than needed, but not quite precise,
is postponed to the Section ”Experimental data”.

As a classical example of the approximation of function values may serve the Taylor
polynomial. It exploits the values of derivatives at a given point. If the function f has n
derivatives at x0 ∈ (a, b), then

Tn(x) = f(x0) +
f ′(xo)

1!
(x− x0) +

f ′′(x0)
2!

(x− x0)2 + · · · + f (n)(x0)
n!

(x− x0)n.

It is well known that the approximation error is in this case given by formula

Rn(x) =
f (n+1)(c)
(n+ 1)!

(x− x0)n+1, (2.0.1)

where c is a number (not further specified) between the points x0 a x.

2.1 Formulation of the interpolation problem

Interpolation is a basic tool for the approximation of a given function. It is frequently
used to interpolate function values gathered from tables. If we need to determine the
approximate value of the function f(x) at the point x, which is not contained in the table,
we construct a function φ(x), which has the same values as f(x) at the table points. At
the other points of a given interval (a, b) from the domain of the function f , the function φ
approximates f with a certain precision.

The construction of such a function φ is called the interpolation problem. Interpolation
is used also in such cases when we know the analytical formula for a given f , but this
formula is too complicated or time consuming and we have to compute a large number of
values. Then we choose only some points x0, x1, . . . , xn at which we compute the formula

26

exactly. The values of f at the rest of points we just interpolate from values at points
x0, x1, . . . , xn .

Let us consider a family (finite or infinite) of real functions φi of a single variable defined
on an interval (a, b) . Let us suppose that every finite system of these functions is linearly
independent. As the ”coordinate functions” φi, we usually choose a sequence of powers of
x: 1, x, x2, x3, . . . , a sequence of trigonometric functions: 1, sin x, cos x, sin 2x, cos 2x, . . . ,
a sequence of exponential functions: 1, eα1x, eα2x, . . . , etc.

Let us take the first n + 1 functions of the sequence {φi} and let us form all possible
linear combinations

φ(x) = a0φ0(x) + a1φ1(x) + . . . + anφn(x). (2.1.1)

In the interval (a, b), let as choose m+ 1 knots x0, x1, . . . , xm, xi �= xj for i �= j. For values
of the functions f and φ at these points, we require f(xj) = φ(xj) , i.e.,

f(xj) = a0φ0(xj) + a1φ1(xj) + . . .+ anφn(xj), j = 0, 1, . . . ,m . (2.1.2)

In other words, we want to determine constants a0, a1, . . . , an so that (2.1.2) holds. In some
cases, if both f and φ are differentiable, we can require the derivatives to be identical at
these knots, too.

The given function can be also interpolated using so called splines. For example in
the case of cubic splines we approximate the given function by the function φ, which is
assumed to be twice continuosly differentiable in 〈x0, xm〉 and to coincide with some cubic
polynomial on every subinterval 〈xi, xi+1〉, i = 0, . . . ,m− 1 .

The equation (2.1.2) represents m+1 equations for n+1 unknowns a0, a1, . . . , an. If we
want to compute the coefficients ai for an arbitrary function f , the rank of the matrix of the
system has to be equal to m+ 1, otherwise the equations would be linearly dependent, i.e.,
n ≥ m . Since we are looking for a unique solution of the system (2.1.2), n = m. Therefore,
let us suppose that m = n and that the determinant

Δ =

∣∣∣∣∣∣∣∣∣∣
φ0(x0) φ1(x0) . . . φn(x0)
φ0(x1) φ1(x1) . . . φn(x1)

...
φ0(xn) φ1(xn) . . . φn(xn)

∣∣∣∣∣∣∣∣∣∣
(2.1.3)

doesn’t vanish. Then there exists a unique solution of the system (2.1.2) for arbitrary values
f(xj) .

From the equation (2.1.2), it follows by Cramer’s rule that

φ(x) = f(x0)Φ0(x) + f(x1)Φ1(x) + . . .+ f(xn)Φn(x), (2.1.4)

where functions Φi(x) are linear combinations (dependent on the interpolation knots) of
the functions φi(x) .

2.2 Lagrange interpolation polynomial

Let us choose as the system of functions φi in (2.1.1) the sequence 1, x, x2, . . . , xn . Then

φ(x) = c0 + c1x+ c2x
2 + . . .+ cnx

n. (2.2.1)

27

If we suppose that xi �= xj for i �= j, then in (2.1.3) the determinant Δ �= 0. The solution
(2.1.4) of the interpolating problem can be written in the form

Ln(x) =
n∑

i=0

f(xi)
ωn(x)

(x− xi)ω′
n(xi)

, (2.2.2)

where we set
Ln(x) = φ(x), ωn(x) = (x− x0)(x− x1) · · · (x− xn)

and ω′
n(xi) is the first derivative of ωn with respect to x evaluated at the point xi, i.e.,

ω′
n(xi) = (xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn).

The interpolation polynomial (2.2.2) is called the Lagrange interpolation polynomial. It
can be expressed also in the form

Ln(x) =
n∑

i=0

f(xi)li(x), where li(x) =
n∏

j=0,j �=i

x− xj

xi − xj
.

Note that the polynomials li(x) satisfy

li(xk) =

{
0 k �= i
1 k = i

.

It implies that Ln(xk) = f(xk).
Let E(x) = f(x) − Ln(x) be the error of the approximation of the function f by the

Lagrange interpolation polynomial. Since Ln(xj) = f(xj) in knots xj , we have E(xj) = 0
for j = 0, 1, . . . , n. We wish to ask how well the interpolating polynomial reproduces f
for arguments different from the knots. The error E(x), where x �= xj, j = 0, 1, . . . , n,
can become arbitrarily large unless some restrictions are imposed on f . For example if the
function f has n continuous derivatives on (a, b) and for all x ∈ (a, b) and an (n + 1)−st
derivative f (n+1)(x) exists, then

E(x) = ωn(x) · f
(n+1)(ξx)
(n+ 1)!

, (2.2.3)

where a < ξx < b, ξx depends on x and on the knots. If the derivative f (n+1)(x) doesn’t
change too much on (a, b), the error depends substantially on the behaviour of the poly-
nomial ωn(x). This polynomial doesn’t depend on the interpolated function, only on the
knots. By a suitable choice of the knots xj , j = 0, 1, . . . , n, the error of the approximation
can decrease. Note that ωn(xj) = 0, j = 0, 1, . . . , n.

Formula (2.2.3) has the similar form as formula (2.0.1) for the error of the approximation
of the function f by Taylor polynomial. And similarly as for Taylor polynomial, formula
(2.2.3) is not very useful in practical error estimates.

The error of the approximation depends on a number of knots and on their position in
the interval (a, b). The error is smallest in the middle of the interval and it increases near
the points a, b (this is not quite correct, because the error is equal to zero in the knots).
This implies the strategy for the choice of the knots: if we want to approximate the function
value at the point x, we choose (if it is possible) the knots to the right and to the left from
the point x in such a way that x lies closely to the center of the interval (a, b).

28

–1.5

–1

–0.5

0

0.5

1

1.5

2

2 2.5 3 3.5 4
x

0

0.5

1

1.5

2

2.5

3

2 2.5 3 3.5 4
x

Functions li(x) , i = 0, . . . , 3 Lagrange interpolation polynomial L3(x)

Figure 2.1: Example 2.2.1

Note that the approximation φ(x) of the function f(x) at the point x, which lies outside
the interval (a, b) containing the interpolation knots, is sometimes called extrapolation. In
this case, the value of |ωn(x)| grows very fast and therefore the error is large.

While theoretically important, Lagrange interpolation is not suitable for actual calcula-
tions, particularly for large numbers n of knots. On the other hand it is useful in situations
in which we interpolate many different functions at the same knots.

Example 2.2.1 We will interpolate the data in the following table of values by the Lagrange
polynomial L3(x),

x 1, 82 2, 50 3, 65 4, 03
y 0, 00 1, 30 3, 10 2, 52

The Lagrange polynomial L3(x) has (after some computations) the form

L3(x) = 9.420183 − 14.10596x + 6.41469x2 − 0.82862x3.

Functions li(x) and polynomial L3(x) are depicted on Fig.2.1.

Example 2.2.2 Using the Lagrange interpolation polynomial L8(x) at knots xj = −5 +
5j/4, j = 0, . . . , 8 , we approximate so called function of Runge

f(x) =
1

1 + x2

on 〈−5, 5〉. We also compute the maximal value of the error |f(x) − L8(x)| on the interval
〈−5, 5〉. The tableau of the values:

x −5 −3.75 −2.5 −1.25 0 1., 25 2.5 3.75 5
f(x) 0.0385 0.0664 0.1379 0.3902 1 0.3902 0.1379 0.0664 0.0385

The values in the table are rounded while the results of the following computations are not.

L8(x) = 0.14 · 10−3 x8 + 0.22 · 10−11 x7 − 0.006581x6 + 0.13 · 10−9 x5 +
+0.098197x4 + 0.52 · 10−9 x3 − 0.528162x2 − 0.1 · 10−8 x+ 1,

29

-4 22 4
x

-1

-0.5

0.5

1

y

Figure 2.2: Example 2.2.2

max
x∈〈−5,5〉

|f(x) − L8(x)| = 1.045241279.

Functions f(x) and L8(x) are depicted on Fig. 2.2. One can see that near the end points
of the interval 〈−5, 5〉 the approximation is worse.

The data in the table of values of the function f(x) are symmetric with respect to the
axis y, which implies that also coefficients of odd powers of x should be equal to zero. They
are really substantially smaller than coefficients of the even powers. Due to the rounding
errors, they are not precisely zero. We would obtain practically the same result by using the
coordinate functions 1, x2, x4, x6, x8 and the table values for x ≥ 0 .

In the previous example, we used the equidistant knots. In some cases, we can ob-
tain better results for nonequidistant knots. In Example 2.2.2, let us choose the knots as
Chebyshev points, i.e., as the zeros of Chebyshev polynomials, cf. Example 2.2.3.

Example 2.2.3 Let us approximate Runge’s function from the previous example by making
use of Lagrange interpolation polynomial L8(x) at knots

−4.92404; −4.33013; −3.21394; −1.7101; 0; 1.7101; 3.21394; 4.33013; 4.92404 .

The table of values:

x −4.924 −4.330 −3.213 −1.710 0 1.710 3.214 4.330 4.924
f(x) 0.0396 0.0506 0.0883 0.2548 1 0.2548 0.0883 0.0506 0.0396

The values in the table are rounded while the results of the following computations are not.

L8(x) = 4, 5 · 10−5 x8 + 2, 7 · 10−20 x7 − 0.00258x6 − 3, 5 · 10−18 x5 +
+0, 05016x4 − 5, 6 · 10−17 x3 − 0, 38054x2 + 2, 4 · 10−16 x+ 1,

max
x∈〈−5,5〉

|f(x) − L8(x)| = 0, 119846.

The functions f(x) and L8(x) are depicted on Fig. 2.3.

The result will be even better if we approximate the Runge’s function by splines.

30

-4 22 4
x

-0.5

0.5

1

y

Figure 2.3: Example 2.2.3

2.3 Hermite interpolation polynomial

If not only values of the function f are given, but also its first derivatives (in general, the
values of all derivatives up to the order k) at the knots we can approximate the function
values using so called Hermite interpolation polynomial.

Consider the real numbers xi, f(xi), f ′(xi), i = 0, . . . ,m, x0 < x1 < . . . < xm. The
Hermite interpolation problem for these data consists of determining a polynomial H whose
degree does not exceed 2m+ 1, and which satisfies

H(xi) = f(xi), H ′(xi) = f ′(xi), i = 0, 1, . . . ,m. (2.3.1)

There are exactly 2(m+1) conditions (2.3.1) for the 2(m+1) coefficients of the interpolating
polynomial. It can be shown that for x0 < x1 < . . . < xm there exists precisely one
polynomial H, degree of H ≤ 2m+ 1, which satisfies these conditions.

Analogously as for the Lagrange interpolation polynomial, the Hermite interpolation
polynomial can be given explicitly. At first, we define for i = 0, 1, . . . ,m

φi(x) =
m∏

j=0,j �=i

(
x− xj

xi − xj

)2

=
ω2

m(x)
(x− xi)2(ω′

m(xi))2
, (2.3.2)

ψi(x) = (x− xi)φi(x) . (2.3.3)

Then the Hermite interpolation polynomial has the form

H(x) =
m∑

i=0

f(xi)
(
φi(x) − φ′i(xi)ψi(x)

)
+

m∑
i=0

f ′(xi)ψi(x) .

2.4 Interpolation by spline functions

The error of the polynomial interpolation depends strongly on the length of the interval
〈a, b〉, which contains the nodes. If we reduce this length, we will get a better approximation.
Let us split the interval 〈a, b〉 into subintervals 〈xi, xi+1〉, a = x0 < x1 < · · · < xn = b.
On each subinterval, we approximate f(x) by a polynomial. The approximations over all
subintervals form an interpolant on 〈a, b〉 called a spline. A key issue is how smoothly the
polynomials connect at the knots.

31

The simplest continuous spline is one that is piecewise linear, that is, S(x) is a broken-
line function. If S(x) is required to interpolate f(x) at the knots xi and xi+1, then S(x) is
Lagrange interpolation polynomial L1(x) on each 〈xi, xi+1〉 , 0 ≤ i ≤ n− 1:

L1(x) = S(x) = f(xi) +
f(xi+1) − f(xi)

xi+1 − xi
(x− xi). (2.4.1)

The linear interpolation spline (2.4.1) is very easy to evaluate once the proper subinterval
has been located. The disadvantage of this interpolation is that the derivatives of the
interpolant are discontinuous at the knots.

The higher the degree, the more accurate the approximation, but the greater the possi-
bility of unwanted oscillations. A good compromise seems to be the use of cubic polynomials.

Let a = x0 < x1 < . . . < xn = b be the dividing of the interval 〈a, b〉. Then the cubic
spline S on this division is a real function S : 〈a, b〉 → �, which has the following properties:

• S ∈ �
2(〈a, b〉), i.e. S is two times continuously differentiable on 〈a, b〉;

• the restriction of S on each subinterval 〈xi, xi+1〉, i = 0, 1, . . . , n− 1,
is a polynomial of the third degree.

Thus, the cubic spline consists of the polynomials of the third degree that match in the
interior knots together with their first and second derivatives.

Let us construct such a smooth cubic spline. On each subinterval 〈xi, xi+1〉, i =
0, 1, . . . , n− 1

S(x) = αi + βi(x− xi) + γi(x− xi)2 + δi(x− xi)3. (2.4.2)

On the whole interval 〈a, b〉 = 〈x0, xn〉, we have to determine 4n parameters αi, βi, γi, δi, i =
0, . . . , n− 1. The interpolation conditions require for 0 ≤ i ≤ n− 1

S+(xi) = lim
x→x+

i

S(x) = f(xi), S−(xi+1) = lim
x→x−

i+1

S(x) = f(xi+1), (2.4.3)

so we have 2n conditions. Since the first derivative S′ and the second derivative S′′ have
to be continuous in the interior knots 〈a, b〉, we obtain

S′
−(xi) = S′

+(xi), S′′
−(xi) = S′′

+(xi) pro i = 1, 2, . . . , n− 1. (2.4.4)

These equations represent 2(n− 1) conditions. Altogether we have 2n+ 2(n− 1) = 4n− 2
equations for the determination of the parameters αi, βi, γi a δi. For the full evaluation
of the all coefficients, two conditions are left. We say that the system has two degrees of
freedom. These two conditions are chosen as co called end conditions, for example

• 1.type - the complete cubic spline:

S′(x0) = f ′(x0), S′(xn) = f ′(xn);

• 2.type - the natural cubic spline:

S′′(x0) = S′′(xn) = 0;

• 3.type (no specific name):

S′′(x0) = f ′′(x0), S′′(xn) = f ′′(xn);

32

• 4.type - the periodic cubic spline with the period xn − x0:

S′(x0) = S′(xn), S′′(x0) = S′′(xn).

Each of these conditions guarantee the uniqueness of the cubic spline S.

Example 2.4.1 By the cubic spline S(x), we will interpolate the function f(x) =
1
x

on

the interval 〈0.5, 3〉. The data of the problem:

x f(x) f ′(x) f ′′(x)
0.5 2 −0.25 16
1 1 − −
3 1/3 −1/9 2/27

We obtain

• for end conditions of the first type:

S(x) =

{
5.88889 − 12.4444x + 11.1111x2 − 3.55556x3 x ∈ 〈0.5, 1〉
2.41667 − 2.02778x + 0.694444x2 − 0.0833333x3 x ∈ 〈1, 3〉 .

• for end conditions of the second type:

S(x) =

{
3.− 1.66667x − 1. x2 + 0.666667x3 x ∈ 〈0.5, 1〉
3.83333 − 4.16667x + 1.5x2 − 0.166667x3 x ∈ 〈1, 3〉 .

• for end conditions of the third type:

S(x) =

{
7.− 16.6049x + 15.8148x2 − 5.20988x3 x ∈ 〈0.5, 1〉
1.81481 − 1.04938x + 0.259259x2 − 0.0246914x3 x ∈ 〈1, 3〉 .

• for end conditions of the fourth type:

S(x) =

{
2.+ 2.33333x − 6. x2 + 2.66667x3 x ∈ 〈0.5, 1〉
5.33333 − 7.66667x + 4. x2 − 0.666667x3 x ∈ 〈1, 3〉 .

The resulting splines are depicted on the Fig. 2.4

When we construct the periodic spline, it is natural to expect periodical data. We don’t
recommend to use this type of the spline if the interpolated function is not periodical, see
Example 2.4.1 and Fig. 2.4.

The cubic splines are suitable namely for a graphical processing of data. They don’t
oscillate much and they represent curves, which pass ”smoothly” through the given points.

In the section 2.2, we stated that the interpolation polynomials need not converge to
the interpolated function f , though we refine the division of the interval 〈a, b〉 more and
more (see Example 2.2.2). The approximation by cubic splines is much better. Namely, let
the approximated function be f ∈ �4(〈a, b〉), a = x0 < x1 < . . . < xn = b is the division of
the interval 〈a, b〉 to subintervals of the length hi = xi+1 − xi, i = 0, 1, . . . , n− 1, such that
max hi
minhi

≤ K. Let us denote h = max0≤i≤n−1 hi.

33

0.5 1 2 3

0

1

2

0.5 1 2 3

0

1

2

The complete cubic spline The natural cubic spline

0.5 1 2 3

0

1

2

0.5 1 2 3

0

1

2

The cubic spline of the 3rd type The periodic cubic spline

0.5 1 2 3

0

1

2

The common graph of the previous cubic splines

Figure 2.4: Example 2.4.1

If S(x) is the complete cubic spline (end conditions of the first type), which interpolates
the function f on 〈a, b〉, then the following estimate is valid for all x ∈ 〈a, b〉 and k = 0, 1, 2, 3,

|f (k)(x) − S(k)(x)| ≤ CKh4−k, (2.4.5)

where C is a constant independent on x and on the division of the interval 〈a, b〉. Conse-
quently, for h → 0 we obtain a good approximation of the function and its derivatives up
to the third order on the whole interval 〈a, b〉.

A similar statement is valid also for the cubic spline with the end conditions of the third
type. The natural cubic spline (end conditions of the second type) doesn’t demand any
information about derivatives of the interpolated function, but the error of the approxima-
tion near the ends of the interval 〈a, b〉 is not better then O(h2) and, in general, it doesn’t
approximate the second derivative at all.

34

On Fig. 2.5, one can see a comparison of Runge’s function and its approximation by
cubic splines. Compare also with Fig. 2.2 and Fig. 2.3.

-4 -2 2 4
x

-0.5

0.5

1

y

Figure 2.5: The approximation of Runge’s function by cubic splines.

More theory about the approximation by splines can be found in [4].

2.5 Difference formulas

In calculus we often compute derivative of a given function analytically according to simple
rules. This becomes laborious for more complicated functions and for derivatives of higher
order. These rules cannot be used at all for differentiating functions given by a table of
values, which is a typical situation when the function is a result of numerical integration.
In this case we replace the given function f(x) by its interpolation polynomial φ(x) and
we consider the derivative of this polynomial as the approximation of the derivative of the
given function.

Let us approximate the function f(x) by the Lagrange interpolation polynomial (2.2.2).
The first derivative in x is formally

L′
n(x) =

n∑
i=0

f(xi)
ω′

n(xi)

(
ω′

n(x)
x− xi

− ωn(x)
(x− xi)2

)
. (2.5.1)

This result is not good for practical computation. In most cases we want to evaluate the
derivative at a given node of an equidistant grid. This is best done by difference formulas
as shown in the next section.

2.5.1 Difference formulas for equidistant grid

We want to approximate the derivative of a function given by a table of values in an
equidistant grid. To find the derivative at a point xj with the distance between the nodes
h = xi+1 − xi, i = 0, 1, . . . , n − 1, it is easy to find that in (2.5.1) the second term in
parenthesis vanishes and the first term after dividing by ω′

n(xi) is in the form Ci/h, thus
the difference formula for the first derivative at xj can be written as

L′
n(xj) =

1
h

n∑
i=0

Cjifi , (2.5.2)

where we denote fi = f(xi).

35

To estimate the error of this approximation we must use some additional information
about the function. If the function has n+ 1 continuous derivatives in the interval [x0, xn]
and f (n+2)(x) exists for all x ∈ (x0, xn) then the error can be estimated by differentiating
(2.2.3). The derivative is evaluated at xj , j = 0, . . . , n, considering ω(xj) = 0, j = 0, . . . , n:

E′(xj) =
f (n+1)(ξ)
(n+ 1)!

ω′
n(xj), j = 0, . . . , n ,

where ξ depends on xj.
Difference formulas for the first derivative and for n = 1, 2, 3, 4, 5, 6 are listed in Table

2.1, the derivative is evaluated in the node whose number is underscored. The meaning of
Table 2.1 is best illustrated by the following example.

For n = 4 (five nodes) the first derivative in the second node from the left x1 is

f ′(x1) = f ′1 =
1

12h
(−3f0 − 10f1 + 18f2 − 6f3 + f4) − h4

20
f (5)(ξ)

according to formula 11 in Table 2.1.
Comparing difference formulas in Table 2.1, we see that the simplest formulas are those

for even n in middle nodes. Also their error coefficients are the lowest. Thus these formulas
are used most often.

Similarly the formulas for the second derivative are prepared. It can be shown that

L′′
n(xj) =

1
h2

n∑
i=0

Djifi . (2.5.3)

Table 2.2 shows the coefficients along with the error estimates for the second derivative
approximation using 3, 4 and 5 nodes in a similar way to Table 2.1. E.g.

f ′′(x1) = f ′′1 =
1
h2

(f0 − 2f1 + f2 + 0 · f3) − 1
12
h2f (4)(ξ)

according to formula 5 in Table 2.2. Table 2.3 shows the formulas for the third and the
fourth derivative using 4 and 5 nodes. Only the leading term in the error estimate is given
i.e. the term with the lowest power of the step size h.

2.5.2 Method of unknown coefficients

When preparing difference formulas for non-equidistant grid, it is better to use the method
of unknown coefficients instead of the Lagrange polynomial. The formula can be written as

f (k)(x) =
n∑

i=0

Cif(xi) +R(f) . (2.5.4)

36

We choose the coefficients Ci so that R(f) = 0 for f = 1;x;x2; . . . ;xn. This gives a system
of linear algebraic equations

C0 + C1 + . . .+ Cn = 0

C0x0 + C1x1 + . . .+ Cnxn = 0

(
=

dk

dxk
(x) |x=x

)
...
C0x

k−1
0 + . . .+ Cnx

k−1
n = 0

C0x
k
0 + . . .+ Cnx

k
n = k!

(
=

dk

dxk
(xk) |x=x

)
C0x

k+1
0 + . . .+ Cnx

k+1
n = (k + 1)!x

...
C0x

n
0 + . . .+ Cnx

n
n = n(n− 1) · · · (n− k + 1)xn−k .

(2.5.5)

Solving (2.5.5) gives the unknown coefficients Ci in formula (2.5.4).
As the formula is independent of a shift along x we can choose this shift so that one

node (say, x0) is zero. This simplifies the system of equations (2.5.5).

Example 2.5.1 Let us choose the nodes x0 = 0, x1 = h, x2 = 2h, i.e. n = 2. We want
to derive formula 2 in Table 2.2 using the method of unknown coefficients. Using (2.5.4)
we have (x = h)

f ′′(x) =
2∑

i=0

Ci f(xi) + R(f).

For f = 1, x, x2 we get the equation⎛⎜⎝ 1 1 1
0 h 2h
0 h2 4h2

⎞⎟⎠
⎛⎜⎝ C0

C1

C2

⎞⎟⎠ =

⎛⎜⎝ 0
0
2

⎞⎟⎠ (2.5.6)

for unknown coefficients C0, C1, C2 and this gives the coefficients of the formula C0 =
1
h2
, C1 = − 2

h2
, C2 =

1
h2
. As the right hand side of (2.5.6) does not depend on x, the

coefficients in formula 1 and 3 in Table 2.2 are the same as those in formula 2.

2.5.3 Richardson extrapolation

The error estimates of difference formulas using equidistant grid are in the form

R = Chn + O(hn+1) . (2.5.7)

The symbol O(hp) is used to express how a given quantity goes to zero for h → 0+. More
precisely, if R(h) = O(hp), then

lim
h→0+

R(h)
hp

= K �= 0. (2.5.8)

For small h we can write R(h) .= Khp or R(h) = Khp + O(hp+1). When investigating the
asymptotic behavior of the error R for h → 0+, then the term O(hn+1) in (2.5.7) goes to
zero much faster and it can be neglected.

37

If we know the order n then after computing two results Q1 and Q2 with two different
values h1 and h2 of the step h we can estimate the correct value Q with an error smaller
than that of Q1 or Q2. Using the step size h1 we find

Q1 = Q+ Chn
1 (2.5.9)

and with h2 we find
Q2 = Q+ Chn

2 . (2.5.10)

We can consider (2.5.9) and (2.5.10) as a system of two equations for two unknowns C and
Q, assuming h1 �= h2. Solving this system gives the value for Q denoted as Q12

Q12 =

(
h1
h2

)n
Q2 −Q1(

h1
h2

)n − 1
. (2.5.11)

We often use h1/h2 = 2. Then

Q12 =
4
3
Q2 − 1

3
Q1 , for n = 2 , (2.5.12)

Q12 =
16
15
Q2 − 1

15
Q1 , for n = 4 . (2.5.13)

Here Q12 represents the estimate of the correct value of Q based on values Q1 and Q2 (its
error is O(hn+1), that was neglected in (2.5.9) and (2.5.10)). The value Q12 can be used
for the aposteriori error estimate: the error of Qi is approximately |Qi −Q12|. This allows
the adaptive step size control to achieve the desired error.

38

Table 2.1: Difference formulas for h f ′ (equidistant grid)

Coefficients at

Multiplier x0 x1 x2 x3 x4 x5 x6 Error Formula #

1 −1 1 − 1
2 hf ′′(ξ) 1

−1 1 1
2 2

−3 4 −1 1
3 3

1
2

−1 0 1 − 1
6 h2f ′′′(ξ) 4

1 −4 3 1
3 5

−11 18 −9 2 − 1
4 6

1
6

−2 −3 6 −1 1
12 h3f (4)(ξ) 7

1 −6 3 2 − 1
12 8

−2 9 −18 11 1
4 9

−25 48 −36 16 −3 1
5 10

−3 −10 18 −6 1 − 1
20 11

1
12

1 −8 0 8 −1 1
30 h4f (5)(ξ) 12

−1 6 −18 10 3 − 1
20 13

3 −16 36 −48 25 1
5 14

−137 300 −300 200 −75 12 − 1
6 15

−12 −65 120 −60 20 −3 1
30 16

1
60

3 −30 −20 60 −15 2 − 1
60 h5f (6)(ξ) 17

−2 15 −60 20 30 −3 1
60 18

3 −20 60 −120 65 12 − 1
30 19

−12 75 −200 300 −300 137 1
6 20

−147 360 −450 400 −225 72 −10 1
7 21

−10 −77 150 −100 50 −15 2 − 1
42 22

2 −24 −35 80 −30 8 −1 1
105 23

1
60

−1 9 −45 0 45 −9 1 − 1
140 h6f (7)(ξ) 24

1 −8 30 −80 35 24 −2 1
105 25

−2 15 −50 100 −150 77 10 − 1
42 26

10 −72 225 −400 450 −360 147 1
7 27

39

Table 2.2: Difference formulas for h2 f ′′ (equidistant grid)

Coefficients at

Multiplier x0 x1 x2 x3 x4 Error Formula #

1 −2 1 −1 hf ′′′(ξ) 1
1 1 −2 1 − 1

12 h2f (4)(ξ) 2
1 −2 1 1 hf ′′′(ξ) 3

2 −5 4 −1 11
12 4

1 1 −2 1 0 − 1
12 h2f (4)(ξ) 5

0 1 −2 1 − 1
12 6

−1 4 −5 2 11
12 7

35 −104 114 −56 11 − 5
6 8

1
12

11 −20 6 4 −1 1
12 h3f (5)(ξ) 9

−1 4 6 −20 11 − 1
12 11

11 −56 114 −104 35 5
6 12

−1 16 −30 16 −1 1
180 h4f (6)(ξ) 10

Table 2.3: Difference formulas for h3 f ′′′ and h4 f (4) (equidistant grid)

Coefficients at

Multiplier x0 x1 x2 x3 x4 Error Formula #

−1 3 −3 1 − 3
2 1

1 −1 3 −3 1 − 1
2 hf (4)(ξ) 2

−1 3 −3 1 1
2 3

−1 3 −3 1 3
2 4

−5 18 −24 14 −3 7
4 5

−3 10 −12 6 −1 1
4 6

1
2

−1 2 0 −2 1 − 1
4 h2f (5)(ξ) 7

1 −6 12 −10 3 1
4 8

3 −14 24 −18 5 7
4 9

1 −4 6 −4 1 −2 10
1 −4 6 −4 1 −1 11

1 1 −4 6 −4 1 1 hf (5)(ξ) 12
1 −4 6 −4 1 2 13
1 −4 6 −4 1 − 1

6 h2f (6)(ξ) 14

40

2.6 Quadrature formulas

If we know the anti-derivative F (x) to a given function f(x) on some interval [c, d] then we
can compute the definite integral using the Newton’s formula∫ d

c
f(x)dx = F (d) − F (c). (2.6.1)

Usually it is not possible to find the anti-derivative in an analytic form (using elementary
functions). Then we must evaluate the definite integral approximately. We approximate
the given function f(x) by the interpolation function φ(x), then∫ d

c
f(x)dx .=

∫ d

c
φ(x)dx. (2.6.2)

The interpolation polynomial φ(x) can be written in the form (2.1.4). Assume we can
compute the integrals ∫ d

c
Φi(x)dx = ci, i = 0, 1, . . . , n (2.6.3)

analytically. The coefficients ci do not depend on the choice of the function f(x), they can
be evaluated beforehand and then used for integrals (2.6.2) for any f(x). Putting (2.6.3)
into (2.6.2), the formula for numerical integration can be written as∫ d

c
f(x)dx ≈ c0f(x0) + c1f(x1) + · · · + cnf(xn) . (2.6.4)

2.6.1 Equidistant nodes - Newton-Cotes formulas

Choosing polynomials for φi(x) we get the Lagrange interpolation polynomial φ(x). For
practical computation it is convenient to choose the equidistant grid

xi = a+ ih, i = 0, 1, 2, . . . , n . (2.6.5)

To evaluate (2.6.2), the relative position of the nodes (2.6.5) and the interval [c, d] can be
arbitrary. To get a small approximation error it turns out that two cases are convenient:

• closed formulas: c = x0, d = xn;

• open formulas: c = x0 − h, d = xn + h.

The coefficients c0, c1, . . . , cn in (2.6.4) are given in Table 2.6.1 for various n for closed
formulas and for d−c = 1. The reader is invited to derive the coefficients for open formulas
using the method of unknown coefficients (see below).

For n = 1 the closed Newton-Cotes formula is called the trapezoidal rule:∫ d

c
f(x)dx =

d− c

2
(f(c) + f(d)) − (d− c)3

12
f ′′(ξ) (2.6.6)

and for n = 2 it is called the Simpson’s rule:∫ d

c
f(x)dx =

d− c

6

(
f(c) + 4f

(
c+ d

2

)
+ f(d)

)
−

(
d− c

2

)5 f IV (ξ)
90

. (2.6.7)

41

Table 2.4: Coefficients of closed Newton-Cotes formulas

n i = 0 1 2 3 4 5 6

1 2ci = 1 1

2 6ci = 1 4 1

3 8ci = 1 3 3 1

4 90ci = 7 32 12 32 7

5 288ci = 19 75 50 50 75 19

6 840ci = 41 216 27 272 27 216 41

If we divide the interval [c, d] into m equal parts of length h = (d− c)/m and denoting

x0 = c, x1 = c+ h, . . . , xm = d,

we can use the trapezoidal rule to each part [xi, xi+1] and we can sum up the integrals∫ d

c
f(x)dx =

h

2
(f(x0) + 2f(x1) + 2f(x2) + . . .+ 2f(xm−1) + f(xm)) −

−h
3

12
(
f ′′(ξ1) + f ′′(ξ2) + . . .+ f ′′(ξm)

)
, (2.6.8)

where ξi ∈ (xi−1, xi). The expression in the second bracket is equal to mf ′′(ξ), where
ξ ∈ (c, d).

Thus the formula (2.6.8), which is called the generalized trapezoidal rule, can be written
as ∫ d

c
f(x)dx =

d− c

2m
(f(c) + 2f(c+ h) + 2f(c+ 2h) + . . . (2.6.9)

. . .+ 2f(c+ (m− 1)h) + f(d)) − (d− c)3

12m2
f ′′(ξ)

and the error of the generalized trapezoidal rule is O(h2).
Similarly, dividing the interval [c, d] into 2m equal parts, we get the generalized Simp-

son’s rule ∫ d

c
f(x)dx =

d− c

6m
(f(c) + 4f(c+ h) + 2f(c+ 2h) + 4f(c+ 3h) +

+2f(c+ 4h) + . . .+ 4f(c+ (2m− 1)h) + f(d)) −
−

(
d− c

2

)5 f IV (ξ)
90m4

. (2.6.10)

Here the error is O(h4).

42

2.6.2 Method of unknown coefficients

To find the quadrature formula based on the integration of the Lagrange interpolation
polynomial we can use the method of unknown coefficients. Consider the integral (2.6.4)
where x0, x1, x2, . . . , xn is a chosen grid of nodes (not necessarily equidistant). Requiring
(2.6.4) is exact for f = 1, x, x2, . . . , xn, we get a system of linear algebraic equations for
unknown coefficients ci:

c0 + c1 + c2 + · · ·+ cn = μ0
c0x0 + c1x1 + c2x2 + · · ·+ cnxn = μ1
...
c0x

n
0 + c1x

n
1 + c2x

n
2 + · · ·+ cnx

n
n = μn

, (2.6.11)

where

μj =
∫ d

c
xjdx. (2.6.12)

Similarly as for difference formulas we can shift the grid so that e.g x0 = 0, to get a simpler
system.

Example 2.6.1 Using the method of unknown coefficients compute
∫ 2
1 f(x)dx, where the

function f is given at the points x0 = 0, x1 = 1, x2 = 3. According to (2.6.4) we have∫ 2

1
f(x) dx ≈ c0 f(0) + c1 f(1) + c2 f(3) .

Requiring this to be exact for f = 1, x, x2, we get a system of equations for the unknown
coefficients c0, c1, c2 ⎛⎜⎜⎜⎝

1 1 1

0 1 3

0 1 9

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
c0

c1

c2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1
3
2

7
3

⎞⎟⎟⎟⎠ .

The solution is c0 = − 4
18
, c1 =

13
12
, c2 =

5
36

, and thus

∫ 2

1
f(x) dx ≈ − 4

18
f(0) +

13
12

f(1) +
5
36

f(3) .

Note that the nodes x0, x1, . . . , xn and the limits of the integral c, d are fixed. Under
this assumption the condition (2.6.4) is exact for polynomials of order up to n. If, on
the other hand, we leave the nodes unfixed, and we require (2.6.11) to hold exactly for as
many polynomials f(x) = xk as possible we get the Gauss quadrature formulas. They use
non-equidistant nodes and the order of approximation is higher. See more in [25] etc.

∗ ∗ ∗

Further reading: [1], [4], [3], [25], [26].

43

Chapter 3

Numerical solution of nonlinear
algebraic equations

Numerical solution of nonlinear algebraic equations is an important problem in numerical
analysis. Nonlinear equations appear in various engineering applications, such as

• complicated chemical equilibrium,

• counter-current separation devices such as distillation and absorption columns,

• stationary simulation of a system of devices,

• replacement of parabolic or elliptic equations using finite differences,

• finding stationary states of dynamical models described by ordinary differential equa-
tions.

3.1 Equation with one unknown

3.1.1 General iteration method

To solve the equation
f(x) = 0 (3.1.1)

several iteration methods have been developed. The main idea of these methods is as
follows: Assume we know a sufficiently small interval containing a single root x = x∗ of
the equation (3.1.1). We choose an initial approximation x0 (close to the root x∗) in this
interval and we build a series of points x1, x2, . . . , xn, . . . according to the recurrent rule

xk = φk(x0, x1, . . . , xk−1). (3.1.2)

The recurrent rule (3.1.2) is constructed in such a way that (under certain assumptions) the
series {xn} converges to x∗. Various choices of the function φk (depending on the function
f) give various iteration methods.

The function φ(x) is often designed so that the wanted solution x∗ is also a solution of
an equation

x = φ(x), (3.1.3)

44

�
�

��
�

�

y

x0 x1 x2 x3 x∗� x

y = x

y = φ(x)
�

���
�

�

y

x0 x2x∗x3 x1 � x

y = x

y = φ(x)

�
��

�

�
��

�

y

x∗x0x1x2 x3� x

y = x
y = φ(x)

�

��

�
�

�

y

x2x0x
∗ x3x1 � x

y = xy = φ(x)

Figure 3.1: Course of iteration (3.1.4) for various values of φ′

where the series {xk} is constructed according to the rule

xk = φ(xk−1), k = 1, 2, (3.1.4)

Here, the function φ does not depend on the increasing index k, methods of this type are
called stationary methods.

Often, the function φ(x) is differentiable. If

|φ′(x∗)| ≤ K < 1 (3.1.5)

and if φ′ is continuous then |φ′(x)| < 1 also in some neighborhood of the root x∗ and the
successive approximations (3.1.4) converge, provided x0 is close to x∗. The smaller the
constant K the faster the convergence.

Four different cases are shown in Fig. 3.1 where the derivative φ′ has values in intervals
(0, 1), (−1, 0), (1,∞), (−∞,−1) respectively. The series converges to the root in the first
two cases only.

If we want a solution x∗ with the accuracy ε, then we stop the iteration when

K

1 −K
|xk − xk−1| < ε. (3.1.6)

The order of iteration is a measure of the rate of convergence of (3.1.4). We say that
the iteration (3.1.4) is of order m if

φ′(x∗) = φ′′(x∗) = · · · = φ(m−1)(x∗) = 0, φ(m)(x∗) �= 0. (3.1.7)

If the function φ(x) has m continuous derivatives in a neighborhood of x∗, then using the
Taylor expansion we get

φ(x) − x∗ = φ(x) − φ(x∗) = (x− x∗)φ′(x∗) +
1
2!

(x− x∗)2φ′′(x∗) + · · ·

45

· · · + 1
(m− 1)!

(x− x∗)m−1φ(m−1)(x∗) +
1
m!

(x− x∗)mφ(m)(ξ).

If the iteration is of order m we have

φ(x) − x∗ =
1
m!

(x− x∗)mφ(m)(ξ),

or for x = xk−1:

xk − x∗ =
1
m!

(xk−1 − x∗)mφ(m)(ξk).

If Mm = max |φ(m)(x)| in a neighborhood of x∗, we get

|xk − x∗| ≤ Mm

m!
|xk−1 − x∗|m. (3.1.8)

If
|x0 − x∗| < 1 and

Mm

m!
|x0 − x∗| = ω < 1,

then for m > 1 after simplification we get

|xk − x∗| ≤ ω
mk−1
m−1 , (3.1.9)

which represents a fast convergence of xk to x∗.

3.1.2 Bisection method and secant method

Before we explain simple iteration methods we discuss methods to locate the solution in a
small interval. If the function f(x) in (3.1.1) is continuous then it is sufficient to find two
points x′ and x′′ such that f(x′)f(x′′) < 0, i.e. the function f has different signs at these
two points. Then, due to the continuity of f , there is at least one root between x′ and x′′. If
there is exactly one root and not more in a given interval, we call the interval a separation
interval.

The simplest method to decrease an interval [x′, x′′] containing the root is the bisection
method. Let us denote x the center of the interval [x′, x′′] i.e. x = (x′ +x′′)/2. Then either
f(x′) · f(x) < 0 or f(x) · f(x′′) < 0. In the former case we decrease the interval to [x′, x],
in the latter case the new interval will be [x, x′′]. After n bisection steps the size of the
interval is

|x′ − x′′| = 2−nr, (3.1.10)

where r is the size of the original interval. After 10 bisection steps the interval shrinks 1024
times.

This method converges slowly but it is reliable and it is good when we have not enough
information about the precise location of the root.

If x = x∗ is a root of the equation f(x) = 0, i.e. f(x∗) = 0, and the function ψ(x) is
continuous in some neighborhood of x∗, then the equation

x = φ(x) (3.1.11)

where φ(x) = x − ψ(x)f(x) has also the root x∗. We can choose the function ψ in such a
way so that the iteration xk = φ(xk−1) for (3.1.11) converges. Let us start with one classical
method of this type, the method of regula falsi (the secant method). Suppose f , f ′ and
f ′′ are continuous and f ′ and f ′′ are non-vanishing in some neighborhood of x∗. Thus x∗ is

46

a simple root of f(x) = 0. Let f(x0)f ′′(x0) > 0 for some x0 from this neighborhood. Then
we choose the function ψ to be

ψ(x) =
x− x0

f(x) − f(x0)
. (3.1.12)

For the initial approximation we take some point x1 from the given neighborhood satisfying
f(x1)f(x0) < 0. Successive approximations are computed by

xk =
x0f(xk−1) − xk−1f(x0)

f(xk−1) − f(x0)
, k = 2, 3, (3.1.13)

Differentiating φ(x) = x − ψ(x)f(x) and using the Taylor expansion we get after simplifi-
cation

φ′(x∗) =
1
2
(x0 − x∗)2

f ′′(ξ)
f(x0)

. (3.1.14)

If x0 is sufficiently close to x∗, then

|φ′(x)| ≤ K < 1

in some neighborhood of x∗. Choosing x1 in this neighborhood the series (3.1.13) converges
to x∗. As φ′(x∗) �= 0 according to (3.1.14), the method regula falsi is of order one.

3.1.3 Newton method

One of the most frequently used methods for solving nonlinear algebraic equations is the
Newton method. We get this method when we put

ψ(x) =
1

f ′(x)
(3.1.15)

in (3.1.11). Thus we solve the iteration equation

x = x− f(x)
f ′(x)

= φ(x), (3.1.16)

which has the same root x∗ as the equation (3.1.1). Let there is a unique root x∗ in the
interval [a, b] and let the function f has continuous non-vanishing derivatives f ′ and f ′′ in
this interval. Then

φ′(x) = 1 − (f ′(x))2 − f(x)f ′′(x)
(f ′(x))2

,

and thus φ′(x∗) = 0, as f(x∗) = 0. Because |φ′(x∗)| < 1, there exists such a neighborhood
of x∗ that successive approximations

xk = xk−1 − f(xk−1)
f ′(xk−1)

, k = 1, 2, . . . (3.1.17)

converge to x∗, if we choose x0 in this neighborhood. The Newtond method is sometimes
called the method of tangents due to its geometrical meaning, see Mathematics I. Under
the above assumptions the convergence of {xk} to the solution x∗ is monotone (i.e. from
the side of x∗, where x0 was chosen so that f(x0)f ′′(x0) > 0) - show it yourself by a graph.

47

As φ′(x∗) = 0 and φ′′(x∗) is non-vanishing (in a general case) the Newton method is an
iteration method of order 2. Denoting

m = min
[a,b]

|f ′(x)|, M = max
[a,b]

|f ′′(x)|,

and assuming x0 ∈ [a, b], x∗ ∈ [a, b] and assuming f ′ a f ′′ do not change the sign in the
interval [a, b] then using the Taylor expansion and simplification we get the estimate

|xk+1 − x∗| ≤ M

2m
|xk − x∗|2. (3.1.18)

This estimate shows a fast convergence of the Newton method; for iterations close to x∗

the number of valid decimal places to the right of the decimal point approximately doubles
in each step.

The iteration (3.1.17) is sometimes (especially far away from the solution) replaced by
the iteration

xk = xk−1 − α
f(xk−1)
f ′(xk−1)

, k = 1, 2, . . . , (3.1.19)

where 0 < α ≤ 1. This is to prevent divergence for bad initial approximation.
To evaluate the derivative f ′ we can use the analytic expression or the difference formula

when the analytic differentiation is complicated or impossible. Then we approximate

f ′(xk)
.=
f(xk + h) − f(xk)

h
(3.1.20)

for a suitable small h. Then we evaluate the function f twice in each iteration.

3.2 Numerical solution of systems of nonlinear equations

A frequent problem in engineering is to find n unknowns x1, x2, . . . , xn, satisfying nonlinear
equations

f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

...
fn(x1, x2, . . . , xn) = 0.

(3.2.1)

For solving systems of nonlinear equations many iteration methods have been developed of
the type

xk+1 = Φ(xk), k = 0, 1, . . . , (3.2.2)

where xk is the k-th approximation of the vector of unknowns x = (x1, x2, . . . , xn)T .
Among the most frequently used methods are the Newton method and the generalized
secant method.

3.2.1 Newton method

Let us denote f = (f1, . . . , fn)T and the Jacobi matrix of the functions fi

J(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f1

∂x1

∂f1

∂x2
. . . ∂f1

∂xn

∂f2

∂x1
. . .

...

∂fn

∂x1

∂fn

∂x2
. . . ∂fn

∂xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.2.3)

48

For the Newton method Φ in (3.2.2) is chosen to be

Φ(x) = x − λJ−1(x)f (x), (3.2.4)

i.e.
xk+1 = xk − λkJ−1(xk)f(xk). (3.2.5)

After multiplying by the matrix J(xk) we have the form of the Newton method which is
used in practical computation

J(xk)�xk = −f(xk) (3.2.6)
xk+1 = xk + λk�xk. (3.2.7)

Here (3.2.6) is a system of n linear equations for n unknowns (the corrections) �xk. This
linear problem can be solved by method of linear algebra, see chapter 1.

The damping coefficient λk can be set to 1; then it is desirable to test, whether the
residuum decreases, i.e.

n∑
i=1

f2
i (xk+1) <

n∑
i=1

f2
i (xk).

If this condition fails, λk has to be decreased.
The Newton method for a system of equations is of order 2, similarly as for a single

equation. If J(x) is continuous in a neighborhood of x∗ and if J(x∗) is non-singular, then
the method converges, assuming the initial approximation x0 was chosen sufficiently close
to x∗. The following stop criterion is usually used: if ‖Δxk‖ < ε then xk+1 approximates
the solution x∗ with an error better than ε.

Often a modified Newton method is used, where the Jacobi matrix is evaluated in x0

only, it is inverted, and then the iterations are computed according to

xk+1 = xk − J−1(x0)f(xk), k = 0, 1, (3.2.8)

We can combine the original and the modified Newton method to use the original
method when far away from the solution and to use the modified method when close to the
solution, where the modified method has almost the same rate of convergence.

Let us illustrate the Newton method in the following example.

Example 3.2.1 Find the solution of the system of equations

f1(x) = 16x4
1 + 16x4

2 + x4
3 − 16 = 0

f2(x) = x2
1 + x2

2 + x2
3 − 3 = 0 (3.2.9)

f3(x) = x3
1 − x2 = 0.

We take x0 = (1, 1, 1) for the initial approximation. Then

f(x0) =

⎛⎜⎝ 17
0
0

⎞⎟⎠ , J(x0) =

⎛⎜⎝ 64 64 4
2 2 2
3 −1 0

⎞⎟⎠ ,

x1 = x0 − J−1(x0)f(x0) =
(

223
240

,
63
80
,
79
60

)
.

A few iterations are listed in Tab. 3.1. The fourth iteration is valid in 6 decimal digits.

49

Table 3.1: Newton method for the system 3.2.9

k x
(k)
1 x

(k)
2 x

(k)
3 f1(xk) f2(xk) f3(xk)

0 1 1 1 17 0 0
1 0.929167 0.787500 1.283333 4.791917 0.130451 0.014697
2 0.887075 0.693176 1.320865 0.645310 0.012077 0.004864
3 0.878244 0.677195 1.330610 0.001845 0.000428 0.000207
4 0.877966 0.676757 1.330855 0.000015 0.000000 0.000000
5 0.877966 0.676757 1.330855 0.000000 0.000000 0.000000

Similarly as for the Newton method for a single equation, we can evaluate the Jacobi
matrix using the difference formulas. Thus

∂fi(x)
∂xj

≈ fi(x + hej) − fi(x)
h

(3.2.10)

or ∂fi(x)
∂xj

≈ fi(x + hej) − fi(x − hej)
2h

, (3.2.11)

where ej is a unit vector with its j-th coordinate equal to 1 and h is a suitable small number.
When choosing the value for h we must consider that decreasing h increases the accuracy
of the difference formulas (3.2.10), (3.2.11) (see chapter 2), but number of valid decimal
digits in derivatives decreases (due to subtracting similar values).

Roughly speaking, for example, when working with 6 decimal digits, after taking h =
0.01, we cannot expect more than 4 valid decimal digits assuming that the number of valid
digits does not decrease in evaluation of fi.

For one iteration step of the difference version of the Newton method the left hand side
vector in (3.2.6) must be evaluated (n + 1) times when using (3.2.10), or (2n + 1) times
when using (3.2.11). The time of computation may increase by this significantly, especially
for large n.

Higher order iteration methods can be derived but they are much more complicated and
seldom used.

50

Chapter 4

Numerical solution of ordinary
differential equations - initial value
problem

Numerical integration of ordinary differential equations is a frequent task of numerical
analysis in chemical engineering problems. Numerical integration of differential equations
is used if the equations are nonlinear or if we have a large system of linear equations with
constant coefficients, where the analytical solution can be found, but it is in the form of
long and complicated expressions containing exponential functions. Numerical integration
of linear equations with non-constant coefficients is also more efficient than the analytical
solution; in the case of internal diffusion in porous catalyst with a chemical reaction of the 1.
order the analytical solution contains Bessel functions. The solution can be evaluated more
conveniently when we use numerical integration of the original equations than to evaluate
Bessel functions.

Many problems in chemical engineering involve solution of ordinary differential equa-
tions. These are dynamical problems in isotropic media and stationary problems with
a single space variable. The former include batch reactor, differential distillation, non-
stationary regime of a distillation column etc. The latter include tubular reactors and heat
exchangers.

In some chemical engineering problems dynamic balance must be solved with accumula-
tion that terms differ by several orders of magnitude. This corresponds to physical processes
where some dependent variables relax very fast while others approach the stationary state
slowly. This type of problems is called “stiff” and it is difficult to solve. Stiff problems often
arise in reactor engineering (radical reactions, complex reactions with some of them very
fast) and in system engineering (dynamic regime of a distillation column with a mixture
containing one very volatile component or one component with very low concentration).

Problems in dynamics of counter-current separation devices or systems of interacting
devices lead to systems of hundreds of ordinary differential equations. Solution of such
problems often requires special algorithms.

We shall not discuss differential-algebraic equations (DAE) that can be expressed in the
form

F (y′,y) = 0 ,

that cannot be solved in y′ . These equations appear in several chemical engineering prob-
lems and they are difficult to solve. The reader is invited to check the specialized literature

51

[2], [10], [11].

4.1 Euler method and the method of Taylor expansion

Consider a single differential equation

y′ = f(x, y) (4.1.1)

with the initial condition
y(a) = c. (4.1.2)

We want to find the solution y(x) at discrete points (nodes) a = x0 < x1 < x2 <
. . . < xN = b i.e. we want to find numbers y0 = c, y1, . . . , yN , approximating the values
y(x0), y(x1), . . . , y(xN) of the exact solution at the nodes x0, . . . , xN . We often consider the
equidistant grid, i.e. xn+1 − xn = h; n = 0, 1, . . . , N − 1 . The number h = xN−x0

N is called
the step size. The approximation yn of the exact solution y(xn) at xn is computed from
the values of the approximate solution evaluated at previous nodes. If yn+1 is evaluated
from k values yn, yn−1, . . . , yn+1−k, the method is called a k-step method. If we replace the
derivative y′ at x = xn by the difference formula using two points xn and xn+1 we get the
Euler method

yn+1 = yn + hf(xn, yn) , n = 0, 1, 2, . . . , N − 1 , (4.1.3)

with
y0 = c .

The computation using the Euler method is very easy. We can illustrate it by the following
simple example. Solve the equation y′ = y ; y(0) = 1 using the Euler method. The recurrent
relation (4.1.3) is

yn+1 = (1 + h)yn , y0 = 1 ,

i.e.
yn = (1 + h)n .

For a given x = nh we have n =
x

h
, and thus

yn = (1 + h)
x
h = [(1 + h)

1
h]x.

For h→ 0+ the approximate solution yn converges to the exact solution ex.
Denoting y(x) the exact solution, the difference

en = yn − y(xn) (4.1.4)

is called the global approximation error or the global discretization error and yn is called the
theoretical approximation of the solution. Another type of error comes from the fact that
we cannot compute the value yn exactly (on infinite number of decimal places). Denoting
ỹn the values that are computed instead of yn, the difference

rn = ỹn − yn (4.1.5)

is called the round-off error. Then the total error is given by the triangle inequality

|ỹn − y(xn)| ≤ |en| + |rn| . (4.1.6)

52

The values ỹn are called the numerical approximation. In the following we deal with the
theoretical approximation only, though the round-off errors are also important, because
they may be larger than the approximation error in some cases. We also skip the derivation
of the error estimates because it is out of the scope of this text.

If the function f(x, y) satisfies the Lipschitz condition in y, i.e. if there is a constant
L > 0 such that

|f(x, y) − f(x, y∗)| ≤ L|y − y∗| (4.1.7)

is true for x ∈ [a, b] and any y and y∗ and if the exact solution y(x) of the equation (4.1.1)
is twice differentiable in the interval [a, b], and denoting

N(x) =
1
2

max
t∈[a,x]

|y′′(t)| , (4.1.8)

then the global approximation error of the Euler method can be estimated by

|en| ≤ hN(xn)EL(xn − a) . (4.1.9)

Here

EL(x) =

⎧⎨⎩
eLx − 1
L

if L > 0

x if L = 0
(4.1.10)

.
Assuming the function f has the first partial derivatives in Ω = [a, b] × (−∞,∞) con-

tinuous then we can estimate N(x) by

2N(x) ≤ N = max
(x,y)∈Ω

|fx(x, y) + fy(x, y)f(x, y)| , (4.1.11)

where the index x and y denotes the partial derivative with respect to x and y, respectively
The estimates (4.1.9) are usually very pessimistic, which can be illustrated by the fol-

lowing example:
y′ = y , y(0) = 1 .

The exact solution is y(x) = ex. Equation (4.1.7) gives L = 1. The estimate N(x) can be
done from the exact solution, i.e.

2N(x) = ex .

According to (4.1.9) we have

|en| ≤ 1
2
hexn(exn − 1) . (4.1.12)

Table 4.1 compares this theoretical estimate with the real global approximation error for
h = 2−6.

Table 4.1: Global approximation error en and its theoretical estimate (4.1.12), h = 2−6

xn 1 2 3 4 5
yn 2.69735 7.27567 19.62499 52.93537 142.7850
en -0.02093 -0.11339 -0.46055 -1.66278 -5.6282
estimate (4.1.12) 0.03649 0.36882 2.99487 22.86218 170.9223

The estimate (4.1.9) shows that the error of the Euler method for a given x is propor-
tional to the first power of the step size h, i.e. O(h) (see 2.5.8). We say the Euler method

53

is of the first order. Thus the Richardson extrapolation can be used for an a posteriori error
estimate (see (2.5.11)).

Fig. 4.1 illustrates the behaviour of round-off error independence on h. The global
approximation error is proportional to h while the round-off error is proportional to 1/h
(the smaller the h the greater the number of arithmetic operations). As a result there is a
certain “optimal” step size hopt giving the least total error.

e

hhopt

�

�

(1)

(2)

(3)

Figure 4.1: Global approximation error
en (1), round-off error (2) and the total
error (3) for the Euler method.

We do not want to use hopt as the step size, because then the round-off error is of the
same size as the approximation error and the Richardson extrapolation cannot be used for
the estimate of the total approximation error. The only way how to estimate the round-off
error is to repeat the computation with different precision (different number of digits used
by the computer).

Advanced algorithms adjust the step size h automatically according to the local ap-
proximation error to get the final approximation with the required accuracy with a small
number of operations (see 4.2).

For special cases the method of Taylor expansion can be used. If the function f in
(4.1.1) has enough derivatives then we can write

y′′ =
d f

dx
(x, y(x)) = fx(x, y) + fy(x, y)y′ =

= fx(x, y) + fy(x, y)f(x, y) , (4.1.13)

where the index x or y denotes the partial derivative with respect to x or y resp. The third
derivative is

y′′′ = fxx + 2ffxy + fyyf
2 + fxfy + ff2

y , (4.1.14)

etc. The change in y(x) can be found by the Taylor expansion

y(xn + h) .= yn+1 = (4.1.15)

= yn + hy′(xn) +
h2

2
y′′(xn) + . . .+

hp

p!
y(p)(xn) + O(hp+1) .

The method (4.1.15) is called the method of Taylor expansion of order p. Its global error
is of order p, i.e. O(hp).

Example 4.1.1 Use the method of Taylor expansion of the third order to solve the initial
value problem

y′ =
4
x2

− y2 − y

x
, y(1) = 0 . (4.1.16)

54

Table 4.2: Solution of 4.1.16 using Taylor expansion of order 3.

x 1 1.2 1.4 1.6 1.8 2
h = 0.2 0 0.576000 0.835950 0.920226 0.920287 0.884745
h = 0.1 y(x) 0 0.581645 0.838338 0.919251 0.918141 0.882631
h = 0.05 0 0.582110 0.838443 0.919062 0.917872 0.882386

Richardson extrapolation (see 2.5.11) at x = 2 :
p = 3 , h1 = 0.1 , h2 = 0.05 ,

y1(2) = 0.882631 , y2(2) = 0.882386 ⇒ y12(2) = 0.882351

Exact solution: y(x) =
2(x4 − 1)
x(x4 + 1)

, y(2) = 0.882353

Solution:
According to (4.1.15) for n = 0, 1, 2, . . . we have

y(xn + h) .= yn+1 = yn + hy′(xn) +
h2

2
y′′(xn) +

h3

3!
y′′′(xn) .

Here

x0 = 1 , y0 = 0 ,

y′(xn) =
4
x2

n

− y2
n − yn

xn
,

y′′(xn) = − 8
x3

n

− 2yny
′(xn) − y′(xn)xn − yn

x2
n

= − 12
x3

n

− 6yn

x2
n

+
3y2

n

xn
+ 2y3

n ,

y′′′(xn) =
24
x4

n

− 2(y′(xn))2 − 2yny
′′(xn) − y′′(xn)x2

n − 2(y′(xn)xn − yn)
x3

n

=

=
12
x4

n

− 42yn

x3
n

+
21y2

n

x2
n

− 12y3
n

xn
− 6y4

n .

Table 4.2 shows the computed values of the solution at the point xN = 2 for various N
(and thus for various h = 1/N).

It is obvious that this method is not suitable generally, because analytical differentiation
may be very laborious for higher orders. This method can be used even for systems of differ-
ential equations, but the complexity of the derivation increases. Richardson extrapolation
can be used as well as illustrated in Table 4.2.

4.2 Runge-Kutta methods

The analytical differentiation needed for the Taylor expansion as shown in the previous
section is a principal obstacle for most practical problems. We show a method with similar
properties (order of approximation) as the Taylor expansion method, but without the need
of analytical differentiation. Let us write the increment in the form

yn+1 = yn + hΦ(xn, yn;h) (4.2.1)

55

where yn ∼ y(xn) . For the Euler method we had Φ(x, y;h) = f(x, y). Assume the increment
function Φ in the form

Φ(x, y;h) = a1f(x, y) + a2f
(
x+ p1h, y + p2hf(x, y)

)
(4.2.2)

where the constants a1, a2, p1 and p2 are to be found so that the method approximates the
solution as good as possible. Put Φ from (4.2.2) into (4.2.1) and expand in powers of h
(with x = xn, y = yn) :

yn+1 = yn + h
{
(a1 + a2)f(x, y) + ha2

(
p1fx(x, y) + p2fy(x, y)f(x, y)

)
+ O(h2)

}
. (4.2.3)

We want the expansion (4.2.3) to agree with the Taylor expansion

y(xn + h) = y(xn) + hf(x, y) +
1
2
h2

(
fx(x, y) + fy(x, y)f(x, y)

)
+ O(h3) (4.2.4)

where y′ was replaced by f and y′′ was replaced by (4.1.13). Comparing the terms linear
in h in (4.2.3) and (4.2.4) we get

a1 + a2 = 1. (4.2.5)

The agreement of the terms quadratic in h (for any f(x, y)) requires

a1p1 =
1
2

, a2p2 =
1
2
. (4.2.6)

It can be shown that the agreement of cubic terms in h cannot be achieved for general
f(x, y). We have three equations (4.2.5), (4.2.6) for four unknown parameters a1, a2, p1, p2.
We can choose one of them, say a2 = α, then

a1 = 1 − α, a2 = α, p1 = p2 =
1
2α

(4.2.7)

where α �= 0 is a free parameter. Then the equation (4.2.1) using (4.2.2) has the form

yn+1 = yn + (1 − α)hf(xn, yn) + αhf
(
xn +

h

2α
, yn +

h

2α
f(xn, yn)

)
+ O(h3) . (4.2.8)

The result (4.2.8) can be conveniently written in successive equations

k1 = hf(xn, yn)
k2 = hf(xn + h

2α , yn + 1
2αk1)

yn+1 = yn + (1 − α)k1 + αk2 .

The cases α = 1
2 and α = 1 are well known and they are called improved Euler method or

Heun method :
k1 = hf(xn, yn)
k2 = hf(xn + h, yn + k1)
yn+1 = yn + 1

2(k1 + k2)
(4.2.9)

and modified Euler method

k1 = hf(xn, yn)
k2 = hf(xn + h

2 , yn + 1
2k1)

yn+1 = yn + k2 .

(4.2.10)

56

In some texts (4.2.9) is called modified Euler method. Both of these methods have the
local error O(h3) , and the global error O(h2) . They belong to the family of Runge-Kutta
methods as the simplest examples of them. More complicated and more accurate methods
can be derived by a similar approach. We mention some representatives of them of order
3, 4, and 5. A general Runge-Kutta method can be written in successive equations (with
x = xn, y = yn):

k1 = hf(x, y)
k2 = hf(x+ α1h, y + β11k1)
k3 = hf(x+ α2h, y + β21k1 + β22k2)
...
kj+1 = hf(x+ αjh, y + βj1k1 + βj2k2 + · · · + βjjkj)
yn+1 = yn + γ1k1 + γ2k2 + · · · + γj+1kj+1 .

(4.2.11)

The method (4.2.11) can be written in the form of Table 4.3. This table also lists some
Runge-Kutta methods and their order (global error).

If we want to get the order m with the Runge-Kutta method then for m = 2, 3, 4 we
need 2, 3, 4 evaluations of the right hand side of the differential equation. For m = 5 we need
at least 6 evaluations and for m > 4 we need more than m evaluations. Thus the methods
of order greater than 4 are seldom used, because their advantages become important only
when very high accuracy is needed.

Sometimes the solution has a different character for different values of the independent
variable x, and a different step size h should be used to get the desired accuracy. If we choose
the step size to be the minimum of all the required step sizes, the accuracy is achieved, but
in some parts we integrate unnecessarily accurate. This is not an effective approach. Single
step methods (as Runge-Kutta e.g.) allow adaptive adjustment of the integration step size
according to the character of the solution. A whole class of methods have been developed
where the error in each step is estimated from the computed ki, where the number of these
ki must be more than the minimal number of them. The first method of this kind was
developed by Merson, others were found e.g. by Fehlberg. The Merson method is of order
4 and it uses 5 evaluations of the right hand side f(x, y). It can be written as follows:

k1 = hf(x0, y0) y1 = y0 +
k1

3

k2 = hf(x0 +
h

3
, y1) y2 = y0 +

k1 + k2

6

k3 = hf(x0 +
h

3
, y2) y3 = y0 + 0.125k1 + 0.375k3

k4 = hf(x0 + 0.5h, y3) y4 = y0 + 0.5k1 − 1.5k3 + 2k4

k5 = hf(x0 + h, y4) y5 = y0 +
k1 + 4k4 + k5

6
.

(4.2.12)

For small h assuming f(x, y) approximated by

f(x, y) = Ax+By + C (4.2.13)

Merson derived that the error or y4 is −h5y(5)

120 and the error of y5 is −h5y(5)

720 . Then we can
estimate the error of y5 by

E =
1
5
(y4 − y5) . (4.2.14)

57

Table 4.3: Overview of Runge-Kutta methods

Scheme of Runge-Kutta methods

α1 β11

α2 β21 β22

α3 β31 β32 β33...
αj βj1 βj2 . . . βjj

γ1 γ2 . . . γj γj+1

Euler

improved (4.2.8) O(h2) modified (4.2.9) O(h2)

1 1 1
2

1
2

1
2

1
2 0 1

Heun O(h3) Kutta O(h3)

1
3

1
3

1
2

1
2

2
3 0 2

3 1 −1 2

1
4 0 3

4
1
6

2
3

1
6

Runge-Kutta order 4

standard O(h4) three eighth O(h4)

1
2

1
2

1
3

1
3

1
2 0 1

2
2
3 − 1

3 1
1 0 0 1 1 1 −1 1

1
6

1
3

1
3

1
6

1
8

3
8

3
8

1
8

Butcher order 5 O(h5)

1
4

1
4

1
4

1
8

1
8

1
2 0 − 1

2 1
3
4

3
16 0 0 9

16

1 − 3
7

2
7

12
7 − 12

7
8
7

7
90 0 32

90
12
90

32
90

7
90

58

If this estimate E is less than the desired error ε then the current step size is suitable. If
not, we decrease the step size (by taking one half of it) and we recompute the last step. If
|E| < ε

32 we can increase the step size (by taking its double). Instead of taking one half or
the double of the step size, we can predict the optimal step size by

hnew = 0.8hold

(ε

|E|
)0.2

. (4.2.15)

The factor 0.8 is used to avoid the case when after prolongation we have to shorten the
step size.

Each Runge-Kutta method can be used not just for a single differential equation but
also for a system of differential equations of the first order. Then y, f, ki become vectors.
They can be used for equations of a higher order as well. Such a system can be converted
into a system of the first order as illustrated by the following example. The equation

y′′ = f(x, y, y′)

is equivalent to the system
y′ = z z′ = f(x, y, z) .

There are special Runge-Kutta methods for equations of the 2. order. Their advantages
are weak so they are seldom used.

4.3 Multi step methods

When using single-step methods as described in the previous section, we do not utilize the
course of the solution found before. After each step we forget all the information. This
is not effective. Multi step methods have been designed to utilize a few last points of the
solution.

The solution is computed at an equidistant grid of points with the step size h. We
denote xi = x0 + ih , yi ≈ y(xi) , fi = f(xi, yi) . A general linear multi-step method can be
written as

αkyn+k + αk−1yn+k−1 + · · · + α0yn = h
(
βkfn+k + βk−1fn+k−1 + · · · + β0fn

)
(4.3.1)

assuming αk �= 0 , α2
0+β2

0 > 0 . This is called a k-step method. Let us denote the polynomial

�(ξ) = αkξ
k + · · · + α1ξ + α0 . (4.3.2)

A necessary condition for the convergence (i.e. for h→ 0+ we approach the exact solution)
of the linear multi-step method (4.3.1) is: all the roots of the polynomial �(ξ) must be in
absolute value less than 1, or equal to 1 but then they must be of multiplicity 1. This is
called the stability condition of the method. Methods that fail this condition are useless.

Let us define the adjoint differential operator

L[y(x);h] = αky(x+ kh) + αk−1y(x+ (k − 1)h) + · · · + α0y(x)−
−h

(
βky

′(x+ kh) + βk−1y
′(x+ (k − 1)h) + · · · + β0y

′(x)
)
.

(4.3.3)

Expanding y(x+mh) and y′(x+mh) by the Taylor polynomial around x we get

y(x+mh) = y(x) +mhy′(x) +
1
2
m2h2y′′(x) + · · · + 1

i!
mihiy(i)(x) + · · ·

hy′(x+mh) = hy′(x) +mh2y′′(x) +
1
2
m2h3y′′′(x) + · · · + 1

i!
mihi+1y(i+1)(x) + · · ·

59

Put these expansions into (4.3.3) and we have

L[y(x);h] = C0y(x) +C1hy
′(x) + · · · + Cqh

qy(q)(x) + · · · (4.3.4)

where the coefficients Cq satisfy:

C1 = α0 + α1 + · · · + αk

C1 = α1 + 2α2 + · · · + k αk − (β0 + β1 + · · · + βk)
...

Cq = 1
q!(α1 + 2qα2 + · · · + kqαk) − 1

(q−1)! (β1 + 2q−1β2 + · · · kq−1βk).

(4.3.5)

We say that the differential operator L is of order p if

C0 = C1 = · · · = Cp = 0, Cp+1 �= 0. (4.3.6)

Thus
L[y(x);h] = O(hp+1) (4.3.7)

and the local error is O(hp+1), the global error is O(hp) . The process of finding the coeffi-
cients α and β so that (4.3.6) is satisfied is called the method of unknown coefficients. A
method of order p approximates exactly a solution which is a polynomial of order not more
than p. A necessary condition for getting the exact solution as h → 0+ is that the order
of the adjoint differential operator is at least 1, i.e. C0 = 0 and C1 = 0. For k odd, the
order of a stable operator cannot be greater than k + 1. For k even, the order of a stable
operator cannot be greater than k + 2. To get p = k + 2 all the roots of �(ξ) must be on
the unit circle (in absolute value equal to 1) and the formula is designed so that as many
as possible of the constants C0, C1, C2, . . . vanish.

4.4 Adams formulas

We present some special multi-step methods. Adams formulas have only two nonzero
coefficients αi in (4.3.1), namely the coefficients with the highest index. They split into
two groups, explicit Adams-Bashforth formulas (with βk = 0) and implicit Adams-Moulton
formulas (with βk �= 0). Adams-Bashforth formulas are often written in the form

yp+1 − yp = h
q∑

i=0

βqifp−i . (4.4.1)

The coefficients βqi are listed in Table 4.4. For q = 0 we have the Euler method. For q = 1
we have

yp+1 = yp + h
(3fp − fp−1)

2
. (4.4.2)

It is important that the wanted value yp+1 appears in (4.4.1) linearly and thus can be
expressed explicitly. On the other hand the Adams-Moulton methods are implicit

yp − yp−1 = h
q∑

i=0

βqifp−i . (4.4.3)

60

Table 4.4: Adams formulas

Adams-Bashforth

i 0 1 2 3 4 5
β0i 1

2β1i 3 −1
12β2i 23 −16 5
24β3i 55 −59 37 −9

720β4i 1901 −2774 2616 −1274 251
1440β5i 4227 −7673 9482 −6798 2627 −425

Adams-Moulton

i 0 1 2 3 4 5

β0i 1
2β1i 1 1

12β2i 5 8 −1
24β3i 9 19 −5 1

720β4i 251 646 −264 106 −19
1440β5i 475 1427 −798 482 −173 27

Here the wanted value yp appears also in the nonlinear right hand side in fp. To solve the
nonlinear system of (algebraic) equations (4.4.3) with y and f being vectors, we must use
some iteration method. Often a simple iteration

ynew
p − yp−1 = hβq0f(xp, y

old
p) + h

q∑
i=1

βqifp−i (4.4.4)

is used which converges for sufficiently small h.
The coefficients for Adams-Moulton methods are given in Table 4.4. For q = 0 we have

yp = yp−1 + hfp , (4.4.5)

which can be called the “implicit Euler method”. Pro q = 1 we get

yp = yp−1 + h(fp + fp−1)/2 , (4.4.6)

which is called the trapezoidal rule (note the similarity with the formula for numerical
evaluation of a definite integral with the same name).

The global error of the Adams-Bashforth formulas (4.4.1) is O(hq+1), for Adams-
Moulton formulas (4.4.3) we get also O(hq+1). However, the order of the implicit methods
is higher by one for the same number of the node points. However, we need to iterate,
which is a disadvantage. A combination of an explicit and an implicit method gives the
“predictor - corrector” method which is a compromise. The explicit method is used as a
predictor to get the initial value of yp to use in the iteration in the implicit method, which
is compromise. When we combine the Adams-Bashforth and the Adams-Moulton method

61

of the 2nd order we get the final “predictor - corrector” method of the 2nd order

ȳ = yp−1 + h(3fp−1 − fp−2)/2
yp = yp−1 + h(f(xp, ȳ) + fp−1)/2 .

(4.4.7)

There are many predictor - corrector methods. Also besides Adams methods, there are
other methods, as Nyström methods and Milne-Simpson methods to name a few. More
details can be found in the original literature.

All the multi-step methods have one big disadvantage: it is not possible to start the
computation just with knowledge of the initial condition. These methods require the knowl-
edge of the solution (and its derivatives) in a few nodes, one of them being the point where
the initial condition is given. To get this information various means are used, we men-
tion here the two simplest ones: using the Taylor expansion when the function f is easy
to differentiate and the Runge-Kutta method otherwise. It is important to use a method
with the order not less than the order of the multi-step method used later. Using a high
order of the multi-step method has no sense if the first few points are computed with a
large error. Asymptotically (for h → 0) the resulting method would have the order of the
starting method, if it is lower than the order of the multi-step method used later. Using
multi-step methods for systems of differential equations is formally the same, now y and f
being vectors. The advantage of multi-step methods as compared to single-step methods is
that the number of evaluations of the right hand side f is much lower for the same order of
the method. The disadvantage is the need of starting values. Also it is difficult to adjust
the step size h automatically so the effectiveness of these methods is reduced especially for
cases when the solution changes its character considerably.

4.5 Numerical methods for stiff systems

Many physical problems lead to differential equations where the eigenvalues of the linearized
system differ by several orders of magnitude, or they also change during integration. Such
systems are called stiff. In the following we try to define stiff systems and we show their
properties important for numerical integration. To start with, consider a system of linear
differential equations with constant coefficients

y′ = Ay , (4.5.1)

where y = (y1, y2, y3)T and the matrix A is

A =

⎛⎜⎝ −0.1 −49.9 0
0 −50 0
0 70 −120

⎞⎟⎠ . (4.5.2)

The reader is invited to write the general solution of (4.5.1). For initial condition

y1(0) = 2 y2(0) = 1 y3(0) = 2 . (4.5.3)

we get

y1(x) = e−0.1x + e−50x , y2(x) = e−50x , y3(x) = e−50x + e−120x . (4.5.4)

The eigenvalues of the matrix A are

λ1 = −120 , λ2 = −50 , λ3 = −0.1 . (4.5.5)

62

The solutions y1, y2 and y3 have quickly decreasing terms corresponding to the eigenval-
ues λ1 and λ2, which are negligible after a short period of x. After this short transient
period, where the terms corresponding to λ1 and λ2 are not negligible, we could con-
tinue with numerical integration with a step size h determined by approximation of the
term corresponding to λ3. For a stable numerical integration most methods require that
|hλi| , i = 1, 2, . . . be bounded by some small value roughly between 1 and 10 (here h is the
integration step size and λi are the eigenvalues of the right hand side). As λ1 is the largest
in absolute value of the eigenvalues of the matrix A, the stability of the method is given by
the value |120h|. E.g. for the Euler method we need |120h| < 2, giving the largest possible
step size being h = 1/60.

Let us derive this result for the system (4.5.1) with the matrix (4.5.2). The Euler
method is

yn+1 = yn + hAyn = (E + hA)yn . (4.5.6)

As the eigenvalues of the matrix A are in the left complex half-plane then for n → ∞ it
should be that yn → 0. This is governed by the eigenvalues of the matrix

(E + hA) =

⎛⎜⎝ 1 − 0.1h −49.9h 0
0 1 − 50h 0
0 70h 1 − 120h

⎞⎟⎠ . (4.5.7)

The eigenvalues of the matrix (E + hA) are λ1 = 1 − 0.1h, λ2 = 1 − 50h, λ3 = 1 − 120h.
To get yn → 0 it is necessary that all the eigenvalues of the matrix (E + hA) lie inside the
unit circle. This gives the condition h < 1

60 .
Although the term corresponding to λ1 is negligible, the stability condition requires a

very small integration step size h. As a result the integration is slow, often unnecessarily
precise, without the possibility to integrate less precise. We say a system of differential
equations is stiff if it is stable i.e. its eigenvalues have negative real parts and these differ
by several orders of magnitude. If the system y′ = f(y) of ordinary differential equations

is nonlinear, it is characterized by the eigenvalues the Jacobi matrix {∂f
∂y } of the right

hand side. If in a linear system the matrix A depends on the independent variable x, i.e.
A = A(x), then the eigenvalues may differ with x similarly as in the nonlinear system.

Dahlquist defined the so called A-stability (absolute stability) this way. Consider the
scalar equation

y′ = λy (4.5.8)

with Reλ < 0. We say a numerical integration method generating the sequence yn
.= y(xn)

with the integration step size h is A-stable (absolutely stable) if in the recurrent relation
describing the method used to solve (4.5.8)

yn+1 = P (hλ)yn (4.5.9)

the quantity P (depending on hλ) satisfies

|P (hλ)| < 1 (4.5.10)

for arbitrarily large step size h, assuming Reλ < 0. This definition means

|yn| → 0 , n→ ∞ (4.5.11)

63

for any h > 0 assuming Reλ < 0. There are modifications of this definition, e.g. a method
is called L-stable if

|P (hλ)| → 0 , h→ ∞ . (4.5.12)

The problem of stiff systems has two sides: stability and accuracy. If we use a method that
is not absolutely stable, i.e. the region of hλ satisfying (4.5.10) does not cover the entire
left complex half plane, eigenvalues with large negative part require a very small integration
step size, so that the integration is not effective. If an absolutely stable method is used
there are no problems with stability, but the term corresponding to the largest eigenvalues
in absolute value may be approximated not very precisely for some values of the step size h.

4.5.1 Semi-implicit single-step methods

It is easy to show that none of the explicit Runge-Kutta methods presented in Table 4.3 is
A-stable. E.g. consider the improved Euler method (4.2.9). For the differential equation
(4.5.8) and the step size h we get

yn+1 =
[
1 + hλ+

1
2
h2λ2

]
yn = P (hλ)yn . (4.5.13)

It is easy to show that for hλ = −4 we have P (hλ) = 5 and thus this method is not A-
stable. Most of the A-stable methods are implicit, with the disadvantage to solve a system
of nonlinear algebraic equations in each integration step using some iteration method. The
Newton method (or a similar iteration method) can be used. The initial approximation
is usually good enough to use 1 to 3 iterations in each step. We show an example of a
semi-implicit Runge-Kutta method without the need of iteration.

Consider an autonomous system of differential equations

y′ = f(y).

The method can be described by this algorithm:

k1 = h
(
E − ha1J(yn)

)−1
f(yn)

(4.5.14)
k2 = h

(
E − ha2J(yn + c1k1)

)−1
f(yn + b1k1)

yn+1 = yn + w1k1 + w2k2. (4.5.15)

Here J(y) = {∂f/∂y} is the Jacobi matrix of the right hand side. The coefficients
a1, a2, b1, c1, w1 and w2 are shown in Table 4.5. All these methods are A-stable as can
be verified by applying them to the equation (4.5.8). Note that to find k1 and k2 the evalu-
ation of the Jacobi matrix is needed (for the Rosenbrock method of order 3 two evaluations
are needed) and also solving a system of linear algebraic equations (instead of computing
the inverse matrix) is necessary. No iteration method is needed unlike the implicit methods.

There are many semi-implicit Runge-Kutta methods, here we showed only three of them.
One of the first A-stable methods is the trapezoidal rule (4.4.6). Substituting into (4.5.8)
we get

P (hλ) =
1 + hλ/2
1 − hλ/2

. (4.5.16)

For hλ from the left complex half-plane we have |P (hλ)| < 1 and thus the method is A-
stable. However for |hλ| → ∞ we have |P (hλ)| → 1, and thus this method is not L-stable.

64

Table 4.5: Coefficients of semi-implicit Runge-Kutta methods
Method Rosenbrock Rosenbrock Calahan
order 2. 3. 3.
a1 1 −√

2/2 1.40824829 0.788675134
a2 1 −√

2/2 0.59175171 0.788675134
b1 (

√
2 − 1)/2 0.17378667 0.788675134

c1 0 0.17378667 0
w1 0 -0.41315432 0.75
w2 1 1.41315432 0.25

Note that we have to use some iteration method to find yp from (4.4.6) if the function f is
nonlinear.

Another example of an A-stable method is the implicit Euler method as a special case
of Adams-Moulton methods for k = 0 (see Table 4.3). This method is L-stable (verify
it yourself) but its order in only 1 and thus it is not very effective. For solution of stiff
problems free software is available, let us mention LSODE as an example.

∗ ∗ ∗
For further study see [1], [5], [9], [10], [12], [16], [17], [26].

65

Chapter 5

Boundary value problem for
ordinary differential equations

Nonlinear boundary value problems for ordinary differential equations often appear in chem-
ical engineering. Examples being all models based on diffusion or heat conduction with
exothermic chemical reaction, adsorption, ion exchange etc. Another important nonlinear
boundary value problems are models including radiation.

The entire field of nonlinear boundary value problems is very large, often special prop-
erties of particular cases must be utilized. This chapter cannot cover all the cases, we try
to show some typical approaches that can be used for a large number of boundary value
problems. More interested readers can find detailed information in specialized literature.

Methods for nonlinear boundary value problems split into two main groups: difference
methods and shooting methods. Besides, there are hybrid methods, e.g. multiple shooting
method, collocation method, spline method etc.

5.1 Difference methods

We begin with a 2-point boundary value problem for one differential equation of the 2.nd
order

y′′ = f(x, y, y′) (5.1.1)

with linear boundary conditions

α0 y(a) + β0 y
′(a) = γ0 , (5.1.2)

α1 y(b) + β1 y
′(b) = γ1 . (5.1.3)

We divide the interval [a, b] by an equidistant grid of points (nodes) x0 = a, x1, . . . , xN =
b, xi = a+ i h, h = (b−a)/N . The values of the wanted solution y(x) will be approximated
by the values yi ∼ y(xi) in the nodes xi. The differential equation (5.1.1) is replaced by
the difference formula at xi

yi−1 − 2yi + yi+1

h2
= f

(
xi, yi,

yi+1 − yi−1

2h

)
, i = 1, 2, . . . , N − 1. (5.1.4)

Difference formulas with the error O(h2) were used for both derivatives. Finally we must
replace the boundary conditions (5.1.2), (5.1.3). We start with the simplest approximation

α0y0 + β0
y1 − y0

h
= γ0 , (5.1.5)

66

Figure 5.1: Appearance of unknowns in (5.1.4), (5.1.5), (5.1.6)
y0 y1 y2 . . . yN−1 yN

(5.1.5) x x
(5.1.4), i = 1 x x x
(5.1.4), i = 2 x x x

...
.

...
.

...
.

(5.1.4), i = N − 1 x x x
(5.1.6) x x

α1yN + β1
yN − yN−1

h
= γ1 , (5.1.6)

with the approximation error O(h). The equations (5.1.4), (5.1.5), (5.1.6) form a system of
N +1 nonlinear algebraic equations for N +1 unknowns y0, y1, . . . , yN . This system can be
solved using some method from chapter 3.2, usually using the Newton method. To get more
precise results we choose the step-size h small, but then the number of equations N + 1 is
large. Fortunately not all equations contain all unknowns, the scheme of their appearance
is 3-diagonal and thus also the Jacobi matrix used in the Newton method is 3-diagonal,
i.e. it has zeroes besides 3 diagonals, see Fig. 5.1. A modified Gauss elimination is used to
solved the system of linear algebraic equations in each step of the Newton method. This
modified Gauss elimination uses only the nonzero elements on the three diagonals, the zero
elements are not considered, they do not even have to be stored in memory. This method
is called factorization.

If boundary conditions (5.1.2), (5.1.3) contain derivatives, i.e. β0 �= 0 or β1 �= 0, then
approximations (5.1.5), (5.1.6) with the error O(h) spoil the order of approximation (5.1.4)
with the error O(h2). When we use differential formula with the error O(h2) for boundary
conditions too, we have

α0y0 + β0
−3y0 + 4y1 − y2

2h
= γ0 , α1yN + β1

3yN − 4yN−1 + yN−2

2h
= γ1 . (5.1.7)

This approximation, however, changes the 3-diagonal scheme by two new appearances, one
in the first row, the other in the last one. The corresponding matrix (in the Newton method)
can still be transformed to a 3-diagonal matrix by adding an appropriate multiple of the
2-nd row to the 1.st row and similarly by adding an appropriate multiple of the N -the row
to the N + 1-st row.

As central difference formulas have lower error, a method of fictitious nodes is used for
the approximation of the boundary condition. Then the boundary condition at x = a is
approximated by

α0y0 + β0
y1 − y−1

2h
= γ0 (5.1.8)

and the approximation (5.1.4) of the differential equation is considered also for i = 0.
The new unknown y−1 can be expressed from (5.1.8) and the appearance scheme is again
3-diagonal.

67

If the equation (5.1.1) contains no first derivative, i.e. we have the equation

y′′ = f(x, y) (5.1.9)

and if the boundary conditions are

y(a) = γ0 , y(b) = γ1 , (5.1.10)

we can use the 4-th order approximation instead of the 2-nd order approximation used
above, namely

yi+1 − 2yi + yi−1 =
h2

12
(fi−1 + 10fi + fi+1) . (5.1.11)

Here fi = f(xi, yi). If we want to get the 4-th order approximation even for the equa-
tion containing the first derivative, we have to use a difference formula using more nodes.
When we approximate the second derivative according to formula 10 in Table 2.2 and we
approximate the first derivative according to formula 12 in Table 2.1, we get

−2yi−2 + 32yi−1 − 60yi + 32yi+1 − 2yi+2

24h2
= f

(
xi, yi,

yi−2 − 8yi−1 + 8yi+1 − yi+2

12h

)
,

i = 2, 3, . . . , N − 2 .

For i = 1 and i = N − 1 we use the non-symmetric formulas and we approximate the
boundary conditions by formulas of order high enough. The scheme of appearance is no
more 3-diagonal and the computation time increases.

5.1.1 Difference approximation for systems of differential equations of
the first order

Consider a system of differential equations of the first order

y′j = fj(x, y1, . . . , yn) , j = 1, . . . , n (5.1.12)

with 2-point boundary condition

gi(y1(a), . . . , yn(a), y1(b), . . . , yn(b)) = 0 , i = 1, . . . , n . (5.1.13)

After approximating the equations (5.1.12) in the equidistant grid of nodes x0 = a, x1, . . . , xN =
b we get

yi+1
j − yi

j

h
= fj

(
xi+1 + xi

2
,
yi+1
1 + yi

1

2
, . . . ,

yi+1
n − yi

n

2

)
, (5.1.14)

i = 0, 1, . . . , N − 1 ; j = 1, 2, . . . , n ;

and after approximating the boundary condition (5.1.13) we have

gi(y0
1, . . . , y

0
n, y

N
1 , . . . , y

N
n) = 0 , i = 1, . . . , n . (5.1.15)

Here we denote yi
j ∼ yj(xi) = yj(a+ ih), h = (b− a)/N . We get the system of n · (N + 1)

nonlinear equations (5.1.14),(5.1.15) for n · (N + 1) unknowns

(y0
1, y

0
2 , . . . , y

0
n, y

1
1, . . . y

1
n, . . . , y

N
1 , . . . , y

N
n) . (5.1.16)

The equations (5.1.14), (5.1.15) can be ordered as follows:

68

1) All the boundary conditions (5.1.15) depending on values in x = a only, i.e. depending
on y0

1 , . . . , y
0
n.

2) Equations (5.1.14) for i = 0, i.e. n equations for j = 1, 2, . . . , n.

(5.1.17)3) Equation (5.1.14) for i = 1.

· · · · · · · · ·
N+1) Equation (5.1.14) for i = N − 1.

N+2) Remaining boundary conditions (5.1.15), i.e. those depending on values at x = b, i.e.
on yN

1 , . . . , y
N
n .

The scheme of appearance of such an ordered system of nonlinear equations (after order-
ing the unknowns according to (5.1.16)) has almost a multi-diagonal band structure, see
Fig. 5.2. Boundary conditions (5.1.13) with no equations containing both y(a) and y(b)
are called separated boundary conditions. The scheme of appearance has a multi-diagonal
band structure, see Fig. 5.3.

Figure 5.2: Scheme of appearance for
(5.1.17)

Figure 5.3: Scheme of appearance for sep-
arated boundary conditions

5.2 Conversion to initial value problem

The methods we are going to describe in this section are called shooting methods. Let us
remind the difference between an initial value problem and an boundary value problem.
In initial value problem the initial conditions specified in one value of the independent
variable x contain enough information to start the numerical integration. In the boundary
value problem, however, this information is divided into two (or more) pieces, each of them
specified in different x. The main idea of the shooting method is to choose the remaining
information in one x value so that we can start the integration (to shoot) and to observe,
how the boundary condition in the other x value is satisfied (how the target is hit). Let us
explain it more precisely. Consider the system of differential equations

dyi

dx
= fi(x, y1, . . . , yn) , i = 1, 2, . . . , n (5.2.1)

with 2-point boundary conditions

gi

(
y1(a), . . . , yn(a), y1(b), . . . , yn(b)

)
= 0 , i = 1, 2, . . . , n . (5.2.2)

The problem (5.2.1), (5.2.2) can be written in a vector form

dy

dx
= f(x,y) , g(y(a),y(b)) = 0 .

69

Assume f and g have continuous derivatives according to all the arguments. If the appear-
ance scheme of (5.2.2), (n equations in 2n unknowns) is in the form

a) × 0 0 0 0 0 0 0 0 0
0 × 0 0 0 0 0 0 0 0
0 0 × 0 0 0 0 0 0 0
0 0 0 × 0 0 0 0 0 0
0 0 0 0 × 0 0 0 0 0

resp. b) × × × × × 0 0 0 0 0
× × × × × 0 0 0 0 0
× × × × × 0 0 0 0 0
× × × × × 0 0 0 0 0
× × × × × 0 0 0 0 0

(here n = 5), then it is an initial value problem (a Cauchy problem) in x = a in a standard
form or a Cauchy problem where the initial condition can be found by solving n equations
(5.2.2) in n unknowns. After solving this system we again have all the n conditions in x = a
necessary to start the integration.

Now, suppose that the complete initial conditions cannot be found from (5.2.2). Instead,
consider some other initial condition

y1(a) = η1, . . . , yn(a) = ηn (5.2.3)

and suppose the Cauchy problem (5.2.1) with this initial condition has a unique solution
for any η = (η1, η2, . . . , ηn) in some domain M ⊂ Rn. Then the solution of (5.2.1), (5.2.3)
for any fixed x ∈ [a, b] defines in this domain M a unique vector-valued function depending
on n variables - the components of the vector η:

y(x) = w(x,η) . (5.2.4)

For x = b we have y(b) = w(b,η). Substituting into boundary condition (5.2.2) we have

g(η,w(b,η)) = 0 , (5.2.5)
or

G(η) = 0 . (5.2.6)

Now (5.2.6) is a system of n nonlinear algebraic equations for n unknowns η1, η2, . . . , ηn

(of course it is not written by elementary functions if the system of differential equations
(5.2.1) cannot be solved analytically).

We have the following result: If for any η there exists a solution of the Cauchy problem
(5.2.1) with the initial condition (5.2.3) on the interval [a, b] then the number of solutions of
the boundary value problem is the same as the number of solutions of the equation (5.2.6)
in the corresponding domain. If the equation (5.2.6) has no solution, then the boundary
value problem (5.2.1), (5.2.2) has no solution either.

The main task is to find η satisfying G(η) = 0. In other words we want to find an
initial condition for (5.2.1) in x = a satisfying the boundary condition (5.2.2). This can be
achieved by various methods for nonlinear algebraic equations.

Boundary conditions have been formulated in a rather general way, including also so-
called mixed boundary conditions, meaning values of y both in x = a and in x = b appear in
the function gi. Many practical problems involve separated boundary conditions, meaning
values of y either in x = a or in x = b appear in each function gi. Then in the appearance
scheme for (5.2.2) in each row either the first n entries are zeroes or the last n entries are
zeroes which may (for n = 5) look like this

× × × × × 0 0 0 0 0
× × 0 0 × 0 0 0 0 0
0 0 0 0 0 × × × × ×
0 0 0 0 0 × 0 0 0 0
0 0 0 0 0 0 0 × × 0

. (5.2.7)

70

Let us introduce the term problem of order p in the point x = a (or x = b resp.). We say
that a boundary value problem with separated boundary conditions is of order p in x = a
(or in x = b resp.) if p = n− r where r is the number of functions gi in (5.2.2) depending
on y(a) (or on y(b) resp.). E.g. the problem described by the scheme (5.2.7) is of order 3
in x = a and it is of order 2 in x = b. It is obvious that if a given problem with separated
boundary conditions is of order p in x = a then it is of order (n− p) in x = b.

In simple words in a point where the problem is of order p we must choose p initial
conditions and to compute the remaining n − p ones from the boundary conditions. The
problem can be converted into an initial value problem either in x = a or in x = b and it is
convenient to choose x = a or x = b according to where the order is lower.

5.2.1 Problem of order 1

To start with consider the differential equation (5.1.1) written as a system of differential
equations of the first order

y′1 = y2,
y′2 = f(x, y1, y2).

(5.2.8)

Boundary conditions (5.1.2), (5.1.3) are then

α0y1(a) + β0y2(a) = γ0,
α1y1(b) + β1y2(b) = γ1.

(5.2.9)

The appearance scheme for (5.2.9) is for nonzero αi, βi, i = 0, 1, in the form

× × 0 0
0 0 × × .

Thus it is a problem with separated boundary conditions. As this is a problem of order 1 in
x = a (and also in x = b) we must choose one condition in x = a (or in x = b). Assuming
β0 �= 0 we choose the initial condition

y1(a) = η1 (5.2.10)

and we compute

y2(a) = η2 =
γ0 − α0η1

β0
(5.2.11)

from the first equation (5.2.9). When integrating (5.2.8) with the initial conditions (5.2.10)
and (5.2.11) we get y1(b) = y1(b, η1) and y2(b) = y2(b, η1), dependent on the choice of η1.
These values must satisfy the boundary conditions (5.2.9). The first of them is automatically
satisfied by the choice of (5.2.11), the second one can be written as

α1y1(b, η1) + β1y2(b, η1) − γ1 = ϕ(η1) = 0 . (5.2.12)

Now, after choosing η1, we can compute the value of ϕ(η1) according to (5.2.12) using some
method for numerical integration of initial value problem. To solve the equation ϕ(η1) =
0 we use some method from chapter 3. Efficient methods use derivatives, an example
being the Newton’s method or the Richmond’s method. The derivative can be found using
some difference formula, but this is not very precise, since the numerical integration itself
introduces certain error. A better choice is to consider variation

Ω1 =
∂y1

∂y1(a)
=
∂y1

∂η1
, Ω2 =

∂y2

∂y1(a)
=
∂y2

∂η1
. (5.2.13)

71

The equations for Ω1 and Ω2 can be derived by differentiating (5.2.8) with respect to η1

and interchanging the differentiation with respect to x and η1

Ω′
1 = Ω2 ,

Ω′
2 = ∂f

∂y1
Ω1 + ∂f

∂y2
Ω2

(5.2.14)

with the initial conditions

Ω1(a) = 1 , Ω2(a) = −α0

β0
(5.2.15)

derived from (5.2.10) and (5.2.11). From (5.2.12) we have

dϕ(η1)
dη1

= α1Ω1(b) + β1Ω2(b) . (5.2.16)

Then the Newton’s method can be written as

ηk+1
1 = ηk

1 − ϕ(ηk
1)

ϕ′(ηk
1)

= ηk
1 − α1y1(b) + β1y2(b) − γ1

α1Ω1(b) + β1Ω2(b)
, (5.2.17)

where y1(b), y2(b),Ω1(b),Ω2(b) are evaluated for η1 = ηk
1 .

The following example illustrates this method.

Example 5.2.1 Consider the equation describing non-isothermal inner diffusion in a slab
catalyst with the concentration y ∈ [0, 1]

y′′ = Φ2 y exp
(

γβ(1 − y)
1 + β(1 − y)

)
(5.2.18)

with boundary conditions
y′(0) = 0 , y(1) = 1. (5.2.19)

Introducing y1 = y, y2 = y′ the equation (5.2.18) can be written as

y′1 = y2 , y′2 = Φ2 y1 exp
(

γβ(1 − y1)
1 + β(1 − y1)

)
. (5.2.20)

We choose
y1(0) = η1 (5.2.21)

and from (5.2.19) using y2 = y′ we have

y2(0) = 0 . (5.2.22)

The function ϕ is then defined by the expression

ϕ(η1) = y1(1) − 1 . (5.2.23)

The variational equations corresponding to (5.2.20) are

Ω′
1 = Ω2 ,

Ω′
2 = Φ2 exp

(
γβ(1 − y1)

1 + β(1 − y1)

)
·
(

1 − γβy1

(1 + β(1 − y1))2

)
Ω1 (5.2.24)

and the initial conditions are

Ω1(0) = 1 , Ω2(0) = 0 . (5.2.25)

The numerical integration of the initial value problem (5.2.20), (5.2.24) with initial condi-
tions (5.2.21), (5.2.22) and (5.2.25) was done using the Merson modification of the Runge-
Kutta method. The results are shown in Table 5.1. The convergence is very fast.

72

Table 5.1: Newton method for Example 5.2.1 (γ = 20; β = 0.1; Φ = 1)

y(0) = η1 y(1) y′(1) Ω1(1) ϕ(η1) ϕ′(η1)

1.00000 1.45949 0.84223 0.53898 0.45949 0.53898
0.14747 0.58712 1.00124 2.68144 −0.41288 2.68144
0.30145 0.89906 1.21398 1.53643 −0.10094 1.53643
0.36715 0.99073 1.23051 1.26792 −0.00927 1.26792
0.37446 0.99991 1.23081 1.24276 −0.00009 1.24276
0.37453 1.00000 1.23081 1.24251 0.00000 1.24251

0.50000 1.13356 1.20276 0.91577 0.13356 0.91577
0.35416 0.97396 1.22931 1.31470 −0.02604 1.31470
0.37396 0.99929 1.23080 1.24444 −0.00071 1.24444
0.37453 1.00000 1.23081 1.24251 0.00000 1.24251

0.10000 0.44534 0.83312 3.32963 −0.55466 3.32963
0.26658 0.84243 1.19239 1.71764 −0.15757 1.71764
0.35832 0.97940 1.22979 1.29940 −0.02060 1.29940
0.37417 0.99955 1.23080 1.24373 −0.00045 1.24373
0.37453 1.00000 1.23081 1.24251 0.00000 1.24251

5.2.2 Problem of higher order

Boundary conditions (5.2.2) for the system of equations (5.2.1) are for the problem with
separated boundaries in the form of

gi(y1(a), . . . , yn(a)) = 0 , i = 1, 2, . . . , r (5.2.26)
gi(y1(b), . . . , yn(b)) = 0 , i = r + 1, . . . , n . (5.2.27)

Problem (5.2.1), (5.2.26), (5.2.27) is thus of order n − r in x = a and of order r in x = b.
After choosing n− r “missing” values of initial conditions in x = a

y1(a) = η1, y2(a) = η2, . . . , yn−r(a) = ηn−r , (5.2.28)

it is possible to solve r values

yn−r+1(a) = ηn−r+1, . . . , yn(a) = ηn (5.2.29)

from (5.2.26), possibly after a suitable rearrangement of (y1, ..., yn). As a result we have
n conditions (5.2.28) and (5.2.29) in x = a, this presenting a Cauchy (initial value) prob-
lem. After integrating this initial value problem in the interval [a, b] we get the values
y1(b), . . . , yn(b), dependent on the chosen initial conditions (5.2.28). These values must
also satisfy the conditions (5.2.27) (so far unused)

gi

(
y1(b, η1, . . . , ηn−r), . . . , yn(b, η1, . . . , ηn−r)

)
= 0 , i = r + 1, . . . , n . (5.2.30)

The equations (5.2.30) can be written as

Gi(η1, . . . , ηn−r) = 0 , i = 1, . . . , n− r . (5.2.31)

73

To solve this system we can use some method from chapter 3. So we are able to evaluate
G1, . . . , Gn−r for given η1, . . . , ηn−r. Without the knowledge of derivatives of Gi Warner
scheme can be applied (see section ??). To do this we have to evaluate the functions Gi for
n− r+1 different values ηk

1 , . . . , η
k
n−r, k = 1, 2, . . . , n− r+1, meaning we have to solve the

initial value problem (5.2.1), (5.2.28), (5.2.29) with (n − r + 1) different initial conditions
(5.2.28) (thus (n − r + 1) times).

The system (5.2.31) can also be solved by some method from chapter 3 that uses deriva-
tives if the derivatives of the functions Gi are known. Let us try to derive the Newton’s
method for system (5.2.31), thus for the boundary value problem of order n − r in x = a.
To find the Jacobi matrix we must compute the partial derivatives ∂Gi

∂ηj
, i, j = 1, 2, . . . , n−r.

Considering (5.2.30) we have

∂Gi

ηj
=

n∑
k=1

∂gi+r

∂yk(b)
∂yk(b)
∂ηj

, i, j = 1, 2, . . . , n− r . (5.2.32)

After differentiating the system (5.2.1) with respect to ηj and denoting

Ωkj =
∂yk

∂ηj
, k = 1, 2, . . . , n , j = 1, 2, . . . , n− r , (5.2.33)

and changing the order of differentiation we get a system of variational differential equations

dΩkj

dx
=

n∑
m=1

∂fk

∂ym
Ωmj , k = 1, 2, . . . , n , j = 1, 2, . . . , n− r . (5.2.34)

In view of the initial condition (5.2.28) the variational variables Ωkj satisfy the initial
conditions

Ωkj(a) =

{
0 pro k �= j
1 pro k = j

k, j = 1, 2, . . . , n − r . (5.2.35)

The remaining initial conditions can be found from the conditions (5.2.26) assuming the
system of r equations (5.2.26) is solvable in r variables yn−r+1(a), yn−r+2(a), , yn(a),
thus

yk(a) = Φk

(
y1(a), y2(a), . . . , yn−r(a)

)
, k = n− r + 1, . . . , n . (5.2.36)

Then

∂yk(a)
∂ηj

= Ωkj(a) =
∂Φk(η1, . . . , ηn−r)

∂ηj
, k = n− r+1, . . . , n, j = 1, 2, . . . , n− r . (5.2.37)

Even in case the equations (5.2.36) cannot be solved explicitly, we still can get (5.2.37) as a
solution of some system of linear algebraic equations using the Implicit function theorem.
The relations (5.2.35) and (5.2.37) present a complete set of n(n− r) initial conditions for
n(n− r) functions Ωkj and n(n− r) differential equations (5.2.34).

To conclude we integrate the system of equations (5.2.1) with initial conditions (5.2.28)
and

yk(a) = Φk(η1, η2, . . . , ηn−r) , k = n− r + 1, . . . , n , (5.2.38)

and the system of equations (5.2.34) with initial conditions (5.2.35) and (5.2.37) simulta-
neously, this is an initial value problem of n+n(n− r) differential equations with the same

74

number of initial conditions. For chosen η1, η2, . . . , ηn−r we have in x = b

y1(b), y2(b), . . . , yn(b)
Ω11(b), Ω12(b), . . . ,Ω1,n−r(b)
...
Ωn1(b), Ωn2(b), . . . ,Ωn,n−r(b).

We can evaluate Gi from (5.2.31) and (5.2.30) and we can find the Jacobi matrix of the
functions Gi from (5.2.32), where ∂yk(b)/∂ηj is replaced by Ωkj(b). We have all we need
for the Newton’s method.

This shooting method for boundary value problems is a reliable algorithm. The method
is widely applicable if initial value problem can be integrated. In some problems the numer-
ical integration can be done from one side only or it cannot be integrated from either side.
For these problems the shooting method must be modified (the multiple shooting method)
or it cannot be applied at all.

The following example illustrates the use of variational equations once again.

Example 5.2.2 The stationary regime of a homogeneous exothermic reaction of the first
order in a tube non-isothermal non-adiabatic flow-through system can be described by the
equations (′= d

dx):

1
Pe

θ′′ − θ′ − β(θ − θc) + BDa (1 − y) exp
(

θ

1 + εθ

)
= 0 , (5.2.39)

1
Pe

y′′ − y′ + Da (1 − y) exp
(

θ

1 + εθ

)
= 0 (5.2.40)

with boundary conditions

x = 0 : θ′ = Pe θ ; y′ = Pe y (5.2.41)
x = 1 : θ′ = 0 ; y′ = 0 . (5.2.42)

Here y is the dimensionless conversion, θ is the dimensionless temperature, Pe is the Peclet
criterion, x is the dimensionless space coordinate, B is the dimensionless adiabatic thermal
increase, Da is the Damköhler criterion, ε is the dimensionless activation energy, β is
the dimensionless thermal throughput coefficient, θc is the dimensionless cooling medium
temperature.

We convert the problem to the initial value problem in x = 1 (this is better from the
numerical point of view, for higher Pe it is not possible to convert it to the initial value
problem in x = 0 at all due to instability of the integration of the corresponding initial value
problem) and we use the Newton’s method. Thus we choose

θ(1) = η1; y(1) = η2 (5.2.43)

and the conditions (5.2.42) give the remaining two initial values necessary for the integra-
tion. Let us denote the variation variables

Ω11 =
∂θ

∂η1
; Ω12 =

∂θ

∂η2
; Ω21 =

∂y

∂η1
; Ω22 =

∂y

∂η2
. (5.2.44)

75

For these functions we get the equations

1
Pe

Ω′′
11 − Ω′

11 − βΩ11 + B Da exp
(

θ

1 + εθ

)
·
(
−Ω21 +

1 − y

(1 + εθ)2
Ω11

)
= 0 (5.2.45)

1
Pe

Ω′′
12 − Ω′

12 − βΩ12 + B Da exp
(

θ

1 + εθ

)
·
(
−Ω22 +

1 − y

(1 + εθ)2
Ω12

)
= 0 (5.2.46)

1
Pe

Ω′′
21 − Ω′

21 + Da exp
(

θ

1 + εθ

)
·
(
−Ω21 +

1 − y

(1 + εθ)2
Ω11

)
= 0 (5.2.47)

1
Pe

Ω′′
22 − Ω′

22 + Da exp
(

θ

1 + εθ

)
·
(
−Ω22 +

1 − y

(1 + εθ)2
Ω12

)
= 0 . (5.2.48)

The equations (5.2.45) and (5.2.47) come from differentiation of (5.2.39) and (5.2.40) with
respect to η1, the equations (5.2.46) and (5.2.48) come from differentiation with respect to
η2. We let the equations of the second order and we do not convert them into a system of
1-st order equations for clear arrangement. The initial conditions for (5.2.45) - (5.2.48)
are

Ω11(1) = 1 ; Ω12(1) = 0 ; Ω21(1) = 0 ; Ω22(1) = 1 ; (5.2.49)

Ω′
11(1) = Ω′

12(1) = Ω′
21(1) = Ω′

22(1) = 0 . (5.2.50)

To satisfy the boundary conditions (5.2.41) we must solve

G1(η1, η2) = Pe θ(0) − θ′(0) = 0 (5.2.51)
G2(η1, η2) = Pe y(0) − y′(0) = 0 . (5.2.52)

Partial derivatives for the Jacobi matrix are

∂G1

∂η1
= Pe Ω11(0) − Ω′

11(0) = a11 ,
∂G1

∂η2
= Pe Ω12(0) − Ω′

12(0) = a12 ,

∂G2

∂η1
= Pe Ω21(0) − Ω′

21(0) = a21 ,
∂G2

∂η2
= Pe Ω22(0) − Ω′

22(0) = a22 .

(5.2.53)

For a given η = (η1, η2) we can integrate the equations (5.2.39), (5.2.40), (5.2.45)-(5.2.48)
with the initial conditions (5.2.42), (5.2.43), (5.2.49), (5.2.50) from x = 1 to x = 0. In this
way we get the values of all the functions y, θ, Ωij along with their derivatives in x = 0.
Then we can evaluate G1 and G2 using (5.2.51), (5.2.51) and the Jacobi matrix using
(5.2.53). Table 5.2 gives the results of the Newton’s method for one initial approximation
η = (0; 0) for the following parameter values

Pe = 2 ; β = 2 ; θc = 0 ; B = 12 ; Da = 0.12 ; ε = 0 . (5.2.54)

Table 5.3. shows the iterations for four other initial approximations η. These two tables
show that we have found five different solutions of the boundary value problem (5.2.39),
(5.2.42). The solutions θ(x) and y(x) are plotted in Fig. 5.4. The solution from Table
5.2 is denoted e, other solutions are denoted a, b, c, d in agreement with Table 5.3. This
example illustrates that a boundary value problem (especially a nonlinear one) can have
more than one solution. On the other hand, such a problem can have no solution.

∗ ∗ ∗
For further study the reader is invited to check the following literature [5], [16], [17], [22],
[27].

76

Table 5.2: Newton method for Example 5.2.2

iteration
0 1 2 3 4 5

η1 0.0000 0.7395 1.0299 1.0932 1.0963 1.0963
η2 0.0000 0.1570 0.2206 0.2340 0.2346 0.2346

θ(0) −0.9236 0.1165 0.4170 0.4732 0.4759 0.4759
θ′(0) 1.6624 1.0066 0.9499 0.9516 0.9518 0.9518
y(0) −0.0568 0.0496 0.0866 0.0936 0.0940 0.0940
y′(0) 0.0680 0.1416 0.1790 0.1857 0.1880 0.1880
G1 −3.5150 −0.7736 −0.1160 −0.0051 0.0000 0.0000
G2 −0.1816 −0.0424 −0.0057 −0.0002 0.0000 0.0000

Ω11(0) 1.5021 0.8118 0.5151 0.4503 0.4471
Ω′

11(0) −1.1431 0.0906 0.5023 0.5789 0.5825
Ω12(0) 0.7947 1.5142 1.8810 1.9658 1.9700
Ω′

12(0) −1.2645 −2.1345 −2.4099 −2.4557 −2.4578
Ω21(0) −0.0621 −0.1043 −0.1215 −0.1251 −0.1253
Ω′

21(0) 0.0838 0.1339 0.1438 0.1447 0.1447
Ω22(0) 1.0473 1.0881 1.1075 1.1118 1.1120
Ω′

22(0) −0.0424 −0.0540 −0.0434 −0.0391 −0.0389

a11 4.1474 1.5330 0.5279 0.3218 0.3118
a12 2.8539 5.1630 6.1718 6.3873 6.3977
a21 −0.2081 −0.3425 −0.3868 −0.3950 −0.3953
a22 2.1370 2.2303 2.2583 2.2627 2.2628

�η1 0.7395 0.2904 0.0633 0.0031 0.0000
�η2 0.1570 0.0636 0.0134 0.0006 0.0000

Table 5.3: Newton method for Example 5.2.2

a b c d

η1 η2 η1 η2 η1 η2 η1 η2

2.0000 0.0000 4.0000 0.7500 2.9000 0.9800 3.6000 0.9500
2.1644 0.4378 3.1441 0.6149 3.2155 0.9815 3.6781 0.9396
4.4148 0.8706 3.1447 0.6189 3.2114 0.9853 3.6919 0.9374
4.1768 0.8817 3.1448 0.6189 3.2132 0.9848 3.6926 0.9373
4.1098 0.8949 3.2133 0.9848 3.6926 0.9373
4.0792 0.8971
4.0775 0.8973
4.0774 0.8973

77

0.5 1
x

1
y

a

b

c

d

e

0.5 1
x

1

2

3

4

5

q

a

b

c

d

e

Figure 5.4: Five different solutions of the boundary value problem from Example 5.2.2

78

Chapter 6

Parabolic partial differential
equations

Parabolic PDE (partial differential equations) belong to problems often encountered in
chemical engineering. Non-stationary heat conduction or mass transport by diffusion lead
to parabolic equations. Many problems are described by linear parabolic equations (simple
problems in diffusion and heat conduction) which can be solved by classical analysis. The
solution is in the form of an infinite series of special functions (e.g. Bessel and Hankel
functions) and these functions must be evaluated which may be expensive. Thus even
linear equations are often solved numerically. Many problems involve nonlinear parabolic
equations (heat and mass exchange with exothermic reaction, adsorption, non-stationary
heat exchange with radiation etc.). Nonlinear parabolic equations must always be solved
numerically. The aim of this chapter is to give introduction to numerical analysis used in
parabolic equations - the implicit and explicit difference schemes.

6.1 Canonical form of second order equations with two in-
dependent variables

Consider a quasilinear equation of the second order with two independent variables x and
y in a given domain D ⊂ R2:

A
∂2u

∂x2
+ 2B

∂2u

∂x∂y
+ C

∂2u

∂y2
+ F

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
= 0, (6.1.1)

where the coefficients A,B and C are functions of x and y and have continuous derivatives
up to order at least 2. Suppose that at least one of them is always nonzero. Corresponding
to equation (6.1.1) we can write the quadratic form

At21 + 2Bt1t2 + Ct22 . (6.1.2)

Depending on the values of A, B and C we distinguish three types of equation (6.1.1), see
Tab.6.1.
We can introduce two new independent variables (X,Y) instead of (x, y) by the functions

X = X(x, y) , Y = Y (x, y) , (6.1.3)

79

Table 6.1: Types of equations

Type Condition
hyperbolic B2 −AC > 0
parabolic B2 −AC = 0
elliptic B2 −AC < 0

which are assumed to be twice continuously differentiable and to have nonzero Jacobian

D(X,Y)
D(x, y)

=

∣∣∣∣∣∣∣∣
∂X

∂x

∂X

∂y
∂Y

∂x

∂Y

∂y

∣∣∣∣∣∣∣∣ �= 0 (6.1.4)

in the domain D considered.
Putting (6.1.3) into (6.1.1), equation (6.1.1) changes to

Ā
∂2u

∂X2
+ 2B̄

∂2u

∂X∂Y
+ C̄

∂2u

∂Y 2
+ F̄ (X,Y, u,

∂u

∂X
,
∂u

∂Y
) = 0 , (6.1.5)

where

Ā(X,Y) = A

(
∂X

∂x

)2

+ 2B
∂X

∂x

∂X

∂y
+ C

(
∂X

∂y

)2

,

C̄(X,Y) = A

(
∂Y

∂x

)2

+ 2B
∂Y

∂x

∂Y

∂y
+ C

(
∂Y

∂y

)2

, (6.1.6)

B̄(X,Y) = A
∂X

∂x

∂Y

∂x
+B

(
∂X

∂x

∂Y

∂y
+
∂X

∂y

∂Y

∂x

)
+ C

∂X

∂y

∂Y

∂y
.

It is easy to show that

B̄2 − ĀC̄ = (B2 −AC)

(
∂X

∂x

∂Y

∂y
− ∂X

∂y

∂Y

∂x

)2

(6.1.7)

thus transformation (6.1.3) does not change the type of equation (6.1.1). Transformation
(6.1.3) can be chosen so that exactly one of the following three conditions holds

Ā = 0 ∧ C̄ = 0 , (6.8a)

Ā = 0 ∧ B̄ = 0 or B̄ = 0 ∧ C̄ = 0 , (6.8b)

Ā = C̄ ∧ B̄ = 0 . (6.8c)

In each of these three cases (which differ in the sign of the expression (B2 −AC)) equation
(6.1.5) can be written in simple (canonical) form:

1. (B2 −AC) > 0 hyperbolic equation
The canonical form is

∂2u

∂X∂Y
= F1

(
X,Y, u,

∂u

∂X
,
∂u

∂Y

)
. (6.1.9)

80

Often another form is used as the canonical one, namely

∂2u

∂ξ2
− ∂2u

∂η2
= F2

(
ξ, η, u,

∂u

∂ξ
,
∂u

∂η

)
; (6.1.10)

this equation can be derived from (6.1.9) by the transformation

X = ξ + η , Y = ξ − η .

These types of equations appear seldom in chemical engineering so we will not consider
them in this text.

2. (B2 −AC) = 0 parabolic equation
The canonical form is

∂2u

∂Y 2
= F3

(
X,Y, u,

∂u

∂X
,
∂u

∂Y

)
. (6.1.11)

3. (B2 −AC) < 0 elliptic equation
The canonical form is

∂2u

∂X2
+
∂2u

∂Y 2
= F4

(
X,Y, u,

∂u

∂X
,
∂u

∂Y

)
. (6.1.12)

6.2 Numerical solution of parabolic equations with two in-

dependent variables

Numerical solution of parabolic equations in two dimensions (or in one spatial coordinate
x and one time coordinate t) is thoroughly treated in literature (as opposed to higher
dimensional cases). As chemical engineering problems often lead to equations in time and
one spatial coordinate, one section is devoted to this problem. Let us start with the linear
equation. Later we will see that almost all the conclusion for the linear equation can be
used for the nonlinear one as well.

6.2.1 Grid methods for linear problems

Let us start with the linear parabolic equation with constant coefficients

∂u

∂t
=
∂2u

∂x2
. (6.2.1)

A more general equation (describing heat conduction or mass diffusion)

∂u

∂τ
= σ

∂2u

∂x2
(6.2.2)

can be converted to (6.2.1) by the substitution t = στ .
The solution of equation (6.2.1) is often searched for on a rectangle D = [0, 1] × [0, T]

shown in Fig. 6.1.
The solution u(x, t) must satisfy the initial condition (the function ϕ(x) is given)

u(x, 0) = ϕ(x) , 0 < x < 1 , (6.2.3)

81

T

D
u = 0u = 0
��

u = ϕ(x)
�
� x

�t

0 1

Figure 6.1: The rectangle D where the so-
lution of the parabolic equation (6.2.1) is de-
fined.

and a boundary condition, e.g.

u(0, t) = u(1, t) = 0 . (6.2.4)

Other problems may contain other boundary conditions, e.g.

x = 0 :
∂u(0, t)
∂x

= 0 , (6.2.5)

x = 1 : u(1, t) = 1 (6.2.6)

or other.

6.2.1.1 Simple explicit formula

The most common approach to equation (6.2.1) is the difference method also called the
grid method. There is a wide range of difference methods, let us start with the simplest
one. Let us divide the interval [0, 1] in x into n subintervals by equidistant grid points

x0 = 0, x1 = h, x2 = 2h, . . . , xn−1 = 1 − h, xn = 1 ,

where h = 1/n and xi = ih, i = 0, 1, . . . , n. Similarly the interval [0, T] in t is divided into
r equal parts by the grid points

t0 = 0, t1 = k, . . . , tr = T,

where the time step is k = T/r and tj = jk, j = 0, 1, . . . , r. The set of nodes - the
intersections of the lines x = ih, i = 0, 1, . . . , n, and the lines t = jk, j = 0, 1, . . . , r, forms
a rectangular grid denoted by D(h) (see Fig.6.2). On this grid we can approximate the
derivatives of the function u by the difference formulas (see chapter 2.5) for i = 1, . . . , n −
1, j = 0, . . . , r − 1 :

∂u

∂t

∣∣∣∣
(xi,tj)

=
uj+1

i − uj
i

k
+ O(k) , (6.2.7)

∂2u

∂x2

∣∣∣∣∣
(xi,tj)

=
uj

i−1 − 2uj
i + uj

i+1

h2
+ O(h2) , (6.2.8)

where we denote u(ih, jk) = u(xi, tj)
.= uj

i .
Consider the equation (6.2.1) in one node (xi, tj) ∈ D(h) and the approximation using

(6.2.7) and (6.2.8):

uj+1
i − uj

i

k
=
uj

i−1 − 2uj
i + uj

i+1

h2
+ O(k + h2) . (6.2.9)

82

k��

�h�

t1

t2

t3

t4

t0=0=x0x1 x2 x3 1=x5

Figure 6.2: The grid D(h), n = 5 and the
approximation (6.2.9) for i = 2, j = 2

This is illustrated in Fig.6.2. Neglecting O(k + h2) = O(k) + O(h2), which is called the
approximation error and using the initial condition (6.2.3) and the boundary conditions
(6.2.4) we get the following difference problem:

uj+1
i =

k

h2

(
uj

i−1 + uj
i+1

)
+

(
1 − 2k

h2

)
uj

i ,
i = 1, 2, . . . , n− 1
j = 0, 1, . . . , r − 1 ,

(6.2.10)

u0
i = ϕ(ih) , i = 1, 2, . . . , n− 1 , (6.2.11)
uj

0 = 0 , uj
n = 0 , j = 0, 1, . . . , r . (6.2.12)

If u(xi, tj) is the solution of (6.2.1) with the initial condition (6.2.3) and the boundary
condition (6.2.4), then the error of the solution computed by (6.2.10), (6.2.11) and (6.2.12)
is

εji = u(xi, tj) − uj
i . (6.2.13)

Similarly as for ordinary differential equations (ODE) we require that making the grid finer,
i.e. h → 0, k → 0, results in εji → 0 in D(h). If this is the case we say that the solution of
(6.2.10), (6.2.11) and (6.2.12) converges to the exact solution of (6.2.1), (6.2.3) and (6.2.4).
It is obvious that if the numerical solution does not converge to the exact solution then the
difference method is useless. The difference approximation (6.2.10) is called the explicit
three point difference scheme. This name tells that the value uj+1

i is computed explicitly
from the values uj

i−1, u
j
i , u

j
i+1. The relations (6.2.10), (6.2.11) and (6.2.12) are iterated. The

vector uj = (uj
0, u

j
1, . . . , u

j
n) is called the j-th profile. In (6.2.10) the j-th profile is called

the old (the known) profile, and the j + 1-st profile is called the new profile. To sum up,
the new profile is computed point-wise from the old profile.

6.2.1.2 Stability of the difference scheme

We denote by uj
i the exact solution of the difference problem (6.2.10), (6.2.11) and (6.2.12)

and we denote by ũj
i the numerically computed solution. These differ due to round-off

errors introduced in each arithmetical operation done on a digital computer. We want this
round-off error not to grow too much in the course of computation. We want the errors

�j
i = uj

i − ũj
i (6.2.14)

to go to zero or at least to stay bounded for increasing j. This requirement presents the
stability condition of the difference scheme. The total error of the numerical solution can
be estimated by

|εji | + |�j
i | , (6.2.15)

where |�j
i | is small and negligible compared to the error of the method |εji | for stable schemes.

Unstable schemes are useless for practical computation because we can never compute with
infinite number of decimal digits.

83

Let us explain the problem of stability for the scheme (6.2.10) in more detail. It is easy
to rewrite (6.2.10), (6.2.11) and (6.2.12) using profiles as

uj+1 = A1u
j ,

u0 =
[
0, ϕ(h), ϕ(2h), . . . , ϕ((n − 1)h), 0

]T
,

(6.2.16)

where the matrix A1 is three-diagonal

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
α (1 − 2α) α

α (1 − 2α) α 0
.

0 α (1 − 2α) α
α (1 − 2α) α

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.2.17)

where
α =

k

h2
. (6.2.18)

After denoting ūj = (uj
1, u

j
2, . . . , u

j
n−1), and using uj

0 = uj
n = 0, we can rewrite (6.2.16) as

ūj+1 = Aūj , ū0 =
[
ϕ(h), ϕ(2h), . . . , ϕ((n − 1)h)

]T
, (6.2.19)

where the matrix A is of type (n− 1) × (n− 1) :

A =

⎛⎜⎜⎜⎜⎜⎜⎝
(1 − 2α) α

α (1 − 2α) α 0
.

0 α (1 − 2α) α
α (1 − 2α)

⎞⎟⎟⎟⎟⎟⎟⎠ . (6.2.20)

Consider now a small deviation of the initial condition (introduced by the round-off error)
�̄0:

�̄0 = ū0 − ū′0 . (6.2.21)

Here the prime does not mean derivative, it just denotes another profile. Equation (6.2.19)
with the initial condition ū′0 becomes

ū′j+1 = Aū′j , ū′0 = ū0 − �̄0 . (6.2.22)

The error �̄j = ūj − ū′j evolves as

�̄j+1 = A�̄j , (6.2.23)

giving
�̄j = Aj �̄0 . (6.2.24)

The norm of the effect of the initial deviation �̄0 can be estimated by

‖�̄j‖ ≤ ‖A‖j‖�̄0‖ , (6.2.25)

84

where the norms can be defined (see 1.2.1)

‖v‖ = max
i

|vi| , (6.2.26)

‖A‖ = max
i

n−1∑
s=1

|ais| . (6.2.27)

The estimate (6.2.25) gives:
If

‖A‖ ≤ 1 , (6.2.28)

then the deviation �̄0 of initial condition does not grow in the course of computation.
Similarly, a deviation �̄ in the j-th profile (instead of in the first one) can be treated by

considering this j-th profile as the initial condition and the conclusions are the same. In a
real computation round-off errors appear in each profile. Thanks to the linearity of (6.2.19)
the total error stays bounded if (6.2.28) remains valid.

It is easy to see that if the elements in the main diagonal of the matrix A are non-
negative i.e. if

α ≤ 1
2
, (6.2.29)

then due to (6.2.27) we have ||A|| = 1. Thus (6.2.29) is a sufficient condition for the
stability of method (6.2.10).

Let us see whether this condition is also necessary. The necessary condition requires
that for the least norm of the matrix A the non-equality (6.2.28) holds. As for any matrix
norm it holds �(A) = max |λi| ≤ ‖A‖, where λi are the eigenvalues of the matrix A, the
necessary and sufficient condition is

|λi| ≤ 1 i = 1, 2, . . . , n − 1 . (6.2.30)

The matrix (6.2.20) has eigenvalues

λi = 1 − 4α sin2 iπ

2n
, i = 1, . . . , n− 1 ,

then the condition (6.2.30) is equivalent to the condition (6.2.29).
If the original equation (6.2.1) has non-constant coefficients (as functions of x) then the

rows of the matrix A differ. Then the eigenvalues cannot be expressed analytically, they
must be found numerically (see chapter 1), which is expensive for large n. Then it is better
to use the sufficient stability condition (6.2.28) where ‖A‖ is defined according to (6.2.27).

Sometimes the stability is estimated by the Fourier (von Neumann) method. We
describe this method briefly for the explicit differential scheme (6.2.10). This method
ignores boundary conditions which is no problem in our case, since the boundary conditions
specify zero values of u at the boundaries. In cases where the boundary conditions influence
the stability this method has a limited validity. On the other hand the method using the
spectral radius of the matrix is still valid, although sometimes difficult to apply.

Assume that the solution of the differential equations can be written as uj
i = zjyi, and

let us choose one harmonics eiβx from its Fourier representation. Here i is the imaginary
unit; to avoid confusion we denote the imaginary unit by i written in ordinary font while we
denote the index by i written in mathematical font. The solution of the difference equation
is assumed in the form eωteiβx and we want to find conditions for the expression in t not to
grow (ω may be complex).

85

We put
uj

i = eωjkeiβih (6.2.31)

into (6.2.10), α = k/h2:

eω(j+1)keiβih = (1 − 2α)eωjkeiβih + α(eωjkeiβ(i−1)h + eωjkeiβ(i+1)h) .

After simplification we get

eωk = 1 − 4α sin2(
1
2
βh) ,

and the condition |eωk| ≤ 1 gives α ≤ 1
2 .

Table 6.2: Difference scheme (6.2.10), error propagation for α = 1
2

uj+1
i = 1

2(uj
i−1 + uj

i+1)

j = 4 ε/16 0 ε/4 0 3ε/8 0 ε/4 0 ε/16
j = 3 0 ε/8 0 3ε/8 0 3ε/8 0 ε/8 0
j = 2 0 0 ε/4 0 ε/2 0 ε/4 0 0
j = 1 0 0 0 ε/2 0 ε/2 0 0 0
j = 0 0 0 0 0 ε 0 0 0 0

The error propagation is illustrated in Tables 6.2 and 6.3. The initial error in a single
node is denoted by ε. The first case is for α = 1

2 and the deviation is damped. In the other
case α = 10 and the error grows quickly.

Table 6.3: Difference scheme (6.2.10), error propagation for α = 10,
uj+1

i = −19uj
i + 10(uj

i−1 + uj
i+1)

j = 3 1000ε −5700ε 13830ε −18259ε 13830ε −5700ε 1000ε
j = 2 0 100ε −380ε 561ε −380ε 100ε 0
j = 1 0 0 10ε −19ε 10ε 0 0
j = 0 0 0 0 ε 0 0 0

Note that for the stability of the difference scheme it is necessary that the original
differential equations are stable in a certain sense, i.e. a small change in the initial condition
results in a small deviation in the exact solution. To show an example where this is not the
case, consider the diffusion equation in backward time

∂u

∂t
= −∂

2u

∂x2

which we get from (6.2.1) by changing t to −t. Now the method (6.2.10) is unstable for
any α > 0 and a similar result holds for further methods.

As an illustration we give an example of a stable and of an unstable scheme for equation
(6.2.1) with boundary conditions (6.2.4) and with the initial condition (6.2.3) where

ϕ(x) =

{
2x for 0 ≤ x ≤ 1

2
2(1 − x) for 1

2 ≤ x ≤ 1.
(6.2.32)

Analytic solution can be found in the form

86

Table 6.4: Exact solution of (6.2.1),(6.2.3),(6.2.4) and (6.2.32)
t x=0.3 x = 0.5 x=0.7

0.005 0.5966 0.8404 0.5966
0.01 0.5799 0.7743 0.5799
0.02 0.5334 0.6809 0.5334
0.10 0.2444 0.3021 0.2444

Table 6.5: Solution of (6.2.1),(6.2.3), (6.2.4) and (6.2.32) by explicit method for h = 0.1
x = 0.3 x = 0.5 x = 0.7

α = 0.1 t = 0.01 (j = 10) 0.5822 0.7867 0.5822
k = 0.001 t = 0.02 (j = 20) 0.5373 0.6891 0.5373
α = 0.5 t = 0.01 (j = 2) 0.6000 0.8000 0.6000
k = 0.005 t = 0.02 (j = 4) 0.5500 0.7000 0.5500

t = 0.1 (j = 20) 0.2484 0.3071 0.2484

u =
8
π2

∞∑
n=1

1
n2

(
sin

nπ

2

)(
sinnπx

)
e(−n2π2t) (6.2.33)

and the values of this solution are given in Table 6.4. We use the difference scheme (6.2.10)
for h = 0.1 and α equal to 0.1 and 0.5. The results are summarized in Table 6.5. Compare
the achieved accuracy. Note that for x = 0.5 the agreement is worse because the initial
condition (6.2.32) has at this point non-continuous derivative. The solution is symmetric
in x around x = 0.5.

Figs. 6.3 and 6.4 show the agreement of numerical (h = 0.1) and of the analytic solution
for α < 0.5 and for α > 0.5, i.e. for stable and for unstable scheme.

0

1

0 0.5 1� x

�u

j=0(t=0)

j=10 (t=0.048)

j=20

j=40

•

•

•

•

•

•

•

•

•

•

•
•

•
• • • • •

•
••

•
• • • • •

•
•• • • • • • • • •

Figure 6.3: Numerical (•) and exact (−−−)
solution for α = 0.48, h = 0.1

0

1

0 0.5 1
•

•

•

•

•

•

•

•

•

•

••
•

•
• •

•
• •

•
•

••
• •

• •
•

• •
• •

••
•

•
•

•
•

•
•

• • •
� x

�u

j=0(t=0)

j=10 (t=0.052)

j=20

j=40

Figure 6.4: Numerical (− • −) and exact
(−−−) solution for α = 0.52, h = 0.1

87

6.2.1.3 Simple implicit formula

Let us discuss a more complicated form of the difference formula with a parameter w

uj+1
i − uj

i

k
= w

uj+1
i−1 − 2uj+1

i + uj+1
i+1

h2
+ (1 − w)

uj
i−1 − 2uj

i + uj
i+1

h2
. (6.2.34)

It is easy to see that for w = 0 this equation simplifies to (6.2.9) and this special case
represents the above discussed simple explicit scheme. For w = 1 we have the opposite case
- a simple implicit difference scheme

− αuj+1
i−1 + (1 + 2α)uj+1

i − αuj+1
i+1 = uj

i . (6.2.35)

For w = 1
2 we get an “averaged” scheme called Crank-Nicolson:

− α

2
uj+1

i−1 + (1 + α)uj+1
i − α

2
uj+1

i+1 =
α

2
uj

i−1 + (1 − α)uj
i +

α

2
uj

i+1. (6.2.36)

Biographical note: Phyllis Nicolson (21 September 1917 - 6 October 1968) was a British
mathematician most known for her work on the Crank-Nicolson scheme together with John
Crank. John Crank (6 February 1916 - 3 October 2006) was a British mathematical physi-
cist, best known for his work on the numerical solution of partial differential equations.

Similarly as for the explicit scheme it can be shown that approximation error is O(k+h2)
for (6.2.35) thus method (6.2.35) is of similar accuracy as the explicit formula. For the
Crank-Nicolson scheme (6.2.36) it can be shown that the error is O(k2 +h2), this method is
more precise than the methods (6.2.10) and (6.2.35). This can be explained by the fact that
the time derivative is approximated in the point (tj+1 + tj)/2 corresponding to a central
three-point difference formula (see Tab. 2.1) with the error O((k

2)2) . The Crank-Nicolson
scheme (6.2.36) is stable for any α = k/h2. The formula (6.2.34) is stable for any α if
w ∈ [12 , 1]. If w < 1

2 then this method is stable if

α ≤ 1
2(1 − 2w)

. (6.2.37)

For w = 0 this gives again condition (6.2.29).
Unlike the explicit method, where each value of the new profile uj+1 was computed

explicitly one after another from the old profile uj, the equation (6.2.34) for w �= 0 represents
a system of linear equations for unknowns uj+1

i , i = 1, 2, . . . , n − 1, which must be solved
simultaneously.

The matrix of this system is three-diagonal for a general w (for w = 0 the matrix
is diagonal and the method is explicit). The system may be solved by factorization (see
chapter 1.2.3) when computing a new profile from the old one. Let us compare the Crank-
Nicolson method with the explicit method using the equations (6.2.1), (6.2.3), (6.2.4) and
(6.2.32) for h = 0.1. The results are given in Table 6.6. It is easy to see that the error of
the results of the explicit method for α = 0.1 are similar to those of the Crank-Nicolson
method with the step k = 0.01 (where α = 1). The explicit method requires to compute
ten times more profiles, although the computation was easier because it was not necessary
to solve a system of linear equations with a three-diagonal matrix. When we compare the
number of arithmetic operations then the Crank-Nicolson method is more efficient.

88

Explicit method (6.2.10) Crank-Nicolson Analytic
method solution (6.2.33)

α = 1
10 α = 1

2

k = 0.001 k = 0.005 k = 0.01

t = 0.01 0.7867 0.8000 0.7691 0.7743
t = 0.02 0.6891 0.7000 0.6921 0.6809
t = 0.10 0.3056 0.3071 0.3069 0.3021

Table 6.6: Comparison of the explicit and the Crank-Nicolson methods. Values in the
point x = 0.5 are shown (h = 0.1)

6.2.1.4 Multi-step methods

So far, we have considered two-profile methods that contain uj and uj+1 only. We have
noted that the discretization in t has the greatest contribution to the error, namely O(k),
or O(k2) in special methods. This means we must use a small time step k and this re-
quires a long computation time. Another possibility is (similarly to Adams formulas, see
chapter 4.4), to approximate the derivative ∂u

∂t using more than two points. To start such
a computation we must know more than just one profile (given by the initial condition).
To prepare these profiles another method must be used. One disadvantage of multi-step
methods is that it is not easy to adapt the step size k according to how complicated the
solution is. Another disadvantage, namely the need of more computer memory to store
extra profiles becomes less important with modern hardware. One important advantage of
multi-step methods is that we can use a greater step size k because the approximation of
∂u
∂t is more precise. We show a few multi-step methods for the equation (6.2.1), using the
approximation from table 2.1 and 2.2.

A non-central approximation of ∂u
∂t gives a three-profile implicit formula

3uj+1
i − 4uj

i + uj−1
i

2k
=
uj+1

i−1 − 2uj+1
i + uj+1

i+1

h2
. (6.2.38)

This can be rewritten to

− 2αuj+1
i−1 + (3 + 4α)uj+1

i − 2αuj+1
i+1 = 4uj

i − uj−1
i . (6.2.39)

Similarly a four-profile implicit formula is

− 6αuj+1
i−1 + (11 + 12α)uj+1

i − 6αuj+1
i+1 = 18uj

i − 9uj−1
i + 2uj−2

i (6.2.40)

and finally a five-profile implicit formula is

− 12αuj+1
i−1 + (25 + 24α)uj+1

i − 12αuj+1
i+1 = 48uj

i − 36uj−1
i + 16uj−2

i − 3uj−3
i . (6.2.41)

Formulas (6.2.39), (6.2.40) and (6.2.41) have the error O(k2+h2), O(k3+h2) and O(k4+h2)
resp. From the computational point of view these formulas are not much more difficult
than a simple implicit formula (6.2.35); the right-hand-side of the system of linear algebraic
equations with a three-diagonal matrix contain a few more terms. To start we must prepare
three initial profiles (besides the initial condition) using another method with a sufficiently
small error.

89

There exist another multi-step formulas where the approximation of ∂2u
∂x2 is computed

from more profiles with appropriate weights with total sum being one. On the other hand,
explicit multi-step methods are seldom used, because the stability condition requires a small
step size in t, so that the high accuracy of the approximation in t cannot be used (by taking
a large step size).

6.2.1.5 Boundary conditions

We have considered boundary conditions of the first kind, i.e. boundary conditions specify-
ing the value of the solution, e.g. for equation (6.2.1) the boundary condition was (6.2.4).
Often the boundary conditions specify the derivative of the unknown function (for example
the boundary between a heat conducting medium and an insulator is described by ∂u

∂n = 0
where n means the normal i.e. perpendicular direction). This type of boundary condition is
called the boundary condition of the second kind. The most often case, however, is a linear
combination of the function value and its derivative at the boundary. i.e. C1u+C2

∂u
∂n = C3.

This type of boundary condition is called the boundary condition of the third kind. Non-
linear boundary condition are discussed below.

Consider a general linear boundary condition

C1u+ C2
∂u

∂x
= C3 (6.2.42)

for the equation (6.2.1) in x = 0. Assume C2 �= 0, i.e. (6.2.42) is not a condition of the
first kind. The simplest approximation of (6.2.42) is to replace the derivative ∂u

∂x by a
suitable difference formula (see chapter 5, boundary value problem for ordinary differential
equation). Replacing

∂u

∂x

∣∣∣∣x=0
t=(j+1)k

=
uj+1

1 − uj+1
0

h
+ O(h) , (6.2.43)

and putting into (6.2.42) we get a linear equation for uj+1
0 and uj+1

1 (upper indexes can be
chosen arbitrarily because (6.2.42) holds for all t)(

C1 − C2

h

)
uj+1

0 +
C2

h
uj+1

1 = C3 . (6.2.44)

Using (6.2.44) for the explicit formula (6.2.10) is simple: uj+1
0 is evaluated by (6.2.44)

based on uj+1
1 (computed from uj

0, u
j
1, u

j
2). Put together we get

uj+1
0 =

C3h

C1h− C2
− C2

C1h− C2
uj+1

1 = δ + γ0u
j
0 + γ1u

j
1 + γ2u

j
2 , (6.2.45)

where

δ =
C3h

C1h−C2
, γ0 = γ2 = − αC2

C1h− C2
, γ1 = −(1 − 2α)

C2

C1h− C2
.

The first row of the “transformation” matrix A1 (see (6.2.17)) changes to

(γ0, γ1, γ2, 0, . . .).

It is easy to see that

|γ0| + |γ1| + |γ2| =
∣∣∣∣ C2

C1h− C2

∣∣∣∣
90

for α = k/h2 ≤ 1
2 (which must be satisfied for stability reasons). From h =

√
k/α it follows

that for constant α we have |γ0| + |γ1| + |γ2| = 1 + O(
√
k), which is a sufficient stability

condition. Thus the method (6.2.10) with the boundary condition (6.2.44) is stable for
α ≤ 1

2 . This is a non-trivial result. Replacement of boundary condition can change the
stability. When investigating stability it is always necessary to consider the replacement of
boundary conditions as well.

The replacement (6.2.43) has one big disadvantage both for explicit and for implicit
scheme. The error is by one order worse than the error of the equation, thus it is better to
use a more precise replacement for ∂u

∂x . There are two possibilities:

1. To use a non-central three-point difference

∂u

∂x

∣∣∣∣x=0
t=(j+1)k

=
−3uj+1

0 + 4uj+1
1 − uj+1

2

2h
+ O(h2) , (6.2.46)

This is no complication for explicit formula. For the implicit formula the resulting
system must be converted to a three-diagonal one.

2. To use a central three-point difference

∂u

∂x

∣∣∣∣x=0
t=(j+1)k

=
uj+1

1 − uj+1
−1

2h
+ O(h2) (6.2.47)

by introducing a fictitious node with index −1. This increases the number of un-
knowns and we must find one equation for this new unknown. This can be done
by approximating equation (6.2.1) by the implicit formula (6.2.35) for i = 0. The
unknown uj+1

−1 can be expressed from this equation as a function of uj
0, u

j+1
0 and

uj+1
1 and we put the result into the approximation (6.2.47). For the implicit method

(6.2.35) we get again a system of linear equations with a three-diagonal matrix. This
second approach is better because the replacement (6.2.47) has a smaller error than
the replacement (6.2.46), although they are of the same order (see chapter 2).

For the implicit or the explicit method the replacement of the boundary condition is easy.
For more complex methods it is usually not obvious how to approximate the boundary
condition to get the highest accuracy of the resulting replacement. The implicit replacement
of the boundary condition usually gives good results.

In some problems the boundary conditions depend on time, e.g.

u(0, t) = sinωt

is periodic in time t. This type of boundary conditions presents no big complication. We
can use the same methods as for time independent boundary conditions. The resulting
formula contains time dependent term.

Sometimes we have a linear parabolic equation with a nonlinear boundary condition,
e.g. equation (6.2.1) with boundary conditions

ψ0

(
u(0, t),

∂u(0, t)
∂x

, t

)
= 0 , ψ1

(
u(1, t),

∂u(1, t)
∂x

, t

)
= 0 (6.2.48)

instead of (6.2.4).

91

This is the case of heat conduction with radiation, or diffusion with surface chemical
reaction etc. Let us illustrate this by an example. Consider heat conduction in an insulated
bar described by equation (6.2.1). One end of the bar is kept at a constant temperature and
the other end of the bar receives heat by radiation from a source of constant temperature
and looses heat by its own radiation. The boundary conditions are

x = 0 : u = U0 , x = 1 : s(1 − u4) − ∂u

∂x
= 0 , (6.2.49)

and the initial condition is: for t = 0 and x ∈ [0, 1] u = U0 . Here the temperature
is related to the thermodynamic temperature of the radiation source. The dimensionless
parameter s contains the fourth power of the source temperature, the Stephan-Boltzmann
constant, heat conductivity, the length of the bar and the configuration factor. The partial
differential equation can be discretized by the Crank-Nicolson method and the boundary
condition (6.2.49) can be replaced by the implicit method by introducing a fictitious profile
n+ 1 :

s
(
1 − (uj+1

n)4
)
− uj+1

n+1 − uj+1
n−1

2h
= 0 . (6.2.50)

We have again a system of n equations for n unknowns uj+1
1 , . . . , uj+1

n with a three-diagonal
appearance. The first n − 1 equations are linear and the last equation is nonlinear in the
form

auj+1
n−1 + buj+1

n = c− d(uj+1
n)4 . (6.2.51)

The last equation comes from putting (6.2.50) into the Crank-Nicolson replacement for
i = n, the constant c contains uj

n−1, u
j
n. The right-hand-side of the last “linear” equation

of the system with a three-diagonal matrix depends on the “parameter” uj+1
n .

The first phase of the factorization and vanishing the bottom diagonal gives the last
equation in the form

b′uj+1
n = c′ − d′(uj+1

n)4 . (6.2.52)

This is an algebraic equation for one unknown uj+1
n . This equation can be solved by some

method in chapter 3.1 (we have a good initial approximation uj
n). Only after solving the

equation (6.2.52) the second phase of the factorization is done.
Exercise: How can we solve the same PDE with the non-linear boundary condition

(6.2.49) on both ends of the bar?

6.2.1.6 Methods with higher accuracy

This section is devoted to algorithms that increase the order of the difference approximation
and that allow higher step sizes h and k for the same accuracy. This can be achieved by
two ways. The first way is to tune certain parameters in the difference formula so that the
order is higher. This way has a big disadvantage that the difference formula is prepared to
fit the given PDE and cannot be used for other equations. We do not discuss this type of
methods here. The other way uses more nodes for the approximations of derivatives.

Exercise: Find the minimal number of nodes to approximate
∂2u
∂x2 ,

∂u
∂x ,

∂u
∂t ,

∂2u
∂x∂t , (∂u

∂t − ∂2u
∂x2), etc.

To avoid problems with having more unknowns than equations we use non-symmetric
difference formulas near boundaries. This is illustrated in Fig. 6.5 where the second deriva-
tive in the nodes 2, 3, 4 is approximated by a symmetric formula with 5 nodes and in
the nodes 1, 5 by a non-symmetric formula again with 5 nodes. We consider a difference

92

approximation of equation (6.2.1) where the derivative ∂2u
∂x2 is approximated using 5 points.

The case with more nodes is similar. The explicit approximation can be

uj+1
i − uj

i

k
=

−uj
i−2 + 16uj

i−1 − 30uj
i + 16uj

i+1 − uj
i+2

12h2
+ O(k + h4) . (6.2.53)

A necessary and sufficient stability condition is now more restrictive in the time step k,
namely α ≤ 3

8 . On the other hand the spatial step size h can be larger so the restriction in
k is not necessarily worse than in the classical explicit method (6.2.10).

h

i=0 1 2 3 4 5 6

×
×

×
×

×

Figure 6.5: Non-symmetric approximations

The reader is invited to write the implicit formula of type (6.2.53), similarly as the
non-symmetric approximation for one node near the boundary (use chapter 2.5).

Formula (6.2.53) and similar ones have one disadvantage - the approximation in the t
direction is much worse than in the x direction. One way to remove this disadvantage is to
use the Crank-Nicolson approximation, namely

uj+1
i − uj

i

k
=

1
2

(−uj+1
i−2 + 16uj+1

i−1 − 30uj+1
i + 16uj+1

i+1 − uj+1
i+2

12h2
+ (6.2.54)

+
−uj

i−2 + 16uj
i−1 − 30uj

i + 16uj
i+1 − uj

i+2

12h2

)
+ O(k2 + h4) .

The implicit approximation means that we must solve a system of linear equations with
a five-diagonal matrix, this can be solved by an algorithm similar to factorization of a
three-diagonal matrix.

The other way how to increase the accuracy in the t direction is to use more than two
profiles, i.e. to use a multi-step method, see chapter 6.2.1.4.

6.2.2 Grid methods for nonlinear problems

A nonlinear problem can be formulated in general as

F

(
t, x, u,

∂u

∂x
,
∂2u

∂x2
,
∂u

∂t

)
= 0 . (6.2.55)

In chemical engineering we usually solve problems linear both in ∂u
∂t and in ∂2u

∂x2 . These
problems are called quasi-linear, e.g.

∂u

∂t
= a

(
t, x, u,

∂u

∂x

)∂2u

∂x2
+ b

(
t, x, u,

∂u

∂x

)∂u
∂x

+ c
(
t, x, u,

∂u

∂x

)
(6.2.56)

(the last two terms could be written as a single term, but b and c are often independent of
∂u
∂x , so this form is more convenient).

Some authors use the term quasi-linear for systems with coefficients that do not depend
on first derivatives; the terminology is not uniform. It is appropriate to say that unlike linear
equations, there is no general approach to nonlinear parabolic equations. Each nonlinear
equation (or a system of them) is usually a unique problem for numerical solution. Thus
we discuss algorithms that often work in engineering applications, they are not however
reliable recipes for all problems.

93

6.2.2.1 Simple explicit method

If we replace all spatial derivatives and nonlinear coefficients in the old profile in equation
(6.2.56) we get the approximation

uj+1
i − uj

i

k
= a

(
tj, xi, u

j
i ,
uj

i+1 − uj
i−1

2h

)
uj

i−1 − 2uj
i + uj

i+1

h2
+

+b

(
tj, xi, u

j
i ,
uj

i+1 − uj
i−1

2h

)
uj

i+1 − uj
i−1

2h
+ (6.2.57)

+c

(
tj, xi, u

j
i ,
uj

i+1 − uj
i−1

2h

)
, i = 1, 2, ..., n − 1 ,

which is from the computational point of view similar to the explicit method (6.2.10).
From the known values of uj

0, u
j
1, . . . , u

j
n it is possible to compute the right hand side of the

approximation (6.2.57) and then we can get easily uj+1
i for i = 1, 2, . . . , n− 1. The problem

of approximation of the boundary condition is equivalent to that for linear equation.
Similarly as in the linear case, the steps h and k in the approximation (6.2.57) cannot

be chosen arbitrarily because for some combinations of h and k the replacement (6.2.57)
is unstable. Unlike the linear case it is not possible to get simple analytic condition of
stability. The stability of nonlinear problems must be tested experimentally. This is done
by computing a few steps for various values of the step k, the instability can be seen clearly.
Also, the condition of stability may vary with time t. For equation (6.2.57) the necessary
condition of stability (as the lower order terms have no significant influence on stability) is

k a
(
tj , xi, u

j
i ,

uj
i+1−uj

i−1

2h

)
h2

<
1
2
. (6.2.58)

In (6.2.58) the boundary conditions of the first kind are considered; the boundary conditions
with derivatives may change the condition substantially. The estimate (6.2.58) shows that
the acceptable step size k may indeed vary with time t and this must be taken into account.

Next, we use the explicit method (6.2.57) for a problem with a known analytic solution.
Consider the partial differential equation

∂u

∂t
=
∂2u

∂x2
+
u

2
∂u

∂x
+ c u2 − e−2π2t

(
c sin2 πx+

π

4
sin 2πx

)
(6.2.59)

with the boundary condition
u(0, t) = u(1, t) = 0 (6.2.60)

and the initial condition
u(x, 0) = sinπx . (6.2.61)

It is easy to check that the analytic solution (for any c) is

u(x, t) = e−π2t sinπx . (6.2.62)

Table 6.7 shows results computed by the explicit method (for c = 1).

94

Table 6.7: Results for explicit method (6.2.57) and equation (6.2.59), values u(0.5; t)
for various values of h and k

h = 0.1 h = 0.05 Exact solution
t k = 0.005 k = 0.002 k = 0.001 k = 0.001 k = 0.0005 (equation (6.2.62))

0.01 0.9045 0.9059 0.9063 0.9058 0.9060 0.9060
0.05 0.6053 0.6100 0.6115 0.6096 0.6104 0.6105
0.2 0.1341 0.1384 0.1399 0.1381 0.1388 0.1389
0.4 0.0180 0.0192 0.0196 0.0191 0.0193 0.0193

6.2.2.2 Method of simple linearization

The explicit method is easy to use, but it has a strong stability restriction which is here a
greater disadvantage than for linear equations, because the evaluation of nonlinear functions
is usually expensive. We often split nonlinear terms into two parts: a linear part, considered
on the new profile and a nonlinear part (or a remaining part), considered on the old profile.
E.g. u2 can be split into uj+1uj , similarly u3 can be split into uj+1(uj)2 , or (∂u

∂x)2 can be
split into (∂u

∂x)j+1(∂u
∂x)j etc. Here superscript 2 or 3 means power, while superscript j or

j+1 denotes discretized time. This trick is called linearization. Thus equation (6.2.56) can
be approximated by

uj+1
i − uj

i

k
= a

(
tj, xi, u

j
i ,
uj

i+1 − uj
i−1

2h

)
uj+1

i−1 − 2uj+1
i + uj+1

i+1

h2
+

+b

(
tj , xj, u

j
i ,
uj

i+1 − uj
i−1

2h

)
uj+1

i+1 − uj+1
i−1

2h
+ (6.2.63)

+c

(
tj, xi, u

j
i ,
uj

i+1 − uj
i−1

2h

)
.

The coefficients a, b, c are evaluated in the old profile j and the derivatives ∂2u
∂x2 and ∂u

∂x are
approximated in the new profile j+1. The difference scheme (6.2.63) is actually an implicit
scheme and it gives a system of linear equations for unknowns uj+1

0 , uj+1
1 , . . . , uj+1

n (includ-
ing boundary condition replacement). This is a three-diagonal system and it can be solved
by factorization. Approximation (6.2.63) is implicit for spatial derivatives. Alternatively
∂2u
∂x2 and ∂u

∂x could be approximated by the average of the values in the old and in the new
profile similarly to the Crank-Nicolson method. Each equation can usually be linearized by
various ways, the experience and intuition is important.

6.2.2.3 Extrapolation techniques

Let us try to replace equation (6.2.56) in pure implicit way, i.e.

uj+1
i − uj

i

k
= aj+1

i

uj+1
i−1 − 2uj+1

i + uj+1
i+1

h2
+ bj+1

i

uj+1
i+1 − uj+1

i−1

2h
+ cj+1

i ,

i = 1, 2, ..., n − 1 . (6.2.64)

The coefficients a, b, c are functions of the unknowns uj+1, e.g.

aj+1
i = a

(
tj+1, xi, u

j+1
i ,

uj+1
i+1 − uj+1

i−1

2h

)
. (6.2.65)

95

System (6.2.64) can be solved as a set of nonlinear equations, which will be discussed
later. Here we try to predict the values of aj+1

i , bj+1
i , cj+1

i based on the knowledge of a few
last profiles. Assuming u(x, t), a, b, c are sufficiently smooth functions we can extrapolate
the values of aj+1

i , bj+1
i , cj+1

i linearly for small time step k from the known profiles j and
(j − 1) according to

aj+1
i ≈ 2aj

i − aj−1
i (6.2.66)

(and similarly for b and c). We can extrapolate from more than just two profiles, e.g.
quadratic extrapolation gives

aj+1
i = aj−2

i − 3aj−1
i + 3aj

i . (6.2.67)

Approximation (6.2.64) is implicit, thus the stability restriction is not so severe (if any)
as for explicit one. The error introduced by extrapolation is much smaller than the error
of linearization as discussed in the previous section. So what is the disadvantage of this
approach? It is a multi-step method, meaning the first one or two steps must be computed
by another method, e.g. by actual solving the nonlinear equations (6.2.64).

6.2.2.4 Predictor - corrector technique

In the last section we discussed the prediction of the coefficients a, b, c in the profile (j+1).
There is another way: to predict the values of ūj+1 using the explicit method (6.2.57),
where uj+1

i = ūj+1
i , i = 1, 2, . . . , n − 1. This predicted ūj+1

i can be substituted into the
coefficients a, b, c in equation (6.2.64), e.g.

āj+1
i = a

(
tj+1, xi, ū

j+1
i ,

ūj+1
i+1 − ūj+1

i−1

2h

)
. (6.2.68)

Then (6.2.64) becomes

uj+1
i − uj

i

k
= āj+1

i

uj+1
i−1 − 2uj+1

i + uj+1
i+1

h2
+ b̄j+1

i

uj+1
i+1 − uj+1

i−1

2h
+ c̄j+1

i ,

i = 1, 2, ..., n − 1 , (6.2.69)

which is a system in linear equations (including boundary conditions) with a three diagonal
matrix; the solution being similar as in the linear case.

What advantages and disadvantages has this method as compared to extrapolation
methods (which can be regarded as a special case of predictor - corrector methods)? It
is not necessary to start with a different method i.e. the computation can start with the
knowledge of the initial condition alone. Sometimes the memory requirements are weaker.
As opposed to the linear extrapolation this prediction is usually better (even though they
both are of order O(k)). On the other hand the computation time can grow. Using a large
step size k (from the point of view of stability of the explicit method) is no problem because
the implicit method (6.2.69) eliminates this influence.

It is clear that when using the Crank-Nicolson method instead of (6.2.69) we must
evaluate āj+1/2

i , b̄
j+1/2
i , c̄

j+1/2
i , which can be done using an explicit method with the step

size k′ = k/2. When using this predictor - corrector method we can compare ūj+1
i and

uj+1
i (predicted and computed values) in each profile. We want these values to be close.

If they differ much we can substitute uj+1
i for ūj+1

i and repeat the computation according
to (6.2.69). This means we repeat the corrector step, similarly as for ordinary differential

96

equations (see 4.3). It would be too difficult to prove the convergence of this method for
general a, b, c and arbitrary boundary conditions. The experience tells us that this approach
usually converges for sufficiently small k.

6.2.2.5 Newton’s method

Consider the system (6.2.64) including the boundary value replacement as a system of
nonlinear equations

aj+1
i

uj+1
i−1 − 2uj+1

i + uj+1
i+1

h2
+ bj+1

i

uj+1
i+1 − uj+1

i−1

2h
+ cj+1

i − uj+1
i

k
+
uj

i

k
= 0 , (6.2.70)

thus
fi(u

j+1
i−1 , u

j+1
i , uj+1

i+1) = 0 , i = 1, 2, . . . , n − 1 , (6.2.71)

and possible boundary conditions

uj+1
0 = uj+1

n = 0 , (6.2.72)

that allow to eliminate uj+1
0 and uj+1

n from equation (6.2.70). After choosing the initial
approximation uj+1,0

1 , uj+1,0
2 , . . . , uj+1,0

n−1 , the next approximation can be computed by the
iteration

Γ(uj+1,s)Δuj+1,s = −f(uj+1,s) , (6.2.73)
uj+1,s+1 = uj+1,s + Δuj+1,s , (6.2.74)

where

Γ =

⎛⎜⎜⎜⎜⎜⎜⎝

∂f1

∂uj+1
1

∂f1

∂uj+1
2

· · · ∂f1

∂uj+1
n−1

...
...

∂fn−1

∂uj+1
1

∂fn−1

∂uj+1
2

· · · ∂fn−1

∂uj+1
n−1

⎞⎟⎟⎟⎟⎟⎟⎠ , uj+1 =

⎛⎜⎜⎜⎜⎝
uj+1

1

uj+1
2
...

uj+1
n−1

⎞⎟⎟⎟⎟⎠ , f =

⎛⎜⎜⎜⎜⎝
f1

f2
...

fn−1

⎞⎟⎟⎟⎟⎠ .

From (6.2.71) we can see that the Jacobi matrix Γ is three diagonal. The Newton’s method
converges almost always in a few iterations because we have a very good initial approxima-
tion uj

i , i = 1, 2, . . . , n− 1. The disadvantage is the need to evaluate the Jacobi matrix.
Up to now we considered one nonlinear partial differential equation. In most cases we

have a system of partial differential equations and then the Jacobi matrix for the Newton’s
method is no longer three diagonal, it still has a band structure. We are going to show
how appropriate linearization (sometimes called quasi-linearization) can be used to take the
advantage of a three diagonal matrix.

Consider a system of two equations

∂um

∂t
=
∂2um

∂x2
+ fm(u1, u2) , m = 1, 2 .

Using the Crank-Nicolson method we get for m = 1, 2

uj+1
m,i − uj

m,i

k
=

1
2

(uj+1
m,i−1 − 2uj+1

m,i + uj+1
m,i+1

h2
+
uj

m,i−1 − 2uj
m,i + uj

m,i+1

h2

)
+ f

j+ 1
2

m,i . (6.2.75)

97

If we replace the nonlinear term by the Taylor expansion

f
j+ 1

2
m,i

.= fm(uj
i) +

∂fm(uj
i)

∂u1

uj+1
1,i − uj

1,i

2
+
∂fm(uj

i)
∂u2

uj+1
2,i − uj

2,i

2
, m = 1, 2 ,

we get actually the Newton’s method (written in a different way) and the Jacobi matrix
will have a band structure with five diagonals (with appropriate ordering of the unknowns
and the equations). Doing only a partial linearization

f
j+ 1

2
1,i

.= f1(u
j
i) +

∂f1(u
j
i)

∂u1

uj+1
1,i − uj

1,i

2
(6.2.76)

f
j+ 1

2
2,i

.= f2(u
j
i) +

∂f2(u
j
i)

∂u2

uj+1
2,i − uj

2,i

2
,

the system of equations (6.2.75) splits into two independent subsystems, each one with
a three diagonal matrix. The algorithm can be further improved by using uj+1

1,i for the

computation of f j+1/2
2,i and to alternate the order of (6.2.76).

6.2.3 Method of lines

The method of lines is sometimes called the differential difference method. This name
reflects the fact that we replace partial derivatives in one direction by difference formulas
while we preserve them in the other direction and consider them as ordinary derivatives.
We explain the method using a simple quasi-linear equation

∂u

∂t
=
∂2u

∂x2
+R(u) (6.2.77)

with boundary conditions of the first kind

u(0, t) = u(1, t) = 0 , t > 0 , (6.2.78)

and the initial condition
u(x, 0) = ϕ(x) , x ∈ (0, 1) . (6.2.79)

We replace the spatial derivative using a difference formula

∂2u

∂x2

∣∣∣∣∣
x=xi

≈ u(xi−1, t) − 2u(xi, t) + u(xi+1, t)
h2

, i = 1, 2, . . . , n− 1 , (6.2.80)

where xi = ih, i = 0, 1, 2, . . . , n. We denote

u(xi, t)
.= ui(t) . (6.2.81)

Along vertical lines (see Fig. 6.6) we get differential equations

dui(t)
dt

=
ui−1(t) − 2ui(t) + ui+1(t)

h2
+R

(
ui(t)

)
, i = 1, 2, . . . , n− 1 , (6.2.82)

by substituting into equation (6.2.77). To satisfy boundary equations (6.2.78), it is easy to
see that it must be

u0(t) = 0 , un(t) = 0 . (6.2.83)

98

� � � �

u1(t) u4(t)u2(t) u3(t)

�t

x0 x1 x2 x3 x4 x5� x

Figure 6.6: Method of lines

Initial condition (6.2.79) gives initial condition for ordinary differential equations (6.2.82):

ui(0) = ϕ(xi) = ϕ(ih) , i = 1, 2, . . . , n− 1 . (6.2.84)

Method of lines is easy even for more complicated problems. E.g. the equation

∂u

∂t
= F

(
x, t, u,

∂u

∂x
,
∂2u

∂x2

)
(6.2.85)

can be transformed into a system of ordinary differential equations (without considering
boundary conditions)

dui

dt
= F

(
xi, t, ui,

ui+1 − ui−1

2h
,
ui−1 − 2ui + ui+1

h2

)
, i = 1, 2, . . . , n− 1 . (6.2.86)

There is no principal difference between system (6.2.82) and system (6.2.86). The method
of lines is a general approach both for linear and for nonlinear parabolic equations in two
variables. A system of ordinary differential equations was discussed in chapter 4. Not
all numerical methods for ordinary differential equations are appropriate for solution of
systems (6.2.82) or (6.2.86), but most of them can be used. The system (6.2.82) has two
important properties that must be considered when choosing the integration method:

1. It is a large system. The number of ordinary differential equations may be several
hundreds or thousands.

2. It is not necessary to take an extremely precise method for the numerical integra-
tion because even a precise solution of this system suffers the error of discretization
of the spatial derivative. A method with a similar accuracy to that of the spatial
discretization is appropriate.

Having a large number of equations it seems that complicated single step methods (Runge-
Kutta methods of a high order) are not good. Using the Euler’s method we get the simple
explicit formula (6.2.10). The reader is invited to check this. To integrate this system of
ordinary differential equations we often use the Runge-Kutta method of order 2 or 3 or a
multi step method or a predictor - corrector method. Then the starting profiles must be
computed using Runge-Kutta methods.

Using an explicit integration method brings the problem of stability. We cannot use
an arbitrarily long integration step for the Runge-Kutta method. The stability condition
must be investigated for each combination of PDE, spatial derivative approximation and
integration method separately. Thus it is better to use some implicit method, but this
requires iteration or to solve a system of liner algebraic equations for linear PDE.

99

Treatment of boundary conditions for the method of lines is similar to that of difference
methods. We can again introduce a fictitious profile or we can use non-symmetric difference
formulas for derivatives in the boundary conditions.

The method of lines with a single step integration is a good starting method for multi
profile methods.

The number of nodes in the spatial coordinate is given by the desired accuracy. For
problems where the solution in different regions of x differs considerably (e.g. for the
wave or front solution, where u changes significantly in a very small interval of x) with an
equidistant grid we must choose the step size so small to approximate this sharp transition
well. Then small changes of u in the rest of the interval are approximated too precisely and
the total number of nodes is too high. For such problems methods with adaptive regulation
of non-equidistant spatial grid have been developed (see [6]).

6.3 Numerical solution of parabolic equations with three in-

dependent variables

As compared to problems solved above, here we have one more spatial coordinate, so we
solve parabolic equations in two spatial and one temporal coordinates. The strategies are
similar to those discussed above, numerical realization is more difficult, memory require-
ments are higher and the computation time is usually much longer.

A typical and the simplest linear parabolic equation in three dimensions is the equation

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
, (6.3.1)

describing non-stationary heat conduction in a plane plate or non-stationary diffusion in a
plane. Assume the initial condition

u(x, y, 0) = ϕ(x, y) , x ∈ [0, 1] , y ∈ [0, 1] (6.3.2)

and the boundary conditions

u(x, 0, t) = 1 , u(x, 1, t) = 0 , x ∈ [0, 1] , t > 0 ,
u(0, y, t) = u(1, y, t) = 0 , y ∈ [0, 1] , t > 0 .

(6.3.3)

This describes warming up a square plate with the initial temperature ϕ(x, y), by keep-
ing three sides at the zero temperature and one side at the unit temperature. In the
region 0 ≤ x, y ≤ 1, t ≥ 0 we define a grid of nodes xi = ih; yj = jh; tm = mk, where
i, j = 0, 1, . . . , n ; m = 0, 1, This grid is given by the step h in the two spatial coordi-
nates x and y and by the temporal step k. Again we define

α =
k

h2
. (6.3.4)

We denote the value of the numerical solution at a grid point

um
i,j ≈ u(xi, yj , tm) = u(ih, jh,mk) . (6.3.5)

To keep the formulas simple we define central difference operators of the second order δ2x
and δ2y by

δ2xui,j = ui+1,j − 2ui,j + ui−1,j , δ2yui,j = ui,j+1 − 2ui,j + ui,j−1 . (6.3.6)

100

The simple explicit formula then becomes

um+1 = (1 + α(δ2x + δ2y))u
m + O(k2 + kh2) , (6.3.7)

or in details

um+1
i,j = um

i,j + α(um
i−1,j − 2um

i,j + um
i+1,j + um

i,j−1 − 2um
i,j + um

i,j+1) . (6.3.8)

The order of this method is clearly O(k+h2) and each point in the new profile is computed
from five points in the old profile. It is possible to derive a similar formula

um+1 = (1 + αδ2x)(1 + αδ2y)u
m + O(k2 + kh2) , (6.3.9)

that uses 9 points in the old profile and that has the same order as formula (6.3.7). The
reader is invited to rewrite (6.3.9) in the form similar to (6.3.8).

Equation (6.3.8) can be written by the scheme

α

α (1 − 4α) α

α

and similarly equation (6.3.9) by the scheme

α2

α2

α(1 − 2α)

α(1 − 2α) (1 − 2α)2 α(1 − 2α)

α(1 − 2α)

α2

α2

Formula (6.3.9) differs from (6.3.8) by including α2δ2xδ
2
yu

m. These formulas are illustrated
in Fig. 6.7. They both are of order O(k+h2); the stability condition of the 5 point formula
(6.3.8) is

α ≤ 1
4
, (6.3.10)

while the 9 point formula (6.3.9) is stable for

α ≤ 1
2
. (6.3.11)

If we take α = 1
6 , the order increases to O(k2 + h4) and this formula is appropriate

for preparing precise starting profiles for multi profile methods (this is true for equation
(6.3.1) only). Strict stability conditions (6.3.10) and (6.3.11) require small temporal step
size k resulting in a long computation time which in turn limits the usability of explicit
methods (6.3.7) and (6.3.9) for numerical solution of three dimensional problems. For four
dimensional problems the stability restrictions are even stronger. On the other hand, a big
advantage of explicit methods is their generality and ease of use (evaluation of recurrent
formulas).

101

Figure 6.7: Illustration of explicit formulas
(6.3.8) and (6.3.9)

Du Fort and Frankel derived a stable explicit method by taking (similarly as for a single
spatial coordinate) the unstable Richardson formula

um+1
i,j = um−1

i,j + 2α(δ2x + δ2y)u
m
i,j . (6.3.12)

They replaced um
i,j by the arithmetic mean 1

2(um−1
i,j + um+1

i,j) and they got

(1 + 4α)um+1
i,j = (1 − 4α)um−1

i,j + 2α(um
i−1,j + um

i+1,j + um
i,j−1 + um

i,j+1) . (6.3.13)

This equation is the Du Fort - Frankel method. The necessary starting values must be
computed by another method. The convergence is guaranteed if the parameters of the grid
satisfy certain additional condition, e.g. k/h → 0. These conditions decrease the value of
this method.

Similarly to the case of a single spatial variable it is possible to derive an explicit -
implicit method where the new profile is computed by

um+1
i,j = (1 + α(δ2x + δ2y))u

m
i,j , m+ i+ j even , (6.3.14)

(1 − α(δ2x + δ2y))um+1
i,j = um

i,j , m+ i+ j odd . (6.3.15)

Formula (6.3.14) is an explicit one in the form of (6.3.8) and (6.3.15) is implicit, where
we have all the values um+1

i−1,j, u
m+1
i+1,j , u

m+1
i,j−1, u

m+1
i,j+1 in the (m + 1)-th profile computed by

(6.3.14), thus (6.3.15) can be used for recurrent evaluation. This algorithm is illustrated in
Fig. 6.8. It can be shown that this method is very similar to the Du Fort - Frankel method,
so even here we need k/h→ 0.

For explicit method the temporal step size k is bounded by the stability condition or
by the condition k/h → 0. Thus implicit methods are often used instead. When used
for problems described by (6.3.1) - (6.3.3) we need to solve a system of linear algebraic
equations for (n − 1)2 unknowns in each step. The precise form of this system depends
strongly on the type of the problem and on the method used; generally these systems are
sparse because in each equation only a small number of unknowns appears. So for large n
it is unreasonable to use finite methods (e.g. the Gauss elimination) because of memory
and computation time demands.

It is possible to prepare a special algorithm with a finite method for a particular problem,
but its applicability is restricted to this particular problem so it is not worth the effort.

Often the method called alternating direction implicit (ADI) is used involving two
solutions of a three diagonal system of (n − 1) equations. The usage is similar to ADI for
elliptic problems. Here, however, the block relaxation ADI is not done for the same time
level. Or the point relaxation (upper) method can be used with only a few (usually just
one) relaxation cycle for each time level.

Of fundamental meaning is the Crank-Nicolson method (which is always stable for
problems (6.3.1) - (6.3.3)) with a five point scheme(

1 − α

2
(δ2x + δ2y)

)
um+1 =

(
1 +

α

2
(δ2x + δ2y)

)
um + O(k3 + kh2) (6.3.16)

102

i=0 1 2 3 4 5

1

2

3

j=4
m−odd

i=0 1 2 3 4 5

1

2

3

j=4

m−even

Figure 6.8: Explicit implicit method
• - values computed by (6.3.14)
◦ - values computed by (6.3.15)

or from boundary condition

or a nine point scheme(
1 − α

2
δ2x

)(
1 − α

2
δ2y

)
um+1 =

(
1 +

α

2
δ2x

)(
1 +

α

2
δ2y

)
um + O(k3 + kh2) . (6.3.17)

They both are of order O(k2 + h2). We get the ADI method by introducing additional
profile u+ and by appropriate splitting the formula (6.3.16). This way we get the Peaceman-
Rachford method (

1 − α

2
δ2x

)
u+ =

(
1 +

α

2
δ2y

)
um , (6.3.18)(

1 − α

2
δ2y

)
um+1 =

(
1 +

α

2
δ2x

)
u+ . (6.3.19)

If we eliminate the profile u+, from (6.3.18) and (6.3.19) by simple manipulation we get
(6.3.16). Fig. 6.9 illustrates the Peaceman-Rachford method.

There are other methods using alternating directions (Djakon method, Douglas-Rachford
method etc.). The interested reader is invited to use the original literature.

Figure 6.9: Peaceman-Rachford method
• - known values,
◦ - unknown values

As the number of unknowns and the number of equations for implicit methods depends
heavily on n, namely as (n− 1)2, we try to reduce the number of nodes while keeping the
accuracy. This can be done by using more nodes to approximate the spatial derivatives e.g.

∂2u

∂x2

∣∣∣∣∣
i,j

≈ −ui−2,j + 16ui−1,j − 30ui,j + 16ui+1,j − ui+2,j

12h2
(6.3.20)

or at the boundary

∂2u

∂x2

∣∣∣∣∣
1,j

≈ 11u0,j − 20u1,j + 6u2,j + 4u3,j − u4,j

12h2
. (6.3.21)

This method is illustrated in Fig. 6.10 for both explicit and implicit methods. The order
in x and y is O(h4), again Crank-Nicolson averaging can be used. Difference formulas of
a very high order can be constructed, using up to all (n − 1) values of u so that even for
small n a good accuracy can be reached in certain cases.

Solution of nonlinear parabolic equations in three dimensions is similar to two dimen-
sional problems, the resulting implicit linear problems are solved by some method given
above, e.g. upper relaxation or ADI.

103

Figure 6.10: Explicit and implicit formula of
higher order
• - known values,
◦ - unknown values

Similarly as for two independent variables, the method of lines can be used. Consider
a quasi-linear equation

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
+R(u)

with initial and boundary conditions (6.3.2), (6.3.3). Denoting ui,j(t)
.= u(xi, yj , t), and

using the simplest three point formulas we get

dui,j

dt
=

ui−1,j − 2ui,j + ui+1,j

h2
+
ui,j−1 − 2ui,j + ui,j+1

h2
+R(ui,j) ,

ui,j(0) = ϕ(xi, yj) , i = 1, . . . , n− 1 , j = 1, . . . , n− 1 .

The number of ordinary differential equations is in this case large, proportional to n2.
The advantage of this approach is that it is easy.

∗ ∗ ∗

For further study see [1], [5], [7], [18], [19], [21], [23], [27], [28].

104

Bibliography

[1] Berezin M.S., Židkov N.P.: Mětody vyčislenij I,II. Fizmatgiz, Moskva 1962.

[2] Brenan K.E., Campbell S.L., Petzold L.R.: Numerical Solution of Initial Value Prob-
lems in Differential-Algebraic Equations. North-Holland, Elsevier, New York 1989.

[3] Ciarlet P.G.: Introduction to Numerical Linear Algebra and Optimisation. Cambridge
Univ. Press, Cambridge 1989.

[4] de Boor C.: A Practical Guide to Splines. Springer Verlag, New York 1978.

[5] Děmidovič B.P., Maron I.A., Šuvalova E.Z.: Čislennyje mětody analiza. Fizmatgiz,
Moskva 1967.

[6] Flaherty J.E., Paslow P.J., Stephard M.S., Vasilakis J.D., Eds.: Adaptive Methods for
Partial Differential Equations. SIAM, Philadelphia 1989.

[7] Forsythe G.E., Wasow W.R.: Finite Difference Methods for Partial Differential Equa-
tions. Wiley, New York 1960.

[8] Golub G.H., Van Loan C.F.: Matrix Computations. The Johns Hopkins Univ. Press,
Baltimore 1996.

[9] Hairer E., Norsett S.P., Wanner G.: Solving Ordinary Differential Equations I. Nonstiff
Problems. Springer Verlag, Berlin 1987.

[10] Hairer E., Wanner G.: Solving Ordinary Diferential Equations II. Stiff and Differential-
Algebraic Problems. Springer Verlag, Berlin 1991.

[11] Hairer E., Lubich C., Roche M.: The Numerical Solution of Differential-Algebraic
Systems by Runge-Kutta Methods. Springer Verlag, Berlin 1989.

[12] Henrici P.: Discrete Varible Methods in Ordinary Differential Equations. J.Wiley, New
York 1962.

[13] Himmelblau D.M.: Process Analysis and Statistical Methods. Wiley, New York 1970.

[14] Horn R. A., Johnnson C. R.: Matrix Analysis. Cambridge University Press, Cambridge,
1985.

[15] Kub́ıček M., Hlaváček V.: Numerical Solution of Nonlinear Boundary Value Problems
with Applications. Prentice-Hall, Englewood Cliffs 1983.

[16] Lambert J.D.: Computational Methods in Ordinary Differential Equations. J.Wiley,
London 1973.

105

[17] Lapidus L., Seinfeld. J.H.: Numerical Solution of Ordinary Differential Equations.
Academic Press, New York 1971.

[18] Mitchell A.R.: Computational Methods in Partial Differential Equations. J.Wiley, Lon-
don 1970.

[19] Mitchell A.R., Griffiths D.F.: The Finite Difference Methods in Partial Differential
Equations. J.Wiley, New York 1980.

[20] Ortega J.M., Rheinboldt W.C.: Iterative Solution of Nonlinear Equations in Several
Variables. Academic Press, New York 1970.

[21] Richtmyer R.D.: Difference Methods for Initial-Value Problems. Interscience, New
York 1956.

[22] Roberts S.M., Shipman J.S.: Two Point Boundary Value Problems: Shooting Methods.
Elsevier, New York 1971.

[23] Rosenbrock H.H., Storey C.: Computational Techniques for Chemical Engineers. Perg-
amon Press, London 1966.

[24] Saad Y.: Iterative Methods for Sparse Linear Systems. PWS Publ. Co., Boston 1996.

[25] Shampine L.F., Allen R.C.Jr., Pruess S.: Fundamentals of Numerical Computing.
J.Wiley, New York 1997.

[26] Stoer J., Bulirsch R.: Introduction to Numerical Analysis. Springer Verlag, New York
1992.

[27] Villadsen J., Michelsen M.L.: Solution of Differential Equation Models by Polynomial
Approximation. Prentice-Hall, Englewood Cliffs 1978.

[28] Von Rosenberg D.U.: Methods for the Numerical Solution of Partial Differential Equa-
tions. American Elsevier, New York 1969.

[29] Wilkinson J.H.: The Algebraic Eigenvalue Problem. Oxford University Press, London,
1965.

[30] Wilkinson J.H., Reinsch C.: Handbook for Automatic Computing. Linear Algebra.
Springer Verlag, New York 1971.

106

Index

3-diagonal matrix, 67

hyperbolic equation , 80
matrix

block
upper triangular, 9

square, 8
quasilinear equation, 79

A-stable, 63, 64
Adams formula, 89
Adams formulas, 60
Adams-Bashforth formulas, 60
Adams-Moulton formulas, 60
Adams-Moulton methods, 60
ADI, 102, 103
alternating direction implicit, 102

bisection method, 46
block iterative methods, 17
boundary condition, 82
Boundary conditions, 90
boundary conditions of the first kind, 98
Butcher method, 58

canonical form, 79
Cauchy problem, 70, 73
Cayley–Hamilton theorem, 21
central difference, 91
central difference formulas, 67
characteristic

equation, 19
polynomial, 19

closed Newton-Cotes formulas, 41
condition number, 10, 11
Conditioning, 10
Cramer rule, 10
Crank-Nicolson approximation, 93
Crank-Nicolson method, 92, 95–97, 102
Crank-Nicolson scheme, 88

difference methods, 66

differential difference method, 98
Djakon method, 103
Douglas-Rachford method, 103
Du Fort - Frankel method, 102

eigenvalue, 12, 18
eigenvector, 18
elimination

Gauss-Jordan, 14
elliptic equation, 81
equation

characteristic, 19
equidistant grid, 66
Euler method, 52, 56, 58, 63, 65
Euler’s method, 99
explicit approximation, 93
explicit formula, 82, 90
explicit formulas, 60
explicit method, 96
explicit methods, 101
extrapolation techniques, 95

factorization, 92
factorization algorithm, 93
five-profile implicit formula, 89
four-profile implicit formula, 89
Fourier method, 85

Gauss elimination, 67
Gauss quadrature formulas, 43
Gauss–Seidel method, 16, 17
Gauss-Jordan elimination, 14
Gaussian elimination, 21
Gaussian elimination, 13

Backward elimination, 14
Gaussova eliminace

Forward elimination, 14
Gershgorin disc theorem, 23
Givens rotation matrix, 24
grid methods, 81, 93

Heun method, 56, 58

107

Householder matrix, 25

implicit approximation, 93
implicit Euler method, 61
implicit formula, 88
implicit formulas, 60
implicit single-step methods, 64
initial condition, 81
initial value problem, 51, 69
interpolation

method, 22
interval separation, 46
iteration matrix, 16
iteration method, 44, 64

Jacobi block iterative method, 18
Jacobi matrix, 24, 48, 63, 67, 74, 97
Jacobi method, 15, 17, 24
Jacobian, 80

Krylov method, 21
Kutta method, 58

L-stable, 64
Lagrange interpolation polynomial, 22, 41
Lipschitz condition, 53

matrix
band, 9
bidiagonal

lower, 8
upper, 8

block diagonal, 9
block tridiagonal, 9
diagonal, 8
diagonally dominant, 9
Givens, 25
Hessenberg, 25

lower, 9
upper, 9

Householder, 25
identity, 8
indefinite, 9
inverse, 9
irreducible, 9
iteration, 16
negative definite, 9
negative semidefinite, 9
nonsingular, 10

normal, 9
orthogonal, 9, 24
permutation, 9
positive definite, 9
positive semidefinite, 9
rectangular, 8
reducible, 9
singular, 11
sparse, 8
symmetric, 9, 24
transposed, 9
triangular

lower, 8
upper, 8

tridiagonal, 8, 15
zero, 8

mattrix
nonsingular, 9
regular, 9

Merson’s method, 72
method

Gauss–Seidel, 16, 17
interpolation, 22
iteration, 44
Jacobi, 15, 17, 24
Krylov, 21
QR, 24
regula falsi, 46
SOR, 16

method of lines, 98, 104
method of simple linearization, 95
method of tangents, 47
method of unknown coefficients, 43
methods

direct, 10
elimination, 13
iterative, 10

block, 17
stationary, 45

methods with higher accuracy, 92
metods

iterative, 15, 16
point, 15

Milne-Simpson methods, 62
minor

principal, 19
Multi step methods, 59
multi-step methods, 62, 89

108

multiple shooting method, 75
multiplicity of the eigenvalue, 19

Newton method, 47, 64, 67
Newton’s method, 71, 74, 75, 97
Newton-Cotes formulas, 41
non-central difference, 91
norm

column, 11
Euclidean, 11
matrix, 11
row, 11
spectral, 12

Nyström methods, 62

open Newton-Cotes formulas, 41
ordinary differential equations, 66

parabolic equation, 81
parabolic equations, 100
parabolic partial differential equations, 79
parameter

relaxation, 16, 17
partial differential equations, 79
PDE, 79
Peaceman-Rachford method, 103
pivot, 14
point iterative methods, 15
polynomial

characteristic, 19
Lagrange interpolation, 22

preconditioner, 16
predictor - corrector technique, 96

QR method, 24
QR with shifts, 25
quadrature formulas, 41
quasi-linear equation, 104

relaxation parameter, 16, 17
Rosenbrock method, 64
rotation

plane, 24
Runge-Kutta method, 55, 58, 62, 99

Schur theorem, 24
secant method, 46
semi-implicit method, 64
separation interval, 46
shooting method, 69

simple explicit method, 94
Simpson’s rule, 41
SOR method, 16
spectral radius, 23
spectrum of the matrix, 18
stability condition, 83
stable scheme, 86
stationary methods, 45
stiff systems, 62
successive approximations, 45
symbol O, 11
system

ill-conditioned, 12
well-conditioned, 12

Taylor expansion, 11, 45, 98
theorem

Cayley–Hamilton, 21
Gershgorin, 23
Schur, 24

three-diagonal matrix, 84
three-profile implicit formula, 89
trapezoidal rule, 41, 64

unstable scheme, 86

vector norm, 10
von Neumann method, 85

Warner scheme, 74

109

	Numerical algorithms of linear algebra
	Fundamental terms in matrix theory
	Direct methods for solving systems of linear equations
	Conditioning of a system of linear equations
	Gaussian elimination
	Systems with tridiagonal matrix

	Iterative methods for linear systems
	Point iterative methods
	Block iterative methods

	Eigenvalues and eigenvectors of a matrix
	Location of eigenvalues
	Methods for determining the eigenvalues and eigenvectors

	Interpolation, numerical differentiation and integration
	Formulation of the interpolation problem
	Lagrange interpolation polynomial
	Hermite interpolation polynomial
	Interpolation by spline functions
	Difference formulas
	Difference formulas for equidistant grid
	 Method of unknown coefficients
	Richardson extrapolation

	Quadrature formulas
	Equidistant nodes - Newton-Cotes formulas
	Method of unknown coefficients

	 Numerical solution of nonlinear algebraic equations
	 Equation with one unknown
	 General iteration method
	 Bisection method and secant method
	Newton method

	 Numerical solution of systems of nonlinear equations
	Newton method

	 Numerical solution of ordinary differential equations - initial value problem
	Euler method and the method of Taylor expansion
	Runge-Kutta methods
	Multi step methods
	Adams formulas
	 Numerical methods for stiff systems
	Semi-implicit single-step methods

	 Boundary value problem for ordinary differential equations
	Difference methods
	 Difference approximation for systems of differential equations of the first order

	Conversion to initial value problem
	Problem of order 1
	 Problem of higher order

	Parabolic partial differential equations

