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1 Summary
Keywords:
dynamical systems,
differential operator,
Baker-Campbell-Hausdorff formula,
sparsest solution.

The original inspiration to this research comes from chemical engineering.
Experimental studies have shown that some catalytic processes, which were usu-
ally operated in stationary regimes, can be significantly improved (in terms of
selectivity, conversion etc.) if they are forced to operate in periodic regimes. A
special class of these processes includes reactors with periodic flow reversal. The
detailed mathematical description of such a reactor would require a system of
partial differential equations with a large number of parameters.

To understand the basic types of dynamical behavior of such systems, we
started with models in the form of ordinary differential equations where the flow
reversal is modeled by two different vector fields  ��"!�� �=�A� ���

acting one after
the other � �� � ��� � ��� ���
where � � ��� ��� is periodic in

�
with period ����� � satisfying� � ��� ��� � �  � � � if �v� �&� �! � � � if � � �&� � �?g

We call this type of dynamical systems “zig+zag dynamical systems”.
The output of our research activity in this field consists of three main parts

(besides posters and lectures at international conferences):� [KP] Klı́č A., Pokorný P.: On Dynamical Systems Generated by Two Al-
ternating Vector Fields. Int. J. Bif. Chaos 6, 2015 (1996).� [KPR] Klı́č A., Pokorný P., Řeháček J.: Zig-Zag Dynamical Systems and
the Baker-Campbell-Hausdorff Formula. Math. Slovaca 52, 79-97 (2002).� This PhD thesis which we intend to publish in a scientific journal after minor
modifications.

In [KP] Dynamical systems generated by two vector fields are studied both
analytically and numerically. A special case is considered, namely when the two
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vector fields are related by an involution. A map
�

is called involution if its
second iterate is equal to identity. A linear involution is represented by a matrix�

satisfying ����� � �
where

�
is the identity matrix. Two vector fields  ��"! are

�
-related if! � ��� � � � ���  � � � g

This is a good starting point to investigate systems modeling chemical reactors
with periodic flow reversal, when the reactant gases flow for a certain time interval
from one side and then for another time interval they flow from the opposite side.

Four examples of this type of models were chosen in [KP] for numerical study:� blinking nodes� blinking cycles� blinking Lorenz and� blinking vortices.

Detailed numerical investigation suggests that for small switching time inter-
val � the resulting system can be approximated by the averaged system� �� � � # � � �
where # � � � �  � � �?� ! � � �� g

In [KPR] this observation was refined in the following way. Taking the av-
erage of the two vector fields is just the first order approximation of an infinite
series approximation. The system of two blinking cycles was chosen to test our
hypothesis. By blinking cycles we mean the following: a 2-dim system given in
polar coordinates

� j � ; � � j� � ��j ��s � W j � �� ;� � � Y
has a stable limit cycle with radius

s
and with the center in the origin. Writing the

system in Cartesian coordinates and shifting the center one unit to the right we get
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the vector field  while shifting the center one unit to the left we get the vector
field ! .

Our conjecture in [KPR] was that the vector field describing the behavior of
the resulting system is given by the Baker-Campbell-Hausdorff (BCH) formula.
Taking the averaged system and also taking only the first two or three terms in
the BCH series resulted in a dynamical system with a qualitatively different phase
portrait. It was our great joy to see that taking the first four terms gives a system
with the phase portrait indistinguishable from the original one.

It took us three years to find a satisfactory proof that the BCH series is indeed
the right form for the approximation of the zig+zag dynamical systems. This PhD
thesis brings the desired proof along with further results.

The main results presented in this PhD thesis are as follows. In section 3
for a given smooth vector field  �� � � � � �

we introduce a linear first order
differential operator

> acting on smooth maps
; � � � � � �> �t; � � ; , �  

where both
;

and  are functions of ��9 � � . Thus in full form it reads> �t; � � � � � ; , � � � �  � � � g
We show that the solution of ODE �� �  � � �
with the initial condition � � � � � �
	
can be formally written (assuming the series converges) as� � ��� � J�0(L 	 � 0]�� �� 0(� � � � � J�0(L 	 � 0]�� > 0 8 �
	 � E�FHG � � > � 8 �
	�g

In section 4 we apply this formalism to a dynamical system generated by two
alternating vector fields  and ! acting one after the other. Our aim is to find a
shortcut – a third vector field # that moves the point in the state space from the
same initial condition to the same final point in the same time. In section 5 we use
the Taylor expansion to find the first few terms of the expansion of the shortcut # .
In section 6 we find the full form of the expansion of the shortcut # . To this
purpose we first have to replace composition of flows by composition of operatorsE�FHG � >' � 8=� E�FHG � >% � 8 � E+F�G � >% � E+FHG � >' � 8 g
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Then we can use the good old Baker–Campbell–Hausdorff formula that gives (for
non-commuting � and � ) the solution toE�FHG�� � E+F�G � E�FHG �
for � in the form of an infinite series of commutators of � and � . For commuting� and � (which is the case for real or complex numbers) we have just� � � � �
while for non-commuting � and � (which is the case for square matrices or oper-
ators) we have� � � � � � Y� c ��� � e � YY � � c ������� � e W c � ����� � e � W Y��� c ��� � ����� � e �� Y� � �1W c ��������������� � e W � c ������� � ����� � e W � c ��� � � � ����� � e �� � c � ������������� � e � � c � ����� � ����� � e � c � � � � � ����� � e ���� Y� � � � � c ��� � � � � � ����� � e � c � ����������������� � e �� � c � ��������� � ����� � e W � c � � � ������������� � e ��� g\g\g
Here square brackets denote nested commutator defined by (39) and (44).

This form is not unique and in section 7 we derive detailed relation between
the form of the BCH series in words and in commutators. This relation can be
expressed conveniently by an infinite series of square matrices

n h
, where eachn h

is a j o j matrix of integer numbers. Then we apply our results to derive
identities between commutators. The simplest of them beingc ��� � e � c � ���-e ��� g
Each such identity corresponds to one vector of the kernel of the matrix

n h
. These

identities can be used to reduce the number of terms of a given order in the BCH
series. We formulate the problem to find the sparsest form of the BCH series (i.e.
the form that has the least number of terms of a given order). This problem can be
solved by finding the sparsest solution to a given linear under-determined system
of algebraic equations. We give an explicit algorithm to find the sparsest solution
and we present numerical examples for illustration.

In section 13 we generalize our previous results to more than two vector fields.
In section 14 we apply our results to the case of a dynamical system generated

by four vector fields  ��"!
� W  �� W ! and give a useful interpretation of the commu-
tator

c  ���!�e .
10



2 Introduction
Considerable attention has been devoted to dynamical systems in the form of a set
of � first order ordinary differential equations (ODE)� �� � �_� � � � (1)

where � � � � � � �
is a continuous vector field.

The present work deals with a generalization of the above dynamical system,
namely with dynamical systems with discontinuous right hand side� �� � ��� � ��� ��� (2)

where � � ��� ��� � �  � � � if
��� ��� ����� �! � � � if
��� ��� ����� � (3)

where
��� ��� ��� (called the switching function) is a continuous function of both the

state � and of the time
�
.

We do not deal with the question how to define � � ��� ��� for
��� ��� ��� � � here.

This question is important when
��� ��� ��� depends on � , see [8]. Here we can take

either one of the single side limits.
We consider a special case when the switching function

��� ��� ��� does not de-
pend on � and is periodic in

�
with period ����� � and has the special form��� ��� ��� � � � if � �¡�¢� �� � if � �£�¢� � �?g (4)

So we arrive at the zig+zag dynamical system� �� � ��� � ��� ��� (5)

where � � ��� ��� is � � -periodic in
�

satisfying� � ��� ��� � �  � � � if �v� �&� �! � � � if � � �&� � �?g (6)

A note on the term “zig+zag”: an alternative name is “zig-zag” where the hy-
phen (“-”) means simple joining of two words. We use “zig+zag” intentionally to
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distinguish between plus (“+”) and minus (“-”) where minus stands for the oppo-
site of plus. This convention is useful when studying systems “zig+zag-zig-zag”,
i.e. systems generated by four vector fields  ���!.� W  �� W ! where the third vector
field is equal to the first one when multiplied by minus one and the fourth vector
field is equal to the second one when multiplied by minus one, see chapter 14. Still
another name could be “dynamical systems generated by two or more alternating
vector fields”.

2.1 Motivation
The motivation to investigate zig+zag dynamical systems comes from chemical
engineering, see [27], [28], [23], [24]. There has been an increasing interest in
periodically forced processes in literature recently. Application of forced unsteady
operating conditions seems to be beneficial in several heterogeneous catalyzed
processes ([3], [29] [31], [12]). Experimental studies ([32], [18]) have shown
that some catalytic processes, which were usually operated in stationary regimes,
can be significantly improved (in terms of selectivity, conversion etc.) if they are
forced to operate in periodic regimes. Theoretical and experimental studies have
shown that several processes can be operated auto-thermally avoiding the use of
heat exchanger [15], [16].

2.2 Previous results
In [33] we studied zig+zag dynamical systems, where the two vector fields are
related by a linear involution

�
(a map is called involution if its second iteration

is identity) i.e. we studied systems of the form! � �_� � � � ���  � � �
where the matrix

�
satisfies ����� � �

here
�

is the identity matrix.
For small switching period � the method of averaging was used to approximate

the non-autonomous zig+zag system by an autonomous system� �� � �  � � �?� ! � � �� g
12



In [34] we generalized the method of averaging by including higher order
terms leading to the Baker - Campbell - Hausdorff (BCH) series for linear systems
and we used the BCH series heuristically for nonlinear system.

The purpose of the present work is to give rigorous reasoning for the usage of
the BCH series for nonlinear systems. First, we develop the operator formalism
to deal with solution to ODE.

3 Operator formalism

3.1 Introduction
Although we will work only with vector fields on

� �
that can be given by ordered� -tuples of smooth functions of � variables, it turns out to be useful and necessary

to consider vector fields as differential operators, in agreement with [19]. We use
hat to stress the operator nature of a vector field, i.e.

> will denote the vector field
on
���

viewed as a differential operator and  will be its coordinate form in local
coordinates. As we work on

� �
only, the coordinate map on

� �
is the identity

map (
8 � � �d¤.��9 ��� ) and

> 8 �  is the coordinate form of the vector field
> in

the coordinate system on
���

.

3.2 Vector field as an operator
Consider ODE � �� � �  � � � (7)

with a smooth vector field  ¥� �=�d� ���
(where � is a fixed positive integer) and

with the initial condition � � � � � �
	�g
By smooth we mean in ¦ J � ��� � i.e. having continuous derivatives of any order.
We shall write

�� instead of § 6§ y where possible. Assuming the solution � � ��� �� � � ���
	 � can be expressed as a Taylor series� � ��� � � � � �?�¨� �� � � �?� � ��v©� � � �?� g\g\g (8)

for
�

in some neighborhood of zero, we need the time derivatives of �
13



�� � ��� �  � � � �����©� � ��� �  , � � � ����� �  � � � �����
...

Here  
, is the matrix of partial derivatives ,/�0 �«ª  /ª � 0
and the dot stands for multiplication of a matrix and a vector�  , �  � / � ��0(L �  ,/10  0 g
We will use multiple primes to denote higher order derivatives e.g. , ,/�0"¬ � ª �  /ª � 0 ª � ¬ g
Using the chain rule for the derivative of the composition of maps®� � � � � �

and �:� ��� � ��� �  � � � ����� �  , � � � ����� � �� � ���
we can find the time derivative of � of any order:�� �  ©� �  , �  � � b � � �  , �  � , �  � �°¯ � � ���  , �  � , �  � , �  

... (9)

(each left hand side is evaluated in
�

and each right hand side is evaluated in � � ��� ).
Could we introduce multiplication of vector fields  ��"!B� �®�A� ���

by 
! �  , � ! (10)
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then the Taylor series (8) would become an exponential. Unfortunately, this mul-
tiplication would not be associative because for  ��"!
�"#�� � � � � ��  
! � # � �  , � ! � , � #
but on the other hand  � !�# � �  , � � ! , � # �
which is different. We still want to express the Taylor series (8) as an exponential.

To this purpose for any given smooth vector field  ±� �®�²� ���
we introduce

a linear first order differential operator> :� <³� < g
Here

<
is the set of all smooth maps

; � � � � � �
. The action of the operator

> 
on any map

; 9 < is given by > ; � ; , �  (11)

i.e.
> ; is a map that assigns to each �´9 �=� the point�¶µ� > ; � � � > ; � � � � � �D; , �  � � � � � ; , � � � �  � � � g

The alternative grouping, namely
> �t;·� � ��� does not make sense, since the operator

can be applied to a map, here
;

, not to a point
;·� � � .

The action of the operator
> on the identity map

8
, i.e. a map satisfying8 � � � � � for all ��9 � � (12)

is > 8 � 8 , �  � � �  �  (13)

where
�

is the � o � identity matrix.
We also define the identity operator

>C
by>C ; � ;

for all
; 9 < g (14)

The identity operator
>C

is of order zero (no derivative of
;

is necessary to evaluate>C ; � ;
) and

>C
does not correspond to any vector field, because each operator

corresponding to a vector field is of order one.
Note: we will apply the operators only to the identity map

8
or to a map that

results from applying another operator to the identity map
8
, which is actually

applying the composition of operators to the identity map.
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Powers of
> can be used to express time derivatives of � � ��� in (9). Namely�� 0(� � ��� � > 0 8 � � ���

meaning > 8 �  > � 8 � > > 8 � > 
 �  , �  > b 8 � > - , �  � �  , �  � , �  > ¯ 8 � > �  , �  � , �  � ���  , �  � , �  � , �  
...

And for
� ��� we get � � 0(� � � � � > 0 8 �
	�g

We define (in accord with [10], [19] etc.) the exponential of an operator
> asE�FHG > � J�0(L 	 > 0].� g (15)

Note that if
> is a first order differential operator (corresponding to a vector field ¸� ���B� ���

), then
> � is a second order differential operator,

> ¹b is a third order
differential operator etc. and E+FHG > has not a finite order.

Now we can express the Taylor series (8) by the exponential of the operator
> 

corresponding to the vector field  on the right hand side of the ODE (7)� � ��� � � � � ���
	 � � J�0(L 	 � 0]�� � � 0(� � � � � J�0(L 	 � 0]�� > 0 8 �
	 � E+FHG � � > � 8 �
	�g (16)

We stress that the exponential in (16) is a formal series, which is equivalent to
the Taylor series of the solution of the given ODE. The exponentialE�FHG � � > �
is not an operator in the sense that when applied to a function it gives another
function defined on a certain subset of

�=�
independent of

�
. As we will see in the

next example, (16) gives the solution of the ODE which is defined on a certain
interval of

�
that may depend on the initial condition, which is a common case for

ODE.
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Note: some authors (see e.g. [19]) introduce differential operators acting on
real scalar–valued functions alone and only then they let the operator act com-
ponent–wise on vector–valued functions. We believe that our approach, namely
to introduce differential operators acting on vector–valued functions directly is
more natural. Also, by using the hat notation (adopted from quantum mechanics)
we stress the difference between a map (acting on points in

�®�
) and an operator

(acting on maps from
���

to
���

). This difference is often neglected.

3.3 Example 1: ODE
To illustrate the operator formalism just introduced consider a differential equa-
tion

�� � � �
with the initial condition � � � � � �.	�9 � .

First, let us solve this ODE by separation of variables:� � ��� � �
	YºW � �
	 g
For » � �
	 » � Y
this solution can be expressed as a Taylor series� � ��� � �
	 J�0"L 	 � � �
	 � 0 g

As the second approach we will use the operator formalism introduced above.
For the 1-dim vector field  � � � � � � we have the corresponding operator> �t; � � ; , �  
i.e. > �t; � � � � � ; , � � � � � � g
This operator when applied to the identity map

8 � � � � � is� > 8 � � � � � � �
and its

]
-th power is � > 0 8 � � � � � ]�� � 0(¼ � g
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The exponential of the operator
� > isE�FHG � � > � � J�0(L 	 � � > � 0].�

and this exponential when applied to the identity map
8

gives in �� E�FHG � � > � 8 � � � � � � J�0(L 	 � � > � 0]�� 8 � � � � � J�0(L 	 � 0 � 0(¼ � � � J�0(L 	 � � � � 0 g
Then the solution can be expressed as� � ��� � � E+FHG � � > � 8 � � �
	 � � �
	 J�0(L 	 � � �
	 � 0
which is exactly the same result as we obtained by standard methods.

The result obtained by operators is equivalent to the result obtained by Tay-
lor series in both its values and its domain of convergence. This example also
demonstrates that we do not have to suppose the existence of a global flow, i.e.
a solution defined for all real

�
. In this example for positive initial condition the

solution exists for
�$� Y [ �.	 and for negative initial condition the solution exists

for
�&� Y [ �
	 and for zero initial condition the solution exists for

� 9 � .
The domain of convergence of the Taylor series is a subinterval of the domain

of definition of the solution.

4 Two vector fields
Consider a zig+zag dynamical system generated by two vector fields  ��"!�� ��� � ��� ��� (17)

where � � ��� ��� is � � -periodic in
�

satisfying� � ��� ��� � �  � � � if �½� �&� �! � � � if � � �¢� � � (18)

with the initial condition � � � � � �.	 , see Fig. 1.
In the first half of the period, i.e. in time � , the vector field  moves the state

point from the initial condition � � � � � ��	 to the point�� � E�FHG � � > � 8 �
	�g
18
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�� �  � � ��� � ! � � �
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�� � E+F�G � � > � 8 �
	 �
� � E�FHG � � >! � 8 ��¾¿ ¿ÀÀ ¿¿KÁÂ ÂÀÀ ÃÃ ÁÀÀ Ã ÁÀÀ Ã
Figure 1: A typical trajectory of a zig+zag dynamical system (17–18) with the
initial condition � � � � � �
	 . In time � the vector field  moves the state point
from �
	 to �� and then in another time � the vector field ! moves the state point
from �� to �.� . And then these two steps repeat periodically producing a zig+zag
shaped trajectory giving the name to this class of dynamical systems.

And then in the second half of the period, i.e. in another time � , the vector field !
moves the state point from the point ��� to the point�
� � E�FHG � � >! � 8 � �� � � E�FHG � � >! � 8 � E+FHG � � > � 8 � �
	 ��� g (19)

Our aim is to find a shortcut (a short way from ��	 to �
� ) – a single vector field,
let us call it # , that moves the state point from the same initial condition �	 to the
same final point �.� in the same time � � (not necessarily going via the point ��� ,
actually almost surely not). Thus replacing the non-autonomous dynamical sys-
tem (17) by the autonomous system �� � # � � � g
5 Shortcut by Taylor
Assuming the solution to the ODE �� �  � � �
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can be written as� � ��� � � � � �?�¡�  � � � � ���� � ��  , � � � � ��� �  � � � � ���¹� a � � b �
we have (omitting the argument if equal to � � � � )�� � �
	 � �- � � ��  , �  � a � � b �
and similarly for the ODE

�� � ! � � �
assuming we can write the solution in the form of a Taylor series we have�
� � �� � �Ä! � �� �?� � �� ! , � �� � � ! � �� �?� a � � b � g
Now, we want to express ! � �?� � and ! , � �� � in terms of ! � �
	 � and ! , � �
	 � . Using�� W �
	 � �- � a � � � �
we get ! � �� � � ! � �
	 �?� ! , � �
	 � � �- � �
	 �?� a � � � �
and ! , � �� � � ! , � �
	 �?� a � � �
thus (omitting the argument if equal to ��	 )�
� � �� � � � ! � ! , � �- �?� � �� ! , � ! � a � � b � �� �
	 � �- � � ��  , �  � � � ! � ! , � �- �� � �� ! , � ! � a � � b � �� �
	 � � �  � ! �?� � �� �  , �  � � ! , �  � ! , � ! �?� a � � b � g (20)

We want (20) to be equal to the solution of the ODE�� � # � � �
for

� ��� � , namely �
� � �
	 � � �-# � Y� � � � � � # , � # � a � � b � g
20



We can search for # in the form of a series in � . Denoting #p	 the leading term and
denoting �-#�� the first order term and neglecting higher order terms we can write# � #�	 � �Ä#�� � a � � � � g
Then�
� � �
	 � � � � #�	 � �-#�� �?� Y� � � � � � � #�	 � �-#�� � , � � #�	 � �-#�� �?� a � � b � �� �
	 � � � � #�	 �?� � � � � #�� � � #�	 � #�	 ��� a � � b � g (21)

Comparing the terms of ��� from (20) and (21) linear in � we have#�	 �  � !� g
In the method called averaging # is approximated by #i	 only.

Using this #º	 and comparing the terms of �.� from (20) and (21) of order � �
we get #�� � ! , �  W  , � !� g
Together we get# � #�	 � �-#�� � a � � � � �  � !� � � ! , �  W  , � !� � a � � � � g (22)

This approach can be used to any order. However, a more elegant way is to
use the BCH series, which gives more insight.

6 Shortcut by BCH

6.1 Composition of flows
First, we want to express the composition of mapsE+FHG � � >! � 8=� E�FHG � � > � 8
from (19) by appropriate composition of operators (applied to the identity map).

For this purpose consider a map K� �=�K� ���
applied to the solution of the

ODE
�� �  � � �
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i.e. applied to the map � � ��� � E�FHG � � > � 8 �
	�g
Let us call the composition Å ÅÆ�  � �
i.e. Å � ��� �  � � � ����� g
Using the chain rule we can find the derivatives of Å :Å � ��� �  � � � ����� � > 8 � � ����Å � ��� �  , � � � ����� �  � � � ����� � > > 8 � � ���

in short

�Å � k, �  � > > 8 � � ���©Å � �  , �  � , �  � > � > 8 � � ���Å � b � � ��� k, �  � , �  � , �  � > b > 8 � � ��� (23)

in general Å � 0(� � > 0 > 8 � � ��� g
Assuming we can express Å � ��� in the form of a Taylor series we have � � � ����� ��Å � ��� � J�0"L 	 � 0].� Å � 0(� � � � � J�0"L 	 � 0]�� > 0 > 8 �
	 � E�FHG � � > � > 8 �
	�g
Then consider  � � � ����� � E+F�G � � > � > 8 �
	 (24)

for a special operator
> > � E+F�G � � >! � (25)

and its corresponding map (the flow of the ODE

�� � ! � � � ) � > 8 � E+F�G � � >! � 8 g (26)

Then after putting (25) and (26) into (24) we haveE�FHG � � >! � 8 � � � ����� � E�FHG � � > � E+F�G � � >! � 8 �
	
and E�FHG � � >! � 8=� E�FHG � � > � 8 � E+F�G � � > � E�FHG � � >! � 8 g (27)

This is a key result that allows to treat zig+zag dynamical systems by operators
because we can study composition of flows by investigating “multiplication” of
exponentials of operators.
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For
� � � we haveE+FHG � � >! � 8�� E�FHG � � > � 8 � E+F�G � � > � E�FHG � � >! � 8 g (28)

For three vector fields  ��"!
�"#Ç� ���V� ���
and for � � � we can introduce three

new vector fields %È�+'É�+* � ���A� ���
by% � �Ä (29)' � �Ä! (30)* � � �-#$g (31)

Then the corresponding operators satisfy>% � � > (32)>' � � >! (33)>* � � � >#Ag (34)

Then (28) can be written in a simpler formE�FHG � >' � 8=� E�FHG � >% � 8 � E+F�G � >% � E+FHG � >' � 8 g (35)

To avoid confusion, if
>% and

>' are operators, so are their exponentials E+F�G � >% �
and E�FHG � >' � . Then E+F�G � >% � 8 and E�FHG � >' � 8 are these two operators applied to the
identity map

8
from

� �
to
� �

resulting in another two maps from
� �

to
� �

. On
the left we have the composition of these two maps. On the right the composition
of the two exponentials E�FHG � >% � and E�FHG � >' � of operators being another operator
is applied to the identity map

8
from

�=�
to
���

resulting in another map from
�=�

to
���

.
Note the reversed order of

>% and
>' on the left and on the right hand side.

Also note that (35) is far from obvious. E.g. it is not true when the identity map
8

is replaced by another map
;

, because then even the zero order terms do not agree:
on the left we have

; � ;
while on the right we have just

;
which is not equal unless;

is a projection.
Due to the rescaling (32-34),

>% and
>' are proportional to � (for fixed

> and
>! ).

When � is small, so are
>% and

>' and we can work with series expansions.
As an example we give the second order expansion of both sides of (35). On

the left we haveE+F�G � >' � 8�� E+FHG � >% � 8 � � >C � >' � Y� >' >' � 8�� � >C � >% � Y� >% >% � 8 � a � � b � �
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� � 8 � ' � Y� ' , � ' � � � 8 � % � Y� % , � % �?� a � � b � �� 8 � % � ' � Y� % , � % � Y� ' , � ' � ' , � % � a � � b �
and on the right we haveE�FHG � >% � E�FHG � >' � 8 � � >C � >% � Y� >% >% � � >C � >' � Y� >' >' � 8 � a � � b � �� � >C � >% � >' � Y� >% >% � Y� >' >' � >% >' � 8 � a � � b � �� 8 � % � ' � Y� % , � % � Y� ' , � ' � ' , � % � a � � b � g

The presence of the term ' , � % in the second order expansion shows that it is
not possible to exchange

>% and
>' .

Let us return to our original goal. The first vector field  moves the point in
the state space from the initial condition ��	 to the point�� � E+FHG � � > � 8 �
	
in time � and then the second vector field ! moves the point from �Ê� to�
� � E+FHG � � >! � 8 �� � E+F�G � � >! � 8�� E+F�G � � > � 8 �
	
in another time � . We want to find the shortcut – the vector field # that brings
the point in the state space from the initial condition �¹	 to the final point �.� in the
same time i.e. � � �
� � E�FHG � � � ># � 8 �
	�g
So we have the equation for

>#E�FHG � � >! � 8=� E�FHG � � > � 8 � E�FHG � � � ># � 8 g
Due to the rescaling (32-34) we can writeE�FHG � >' � 8=� E�FHG � >% � 8 � E+F�G � >* � 8 g
Using (35) to the left hand side we getE�FHG >% E+F�G >' 8 � E�FHG >* 8 g
Assuming the operators are applied to the identity map

8
only we want to solveE�FHG >% E+F�G >' � E+F�G >* (36)

for
>* .
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6.2 Non-identity map
Note however, that >s 8 � >w 8
does not imply >sË; � >wO;

for all
; 9 <

or equivalently that >s 8 ���
does not imply >sË; ��� for all

; 9 < g
To see this, consider the second order operator>s � > >]
where

>]
is a first order operator corresponding to a constant vector field

]] � � � � const.

and
> is another first order operator corresponding to a vector field  . Then>sË; � > >] ; � �t; , � ] � , �  � ; , , � ] �  �g

Here
; , , � ] �  is a map which in the point �:9 � � has the value>s�;Ê� � � � ; , , � � � � ] � � � �  � � � � ; , , � � � � const.

�  � � � g
Then

>s�;
is nonzero for quadratic

;
while zero for linear

;
and thus for identity.

So we have >s 8 ���
while nonzero result for nonlinear

;>sH; � ; , , � ] �  �g
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7 BCH series
Using the series (15) for the exponential of an operator and using the seriesPRQUS > � J�0(L � �XWAY � 0OZ � � > W >C � 0 [U]

(37)

for the logarithm (assuming the series converges in accord with [19], [10] etc.) we
get the solution of (36) for * in the form of the Hausdorff series [2]>* � PRQTS
� E+F�G >% E+FHG >' � g (38)

In the next section we present a detailed derivation of a few low order terms of
this series.

Reinsch in [25] uses an interesting alternative approach to get the terms in the
Baker–Campbell–Hausdorff series, see Appendix A.2.

7.1 Second order expansion
The second order expansion in � givesE�FHG >% � >C � >% � Y� >% � � a � � b �E�FHG >' � >C � >' � Y� >' � � a � � b � g
Denoting >Ì � E�FHG >% E+F�G >' W >C �� � >C � >% � Y� >% � � � >C � >' � Y� >' � � W >C � a � � b � �� >% � >' � >% >' � Y� >% � � Y� >' � � a � � b �
we have >Ì � � � >% � >' � >% >' � Y� >% � � Y� >' � � � � a � � b � �� >% � � >% >' � >' >% � >' � � a � � b �
and >* � PlQUS
� E+FHG >% E�FHG >' � � >Ì W Y� >Ì � � a � � b � �
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� >% � >' � >% >' � Y� >% � � Y� >' � W Y� � >% � � >% >' � >' >% � >' � �?� a � � b � �� >% � >' � Y� � >% >' W >' >% �?� a � � b � g
7.2 Commutator
Denoting the commutator of two operatorsc >%d� >'®e � >% >' W >' >% (39)

we get >* � >% � >' � Y� c >%d� >'=e � a � � b � g (40)

We say that
>% and

>' commute if
c >%$� >'=e ��� .

Note that c >%$� >'@e � c >'v� >%�e �Í� (41)

for any two operators. This property is called skew symmetry.
Going back from

>% ,
>' and

>* to
> ,
>! and

># using (29-31) we get># � Y� � >* � Y� � > � >! � � � c > �� >!Ue � a � � � ��� g
Our ultimate goal is not the operator

># but rather the vector field# � ># 8 �
i.e. the shortcut from the initial point ��	 to the final point �.� of the zig+zag system.
To this purpose we must apply the commutator

c > ?� >!Îe to the identity map
8c > �� >!Ue 8 � > >! 8 W >! > 8 � ! , �  W  , � !
g

Thus a commutator of two vector fields is defined asc  ��"!Îe � ! , �  W  , � !
and in coordinates� c  ���!�e � � ��� / � ��� c > ?� >!Îe 8 � � � ��� / � ��0(L � ª ! / � � �ª � 0  0 � � � W ª  / � � �ª � 0 ! 0 � � � g
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To avoid confusion, if
> and

>! are operators, so is their commutator
c > �� >!Ue . Thenc > ?� >!Îe 8 is this operator applied to the identity map from

� �
to
� �

, the result being
another map from

���
to
���

. Then
� c > ?� >!Îe 8 � � � � is this map evaluated in the point � ,

the result being a point in
�=�

. And finally
��� c > ?� >!Îe 8 � � � ��� / is the q -th coordinate of

this point.
Then # � ># 8 �  � !� � � ! , �  W  , � !� � a � � � � g (42)

This agrees with (22) completely. It is always a pleasure to get the same result by
two different ways.

7.3 Commuting vector fields
We say that two vector fields  , ! commute ifc  ��"!Îe �Í� g
This occurs if and only if their corresponding operators

> ,
>! commute. In one

dimension it is easy to find all the vector fields that commute with a given vector
field  :� ��� �

. The condition! , � � �  � � � W  , � � � ! � � � �_�
is a linear differential equation for the function ! � � � that can be solved by separa-
tion of variables to give ! � � � � ]  � � � ] 9 � g
Thus a one dimensional vector field commutes with its multiples only. Alterna-
tively, this can be shown by considering, for nonzero ��\Ï� � , � Ï , � W � , Ï� �
and thus c � � Ï e ��� � ��Ï� � , g
Then

c � � Ï e �_� if � Ï� � , ���
and this is for Ï� � ] g
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7.4 Higher order commutators
We can generalize the notation used for a commutator of two operators

>f � , >f �c >f �+� >f �"e � >f � >f � W >f � >f �
to commutators of three or more operators. For three operators we havec >f �+� >f ��� >f b e §1ÐDÑ� c >f �+� c >f ��� >f b eme � >f � c >f ��� >f b e W c >f �\� >f b e >f � �� >f � � >f � >f b W >f b >f � � WÍ� >f � >f b W >f b >f � � >f � �� >f � >f � >f b W >f � >f b >f � W >f � >f b >f � � >f b >f � >f �
Note that c >f �+� >f ��� >f b e � c >f ��� >f b � >f �Òe � c >f b � >f �+� >f �"e ��� (43)

for any three operators. This property is called Jacobi identity.
Similarly, we can define a commutator of order j (i.e. a commutator of j

operators) for any positive integer j byc >f ��� >f �\�\g\g\gO� >fih e � c >f ��� c >f �k� c gkg\gk� >fph emele (44)

when we add for the sake of completenessc >f e � >f g
Note that a commutator of order j is linear in each one of its arguments.

When each
>fpÓ

is either
>% or

>' (the two letters in a two-letter alphabet) then
we can express each commutator

c >f ��� >f �\�\gkg\gk� >fph e of order j as a certain linear
combination of � h words (ordered � -tuples of elements that are either the sym-
bol

>% or the symbol
>' ) consisting of j letters. These linear combinations can be

conveniently express using a square � h o � h matrix
n h

. We will need these matri-
ces later, so we give examples of

n � , n � and
n b and then we derive a recurrent

relation for them.
For j®� Y

we have c >%ie � >%c >'®e � >'
and in the matrix formÔ c >%�ec >'@e&Õ � Ô Y �� Y Õ � Ô >% >'ÖÕ � n � � Ô >% >'ÖÕ g
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For j®��� we have c >%$� >%pe � �c >%d� >'=e � >% >' W >' >%c >'B� >%pe � >' >% W >% >'c >'B� >'=e � �
and in the matrix form×ØØØØÙ c >%$� >%pec >%d� >'=ec >'B� >%pec >'B� >'=e

Ú1ÛÛÛÛÜ � ×ØØØÙ � � � �� Y W@Y �� W@Y Y �� � � �
Ú1ÛÛÛÜ � ×ØØØØÙ >% >%>% >'>' >%>' >'

Ú1ÛÛÛÛÜ � n � � ×ØØØØÙ >% >%>% >'>' >%>' >'
Ú1ÛÛÛÛÜ g

For j®��Ý we havec >%d� >%$� >%�e � �c >%$� >%A� >'@e � >% >% >' W � >% >' >% � >' >% >%c >%$� >'v� >%�e � W >% >% >' � � >% >' >% W >' >% >%c >%d� >'²� >'@e � �c >'B� >%$� >%�e � �c >'B� >%A� >'@e � W >% >' >' � � >' >% >' W >' >' >%c >'B� >'v� >%�e � >% >' >' W � >' >% >' � >' >' >%c >'B� >'²� >'@e � �
and in the matrix form×ØØØØØØØØØØØØØØØÙ

c >%d� >%$� >%�ec >%$� >%A� >'@ec >%$� >'v� >%iec >%$� >'v� >'@ec >'B� >%A� >%iec >'B� >%$� >'@ec >'B� >'v� >%iec >'v� >'v� >'®e

Ú1ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÜ �
×ØØØØØØØØØØØØØÙ
� � � � � � � �� Y W � � Y � � �� W@Y � � W@Y � � �� � � � � � � �� � � � � � � �� � � W@Y � � WAY �� � � Y � W � Y �� � � � � � � �

Ú1ÛÛÛÛÛÛÛÛÛÛÛÛÛÜ
�
×ØØØØØØØØØØØØØØØÙ
>% >% >%>% >% >'>% >' >%>% >' >'>' >% >%>' >% >'>' >' >%>' >' >'

Ú1ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÜ �
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� n b �
×ØØØØØØØØØØØØØØØÙ
>% >% >%>% >% >'>% >' >%>% >' >'>' >% >%>' >% >'>' >' >%>' >' >'

Ú ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÜ
g

In general � >u h � 0 � �ÒÞ�/�L � � n h � 0�ß / � ># h � / (45)

where
� >u h � 0 is the

]
-th commutator of order j , and

� ># h � / is the q -th word consist-
ing of j letters.

To work with the matrices
n h

it is convenient to derive recurrent relations for
them. The rule c >f � >à e � >f >à W >à >f
where

>f
is either

>% or
>' and

>à
is a commutator corresponding to a row of the

matrix
n h

, implies that each row in the upper half of the matrix
n h ¼ � (i.e. a row

corresponding to a commutator beginning with
>% ) is a difference of two rows:� a row of matrix

n h
corresponding to the operator

>à
padded by zeroes on

the right and� this row with zeroes inserted to even positions

and that each row in the bottom half of the matrix
n h ¼ � (i.e. a row corresponding

to a commutator beginning with
>' ) is a difference of two rows:� a row of matrix

n h
corresponding to the operator

>à
padded by zeroes on

the left and� this row with zeroes inserted to odd positions
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namely,

� n h ¼ � � Ó ß / �
áâââââââââââââââã âââââââââââââââä

� n h � Ó ß / W � n h � Ó ß 5DåUæç for è)�Í� h � q �Í� h , q odd� n h � Ó ß / for è)�Í� h � q �Í� h , q evenW � n h � Ó ß 5DåUæç for è)�Í� h � q � � h , q odd� for è)�Í� h � q � � h , q even� for è � � h � q �_� h , q oddW � n h � Ó Z � Þ ß 5Xé ç Þç for è � � h � q �_� h , q even� n h � Ó Z � Þ ß /(Z � Þ for è � � h � q � � h , q odd� n h � Ó Z � Þ ß /(Z � Þ W � n h � Ó Z � Þ ß 5Xé ç Þç for è � � h � q � � h , q even
(46)

This can be conveniently computed by the following Mathematica code:

m={{1,0},{0,1}};
For[r=2,r<=3,r++,
n=2ˆ(r-1);
m=
Table[PadRight[m[[i]],2n]-Insert[m[[i]],0,Table[{j+1},{j,n}]],{i,n}]
˜Join˜
Table[PadLeft[m[[i]],2n]-Insert[m[[i]],0,Table[{j},{j,n}]],{i,n}];
Print["r=",r," m=",MatrixForm[m]];

];

7.5 Higher order expansion in words
The number

x@|
of words in >* � PlQUS
� E+FHG >% E�FHG >' �

of order j is too large to be listed here even for moderately large j , see Tab. 1. To
give a picture of the series we present the expansion up to order 6 only>* � >*ê� � >*´� � >* b � >* ¯ � >*´ë � >* r·� a � �-ì �
where>*Æ� � >% � >'>*¥� � Y� � >% >' W >' >% �>* b � YY � � >% >% >' W � >% >' >% � >% >' >' � >' >% >% W � >' >% >' � >' >' >% �>* ¯ � Y��� � >% >% >' >' W � >% >' >% >' � � >' >% >' >% W >' >' >% >% �
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>*¥ë � Y� � �1W >% >% >% >% >' � � >% >% >% >' >% � � >% >% >% >' >' W � >% >% >' >% >% WW � >% >% >' >% >' W � >% >% >' >' >% � � >% >% >' >' >' � � >% >' >% >% >% WW � >% >' >% >% >' � �í� >% >' >% >' >% W � >% >' >% >' >' W � >% >' >' >% >% WW � >% >' >' >% >' � � >% >' >' >' >% W >% >' >' >' >' W >' >% >% >% >% �� � >' >% >% >% >' W � >' >% >% >' >% W � >' >% >% >' >' W � >' >% >' >% >% �� ��� >' >% >' >% >' W � >' >% >' >' >% � � >' >% >' >' >' � � >' >' >% >% >% WW � >' >' >% >% >' W � >' >' >% >' >% W � >' >' >% >' >' � � >' >' >' >% >% �� � >' >' >' >% >' W >' >' >' >' >% �>* r � Y� � � � �1W >% >% >% >% >' >' � � >% >% >% >' >% >' � � >% >% >% >' >' >' W � >% >% >' >% >% >' WW � >% >% >' >% >' >' W � >% >% >' >' >% >' W >% >% >' >' >' >' � � >% >' >% >% >% >' WW � >% >' >% >% >' >' � ��� >% >' >% >' >% >' � � >% >' >% >' >' >' W � >% >' >' >% >% >' WW � >% >' >' >% >' >' � � >% >' >' >' >% >' W � >' >% >% >% >' >% � � >' >% >% >' >% >% �� � >' >% >% >' >' >% W � >' >% >' >% >% >% W ��� >' >% >' >% >' >% � � >' >% >' >' >% >% WW � >' >% >' >' >' >% � >' >' >% >% >% >% � � >' >' >% >% >' >% � � >' >' >% >' >% >% �� � >' >' >% >' >' >% W � >' >' >' >% >% >% W � >' >' >' >% >' >% � >' >' >' >' >% >% �
7.6 Higher order expansion in commutators
It is obvious that the second order term can be written using a commutator>*¥� � Y� c >%$� >'®etg
It is still quite easy to find that the third order and the fourth order terms can be
written using commutators as well>* b � YY � � c >%A� >%$� >'®e W c >'v� >%d� >'=e �>* ¯ � W Y��� c >%d� >'²� >%$� >'®etg
It is a nontrivial fact that all the terms of

>* � PRQUS-� E�FHG >% E+FHG >' � can be expressed
as linear combinations of commutators only. Seven different proofs of this fact are
given in [1], [4], [5], [7], [9], [22], [30]. The main idea of the proof by Djokovic
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j x@y{zty x@|
rank(

n h
)

x@}�zt� � [ j �
1 2 2 2 2 1
2 4 2 1 1 1
3 8 6 2 2 2
4 16 4 3 1 1
5 32 30 6 6 6
6 64 28 9 4 2
7 128 126 18 18 6
8 256 124 30 13 3
9 512 390 56 38 10

10 1024 388 99 31 2
11 2048 2046 186 � 181 6
12 4096 2044 335 � 180 2

...
...

...
...

...
...

Table 1: This table shows for each order j between 1 and 12 the total numberx®y{zDy �_� h of all possible words consisting of j letters (
>% or

>' ), the number
xA|

of
words appearing in the j -th order terms of BCH series, the rank of the matrix

n h
relating the commutators and the words consisting of j letters, the least possible
number

xA}�zt�
of commutators in the j -th order terms of BCH, and the common

denominator
�

(divided by factorial of j ) of the terms of order j of the BCH series.

[5] is given in Appendix. The consequence of this is that
PlQUS
� E+FHG >% E+FHG >' � �>% � >' if and only if

>% and
>' commute. For a short introduction to the Lie theory

see [10].
The formula giving >* � PlQUS
� E+FHG >% E�FHG >' �

in commutators of
>% and

>' is called the Baker – Campbell – Hausdorff formula.
It is named after the British mathematician Henry Frederick Baker (1866-1956),
after the Irish mathematician John Edward Campbell (1862-1924) and after the
German mathematician Felix Hausdorff (1868-1942).

To find the explicit form of the j -th order term in the BCH series as a linear
combination of commutators

� >u h � 0 with coefficients
��w h � 0 (to be found), namely>* h � �ÒÞ�0"L � �tw h � 0 � >u h � 0 (47)
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words commutators� >#�� � � � >% � >u\� � � � c >%pe� >#�� � � � >' � >u\� � � � c >'®e� >#�� � � � >% >% � >u+� � � � c >%A� >%�e� >#�� � � � >% >' � >u+� � � � c >%A� >'@e� >#�� � b � >' >% � >u+� � b � c >'v� >%ie� >#�� � ¯ � >' >' � >u+� � ¯ � c >'v� >'=e� ># b � � � >% >% >% � >u b � � � c >%A� >%d� >%ie� ># b � � � >% >% >' � >u b � � � c >%A� >%d� >'®e� ># b � b � >% >' >% � >u b � b � c >%A� >'B� >%pe� ># b � ¯ � >% >' >' � >u b � ¯ � c >%A� >'B� >'=e� ># b � ë � >' >% >% � >u b � ë � c >'v� >%$� >%pe� ># b �1r � >' >% >' � >u b �1r � c >'v� >%$� >'=e� ># b � ì � >' >' >% � >u b � ì � c >'v� >'²� >%ie� ># b �1î � >' >' >' � >u b �1î � c >'v� >'²� >'@e
...

...

Table 2: This table explains the symbols for words and commutators used in the
text for order j between 1 and 3. To avoid confusion, note that

># is a word, while>* is the BCH series.

supposing we know the coefficients
��s h � / in the linear combinations of the words� ># h � / giving

>* h , namely >* h � � Þ�/�L � �ts h � / � ># h � / (48)

all we need to do is to put (45) into (47) and to compare it with (48). By comparing
coefficients in front of individual words

� ># h � / on the left and on the right we get�ÒÞ�0(L � ��w h � 0 � n h � 0Oß / � �ts h � /
which in matrix form is n�ïh �Uðw h � ðs h (49)

(here � means transpose). This is the linear equation to give the coefficients
��w h � 0

in front of commutators in the BCH series. With the exception of order j±� Y
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this linear equation has not a unique solution. The matrix
n h

is singular, its rank
is less than its size � h , see Tab. 1. But the solution exists. As an illustration we
present the results of order up to eight here>*¥ë � Y� � �1W c >%$� >%$� >%A� >%A� >'@e W � c >%$� >%A� >'B� >%$� >'®e W � c >%$� >'v� >'²� >%A� >'@e �� � c >'B� >%A� >%A� >%$� >'®e � � c >'B� >%A� >'v� >%d� >'=e � c >'B� >'²� >'v� >%d� >'=e �>* r � Y� � � � � c >%$� >'B� >'v� >'v� >%$� >'®e � c >'B� >%A� >%A� >%$� >%A� >'®e �� � c >'B� >%A� >%A� >'B� >%A� >'=e W � c >'v� >'v� >%A� >%A� >%d� >'®e �>* ì � Y� �íñ � � c >%$� >%d� >%A� >%$� >%A� >%A� >'@e W Ý c >%d� >%A� >%$� >%A� >'²� >%d� >'®e WW � c >%$� >%$� >%A� >'v� >'B� >%A� >'®e � Y � c >%$� >%A� >'v� >%$� >%A� >%A� >'@e ��=ò c >%d� >%A� >'²� >%$� >'v� >%A� >'®e W ò c >%d� >%$� >'B� >'v� >'v� >%A� >'@e �� Y�ó c >%A� >'B� >%A� >%A� >'B� >%$� >'®e � �í� c >%A� >'²� >%A� >'B� >'²� >%A� >'@e �� Ý c >%d� >'²� >'v� >'v� >'B� >%$� >'®e W Ý c >'B� >%A� >%A� >%$� >%A� >%A� >'@e WW ò c >'v� >%d� >%$� >%$� >'B� >%A� >'®e � � c >'B� >%A� >%$� >'v� >'v� >%A� >'@e WW � c >'v� >%d� >'v� >%A� >%$� >%A� >'®e W ÝU� c >'v� >%$� >'v� >%$� >'v� >%$� >'®e WW Ý c >'v� >%d� >'v� >'²� >'v� >%$� >'=e � Ý c >'B� >'²� >%A� >%$� >'v� >%A� >'=e WW � c >'v� >'v� >%$� >'²� >'v� >%$� >'=e W c >'²� >'B� >'²� >'v� >'v� >%$� >'®e �>* î � YÝ � ó � � � c >%A� >%d� >'v� >'²� >'v� >'v� >%A� >'®e W �í� c >%A� >'v� >'v� >%A� >'v� >'v� >%A� >'=e �� � c >%d� >'²� >'v� >'v� >'B� >%$� >%$� >'@e W � c >%A� >'v� >'v� >'v� >'²� >'v� >%d� >'=e WW � c >'v� >%d� >%$� >%$� >%d� >%A� >%A� >'®e WôY � c >'B� >%A� >%A� >'v� >%A� >%A� >%d� >'®e �� � c >'B� >%A� >%A� >'B� >%A� >'²� >%$� >'®e W � c >'²� >%A� >'B� >%A� >%A� >%$� >%A� >'®e WW � � c >'B� >%A� >'B� >%A� >%A� >'v� >%A� >'®e � ó c >'B� >%A� >'v� >'B� >%A� >%A� >%$� >'®e �� � c >'B� >'v� >%$� >%d� >%A� >%A� >%$� >'=e � � ó c >'²� >'B� >%A� >'²� >%d� >%$� >%$� >'®e WW �Uõ c >'B� >'v� >'v� >%$� >%A� >%$� >%A� >'®e � g
7.7 Non-uniqueness of results in commutators
Unlike the results for

>* h in words, the results for
>* h in commutators are not

unique with the only exception of j½� Y
. This is the consequence of the fact that

the rank of the matrix
n h

that appears in (49) is less than its size � h for j � Y
.

The general solution to (49) can be written as a sum of a particular solution
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plus the general solution of the corresponding homogeneous equation. In other
words we can add any vector from the kernel of the matrix

n ïh
(i.e. a vector

that is mapped to zero) and we get another solution of the linear system. But this
another solution corresponds to the same term in the BCH series.

To illustrate this, let us consider j:�ö� . One possible basis of the kernel ofn ïh
is �1Y � � � � � � � ï � � � � Y � Y � � � ï � � � � � � � � Y � ï g (50)

Then the general solution to (49) isðw � � ×ØØØÙ � ����
Ú1ÛÛÛÜ � ] � ×ØØØÙ Y���

Ú1ÛÛÛÜ � ] � ×ØØØÙ � YY�
Ú1ÛÛÛÜ � ] b ×ØØØÙ ��� Y

Ú1ÛÛÛÜ �
with

] �+� ] �\� ] b 9 � . The corresponding second order term in the BCH series is>*¥� � Y� � >u�� � � � ] � � >u+� � � � ] � ��� >u+� � � � � >u�� � b �?� ] b � >u�� � ¯ �� Y� c >%d� >'®e � ] � c >%$� >%ie � ] � � c >%$� >'®e � c >'B� >%pe �?� ] b c >'v� >'®etg
In this case (for j²�÷� ) it is trivial to see that the new terms add nothing new but
they may change the form of the result. As an example consider] � � � �] � � W Y� �] b � � g
Then we get >*¥� � W Y� c >'²� >%ie
which is equal to the result given above, just in a different form. The form of the
result may be changed in two ways:� one term may be replaced by another, e.g.

c >%A� >'@e may be replaced byW c >'B� >%pe , or� the number of terms may be changed.

We want to find the sparsest solution to (49), i.e. the solution that has the least
possible number of nonzero terms.
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8 Identities
For any order j each vector in the kernel of the matrix

n ïh
corresponds to a

certain identity. Three vectors in the kernel of
n ï� given in (50) correspond to

three identities � >u�� � � � c >%$� >%pe ���� >u+� � � � � >u�� � b � c >%$� >'®e � c >'B� >%pe ���
and � >u�� � ¯ � c >'²� >'@e �_� g
This is a direct consequence of the skew symmetry of the commutator.

Oteo in [20] finds some of these identities by comparison of the BCH series
computed by various methods. Our approach is more systematic. Based on the
kernel of the matrices

n h
we are able to give both the total number and the form

of these identities.
Each such identity says that a certain linear combination of a certain number

(we call this number the length ø of the identity) of commutators is equal to zero.
Table 3 shows the number of independent identities and the maximal length of an
non-decomposable identity for order j between

Y
and

Y � . We say that an identity
is non-decomposable if none of its proper parts is an identity itself. E.g. the
identity c >%$� >'@e � c >'v� >%�e �Í�
is non-decomposable, while the identityc >%$� >%�e � c >'v� >'®e �Í�
is decomposable, because it can be decomposed into two identities, namelyc >%$� >%pe ���
and c >'²� >'@e ��� g

For higher order j it may be less obvious whether two forms of the result are
equal or not.

It was a surprise for me that the kernel of the matrix
n ï¯ contains the vector� � � � � � � � � � � Y � � � � � � � W@Y � � � � � � � � � � � � �
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j x h 4 ¬ Ðúù ø �Êû 61 0
2 3 2
3 6 2
4 13 2
5 26 2
6 55 4
7 110 4
8 226 8
9 456 15

10 925 26
11 1862 43
12 3761 76

...
...

...

Table 3: This table shows for each order j between 1 and 12 the number
x h 4 ¬ Ðúù of

independent rules (identities) of order j (which is the dimension of the kernel of
the matrix

n ïh
, cf. Table 1) and the maximal length ø �·û 6 of a non-decomposable

rule of order j . The field of ø �Êû 6 for j=� Y
is blank because there are no rules forj®� Y

, the kernel of
n � is just a zero vector.

which corresponds to the identity� >u ¯ �1r WÍ� >u ¯ � ��	 �_�
i.e. c >%A� >'B� >%A� >'=e W c >'B� >%A� >%A� >'@e �_� g
I expected the plus sign instead of the minus sign, in analogy withc >%$� >'=e � c >'B� >%pe ��� g
But the above identity is indeed correct, as can be shown by direct evaluation ofc >%$� >'v� >%$� >'=e � c >%d� c >'v� c >%$� >'®ememe � c >%d� c >'B� >% >' W >' >%peme �� c >%$� >' >% >' W >' >' >% W >% >' >' � >' >% >'=e �� >% >' >% >' W >% >' >' >% W >% >% >' >' � >% >' >% >' W >' >% >' >% � >' >' >% >% � >% >' >' >% W >' >% >' >% �
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� W >% >% >' >' � � >% >' >% >' W � >' >% >' >% � >' >' >% >%
and similarly forc >'B� >%A� >%$� >'=e � g\g\g � W >% >% >' >' � � >% >' >% >' W � >' >% >' >% � >' >' >% >%$g
As a consequence both >* ¯ � W Y�í� � c >%A� >'B� >%A� >'=e �
and >* ¯ � W Y�í� � c >'v� >%$� >%A� >'=e �
are correct. This changes the form of the result but not its sparsity. Each form has
exactly one term.

As an illustration in Fig. 2 we present a basis of the kernel of
n ïr shown as

a õUõ o � � matrix. Here positive elements are shown as red squares, negative
elements are shown as blue squares (we adopt this convention from electronics)
and zero elements as blank squares. The higher the absolute value of an element,
the higher the saturation of the color. As an example, the

Y Ý -th vector in this basis
is � � � � � � � � � � � � � � � � � � � � � � � � � � � Y � � � � � � � � � � � � � � � W Ý � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � Ý � � � � � � � � � � � � � � � � � � � � � � � � � Y � � � � � � � � � � � � � � � � � � � � � � � � � � � ï
corresponding to the identityc >%$� >%A� >'B� >'v� >%A� >'=e W Ý c >%d� >'²� >%A� >'B� >%A� >'=e �� Ý c >'B� >%A� >%A� >'v� >%A� >'®e � c >'²� >'v� >%$� >%A� >'²� >%�e �Í� g
Note that there is just one minus sign and three plus signs in this identity, as seen
also in Fig. 2 where the

Y Ý -th row contains one blue square and 3 red squares.

9 Our observations and conjectures about BCH se-
ries

Based on results given in Tab. 1 we formulate the following observations and
conjectures:
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Figure 2: One possible basis of the kernel of the matrix
n ïr . The matrix

n ïr is
a
� � o � � matrix. Its rank is 9, so the dimension of the kernel is õTõ . Each vector

in the kernel has 64 components. Thus there are 55 rows each consisting of 64
squares in this picture. Each row depicts one vector in the basis of the kernel.
Red squares represent positive components while blue squares represent negative
ones. The saturation of the color shows the absolute value of the corresponding
element. Zero components are shown as blank squares (most of the components
are zero).� Observation 1:

If the order j is odd and between 1 and 11 then the number
xd| � j � of words

of order j in the BCH series as a function of j forms a strictly increasing
sequence 2, 6, 30, 126, 390, 2046.� Conjecture 1:
If the order j is odd then the number

xA| � j � of words of order j in the BCH
series as a function of j forms a strictly increasing sequence.� Observation 2:
If the order j is even and between 4 and 12 then the number

xd| � j � of words
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of order j in the BCH series isx®| � j � � x@| � j WüY � g� Conjecture 2:
If the order j is even and more than 2 then the number

x$| � j � of words of
order j in the BCH series isx®| � j � � x@| � j WüY � g� Observation 3:
If the order j is between 2 and 12 then the minimal number

x½}~zD� � j � of
commutators of order j is strictly less than then the number

x$| � j � of words
of order j in the BCH series.

Thus it is more convenient to write the BCH series in commutators than in
words, because then the results are shorter. There is one even more impor-
tant reason to write the terms using commutators: a commutator of opera-
tors corresponding to vector fields corresponds to a vector field as well.� Conjecture 3:
If the order j is more than 1 then the minimal number

x½}~zD� � j � of commu-
tators of order j is strictly less than then the number

x$| � j � of words of
order j in the BCH series.� Observation 4:
For certain j (e.g. 2, 3, 5, 7, 11) the number

xd|
of words reaches a remark-

ably high value. Considering that two words, namely the word consisting
of

>% ’s only and the word consisting of
>' ’s only cannot be generated as a

linear combination of commutators, the value
x$| � x@y{zDy W � is the highest

possible result consistent with the theory.

10 Sparsest form of BCH series
Using (38) with exp given by (15) and log given by (37) we get the series to solve
(36) in words. Then we can solve (49) to get the series in commutators. As men-
tioned earlier, the system of linear algebraic equations (49) is under-determined,
it has more unknowns (the coefficients

�tw h � 0 ) than independent equations. It has
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infinitely many solutions. We can search for the sparsest solution, i.e. the solution
that has the least possible number of nonzero elements.

The sparsest solution of an under-determined system is not only elegant, it is
also practical, because it contains the information in the most compressed way.
This is desirable when we want to store or to transmit the information. This prob-
lem has been discussed intensively recently, see [6] and the references there.

10.1 Finite forms of BCH series
In this section we present two special cases when the BCH series has only a finite
number of terms.

If
>% and

>' commute, i.e. if c >%$� >'=e �_�
then >* � PlQUS
� E+FHG >% E�FHG >' �
has finitely many terms, namely >* � >% � >'vg
This is also the case when

>% and
>' are replaced by (complex) numbers.

Another special case of finite form of the BCH series is this one: Ifc >%$� >'=eþý�_�c >%$� >%A� >'=e ���c >'B� >%A� >'®e �_�
then >* � >% � >' � Y� c >%$� >'®etg
As a consequence we can writeE+F�G >% E+FHG >' � E+FHG � >% � >' � E�FHG � Y� c >%A� >'®e � � E+FHG >' E+F�G >% E�FHG c >%A� >'@etg
Proof: since

c >%d� >'=e commutes with both
>% and

>' and thus also with
� >% � >' �

(even though
>% and

>' do not commute) we can writeE+F�G >% E�FHG >' � E+FHG � >% � >' � Y� c >%d� >'®e � � E�FHG � >% � >' � E+F�G � Y� c >%d� >'®e � g
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This proves the first statement. And we can also writeE�FHG >' E�FHG >% E+F�G c >%$� >'®e � E+FHG � >% � >' � E�FHG �XW Y� c >%A� >'@e � E�FHG c >%d� >'®e �� E+F�G � >% � >' � E�FHG � Y� c >%A� >'@e � g
This proves the second statement.

10.2 Disprove of Kolsrud conjecture
Kolsrud in [13] computes the sparsest form of the BCH series up to the order 9
by intuitive applications of simplification rules. He observes that for the order j
between 1 and 9 if the order j is a prime number then the minimal number of
commutators to express the terms of the BCH series of order j is equal to the rank
of the matrix

n h
(in our symbols). Unfortunately, we have found that for j$� YUY

which is prime, there is a solution having 181 terms (see Table 1). This number
may not be the least possible value, but it is definitely less than the rank of the
matrix

n h
which is 186 for j@� YUY

. This result disproves the Kolsrud conjecture.
In the next subsection we describe our systematic algorithm to find the sparsest

form of the BCH series.

10.3 Our algorithm to find the sparsest solution
We use a systematic approach to find the sparsest solution to (49), when the right
hand side ðs h is already known. First, we reduce the size of the problem. For the
order j there are originally � h equations for � h unknowns. Sincec >%$� >%pe ���
any commutator ending in two

>% ’s is equal to zero (and the same is true for
>' )

and we can put to zero each coefficient
�tw h � 0 in front of a commutator ending in

two
>% ’s or in two

>' ’s. In this way we reduce the number of unknowns to one half
to get � h [ � unknowns.

Further, since c >%d� >'=e � W c >'B� >%ie
any commutator ending in g\g\gO� >'²� >% is equal to minus one times the same com-
mutator with the last two symbols exchanged. Thus we can put to zero each
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coefficient
��w h � 0 in front of a commutator ending in g\g\gk� >'v� >% . In this way we

reduce the number of unknowns to one half once more to get � h [ � unknowns.
We can look at the system of linear algebraic equations as of finding the spars-

est linear combination of columns of the matrix to get the right hand side vector.
Thus we can remove any column that is a multiple of another column and we
put the unknown corresponding to the removed column to zero. Unfortunately
we cannot remove a column that is a linear combination of other columns because
then the solution to the new system might have worse sparsity (more nonzero com-
ponents). But we can remove any row (any equation) that is a linear combination
of other rows.

Performing these reductions along with the Gauss elimination the system can
be reduced considerably ending with ÿ rows (equations) and � unknowns. After
this reduction we try to find the sparsest solution.

First, we test whether there is a solution containing only one nonzero compo-
nent. To do this we remove all but one columns of the matrix

n ïh
. This can be

done in � ways. We try to solve this system in all these � cases. If the rank of
the matrix of coefficients is equal to the rank of the augmented matrix (the matrix
with the right hand side column added) then the system has solution (according to
the Frobenius theorem), if the ranks do not agree, the system has no solution. If
we find a solution we are done.

If not, we test whether there is a solution containing two nonzero components.
To do this we remove all but two columns of the matrix

n ïh
. This can be done inÔ � � Õ

ways. In all these cases we again test whether there is a solution using the Frobe-
nius theorem. If so, we are done.

If not, we test whether there is a solution containing three nonzero compo-
nents. To do this we remove all but three columns of the matrix

n ïh
. This can be

done in Ô � Ý Õ
ways. In all these cases we again test whether there is a solution using the Frobe-
nius theorem. If so, we are done. If not we test whether there is a solution con-
taining 4, then 5, then 6 and so on solutions. This algorithm stops after a finite
(though possibly large) number of steps.
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As shown in Table 1 we have found the sparsest solution using the algorithm
described above for order up to 10 and the minimal number

x½}~zD�
of the commu-

tators in the terms of order j in the BCH series is given in the table. For order
11 and 12 we have found a solution using the Gauss elimination without remov-
ing columns but this solution is not guaranteed to be the sparsest one because the
algorithm described above takes too long for large j . So the numbers in Table 1
give only an upper estimate for

x$}~zD�
for j 11 and 12.

11 Example 2: Zig+Zag system
To illustrate the above results consider the following 1-dim example of a zig+zag
system with  � � � � � �
acting for time � and ! � � � � � b
acting for another time � with the initial condition� � � � � �
	 � Y g
We first find �?� and �
� by separation of variables and we find the Taylor series
of �.� as a function of the parameter � . Then we compare this result with that
obtained by the BCH series.

The ODE
�� � � �

has the solution � � ��� � � � � �YºW � � � � �
thus �� � YYpW � g

The ODE
�� � � b

has the solution � � ��� � � � � �� YºW � � � � � � �
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thus �
� � ��� YºW � �Ä� � � � �� Z��� YºW � �� � Z���� ç � Y
� YpW � � � � �

for �v� � � � W � Ý g
The Taylor series of �.� is�
� � Y � � � � YUY � �� � Y ñ � b � �T�ÎÝ � ¯ó � a�� � ë�� g

Let us now use the BCH series to find ��� and to compare it with the above
result. We first prepare the commutatorc  ��"!Îe � ! , �  W  , � !
of two power functions � � and � 0c � � ��� 0 e � ] � 0OZ � � � W ÿ � � Z � � 0 � � ] W ÿ � � � ¼Ä0�Z � g
Thus c  ���!�e � c � � ��� b e � � ¯ �c  ��" ��"!Îe � c � � ��� ¯ e ��� � ë �c !
�" ��"!Îe � c � b ��� ¯ e � � r �c  ��"!
�" ��"!Îe � c � � ��� r e �_� �.ì
etc.

The shortcut vector field # that moves the same initial condition �	 to the
same final point �.� (not necessarily, actually almost never, via the point ��� ) in the
same time

� ��� � can be found by the BCH formula, recalling (29)-(31)# � Y� � * �� Y� � � % � ' � Y� c %È�+'@e � YY � � c %È�O%È�+'=e W c 'É�O%È�+'@e � W Y��� c %È�+'É�O%È�+'®e � a � � ë ��� ��  � !� � � � c  ��"!Îe � � ���� � c  ��" ��"!Îe W c !
�" ��"!Îe � W �-b� ó c  ��"!
�" ��"!Îe � a � �Ä¯ � �� � � � �
b� � �Ä� ¯� � � ���� � � � ë W � r � W �-b�� ìY � � a � � ¯ � g
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Then the solution of the ODE
�� � # � � �

with the initial condition � � � � � Y
in time

� ��� � can be found by Taylor expansion� � ��� � � � � �?�¨� �� � � �¹� � �� ©� � � �?� � bÝ � � � b � � � �?� � ¯� � � �°¯ � � � �?� a � � ë ��
� � � � � � � � Y � � � � YTY � �� � Y ñ � b � �U�ÎÝ � ¯ó � a � � ë �
which agrees completely with the result obtained without BCH.

12 Application to linear ODE
Suppose the two vector fields % and ' are linear, i.e. there are two � o � matrices�

and 	 such that % � � � � � � �
and ' � � � �
	 � ��g

Note to symbols: names of matrices are usually ordinary capital letter. We
want to distinguish between a vector field and a matrix and still use related sym-
bols, so we choose calligraphic capital letters for matrices.

Then the first order term in the expansion of the operator
>*>*ê� � >% � >'

gives the first order term in the expansion of the vector field **ê� � >*ê� 8 � � >% � >' � 8 � % � ')g
The second order term in the expansion of the operator>*´� � Y� c >%$� >'®e
gives *¥� � >*´� 8 � Y� c >%$� >'=e 8 � Y� � >% >' W >' >% � 8 � Y� � ' , � % W % , � ' � g
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Since % , � � � � �
and ' , � � � ��	
we have *¥� � � � � Y� � 	 � � � � W � � 	 � � �
so we can write *´� � Y� � 	 � � W � � 	 � � Y� c 	 � � e � W Y� c � � 	 etg
As a result, for linear systems we can use the BCH series directly for matrices,
but then we have to multiply by

WAY
each even order term.

12.1 Ambiguity of matrix commutator
This uncomfortable result leads various authors to define the commutator of two
matrices in different ways. While Rossmann in [26] p.14 defines the commutator
of two matrices

�
and 	 c � � 	 e� z ùtù �Êû �O� � � � 	 W 	 � � �

Olver in [19] p.44 defines the same commutator asc � � 	 e� ¬�� Ð h ��	 � � W � � 	 g
We follow Rossmann, because this notation is more common in literature.

13 Zig+Zag+Zug Systems
In the preceding chapters we studied dynamical systems generated by two vector
fields  ��"! � ����� ���

acting one after the other in time. In this chapter we
investigate a generalization to the case when there are more than two vector fields.
As the first step in this generalization is the case with three vector fields, we choose
to call them “zig+zag+zug” systems. To be more precise we study dynamical
systems of the form � �� � ��� � ��� ��� (51)
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where � � ��� ��� is Ý � -periodic in
�

satisfying� � ��� ��� � áâã âä  ?� � � � if �²� �¢� � .� � � � if � � �¢� � � b � � � if � � � �¢� Ý �?g (52)

In analogy with (29) we introduce rescaled vector fields% 0 � �d 0 for
] � Y �\gkg\gk� Ý

and the corresponding operators
>% 0 .

We again want to find a shortcut – a single vector field * that moves the point
in the state space from the same initial condition �¹	 � � � � � to the same final point� b � � � Ý � � .

To use our previous results it is convenient to introduce a new symbol ^ ` re-
sembling the letter H for Hausdorff (see [2]) by>%�^ ` >' � PRQUS
� E�FHG >% E�FHG >' �
or equivalently E+FHG � >%�^ ` >' � � E�FHG >% E�FHG >'Bg (53)

We want to find
>* satisfyingE+F�G >* � E�FHG >%þ� E�FHG >%Ê� E+FHG >% b g

Using (53) twice we getE�FHG >* � E+F�G � >%)�þ^ ` >%Ê� � E�FHG >% b � E�FHG � >%)�É^ ` >%·�&^ ` >% b �
and thus >* � >%þ�É^ ` >%Ê�¢^ ` >% b g
It is easy to show that our previous result>%_^ ` >' � >% � >' � Y� c >%$� >'®e � a � � b �
implies>%)�þ^ ` >%·�¢^ ` >% b � >%þ� � >%Ê� � >% b � Y� � c >%)��� >%Ê�"e � c >%)��� >% b e � c >%·��� >% b e ��� a � � b � g
It is easy to generalize this result from 3 to ÿ vector fields

>%)���\gkg\gk� >% � acting one
after another. By induction we find>* � ��0(L � >% 0 � Y� � Z ��/�L � ��0(LÎ/�¼ � c >% / � >% 0 e � a � � b � g
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14 Zig+Zag-Zig-Zag System
Consider the dynamical system generated by four vector fields  ��"!
� W  �� W ! acting
one after the other. Using the result of the previous chapter for ÿ«��� we have>* � ¯�0(L � >% 0 � Y� b�/�L � ¯�0"LÎ/�¼ � c >% / � >% 0 e � a � � b � �� >%þ� � >%Ê� � >% b � >% ¯ � Y� � c >%)��� >%Ê��e � c >%)�+� >% b e �� c >%)��� >% ¯ e � c >%Ê�\� >% b e � c >%·��� >% ¯ e � c >% b � >% ¯ e �?� a � � b � g
As >%)� � >%>%Ê� � >'>% b � W >%>% ¯ � W >'
we have >* � >% � >' W >% W >' � c >%d� >'®e � c >%$� W >%�e � c >%$� W >'@e �� c >'v� W >%ie � c >'B� W >'@e � c W >%$� W >'®e � a � � b � � c >%$� >'®e � a � � b � g
This gives an important interpretation of the commutator of two vector fields: it is
a vector field which is tangent to the curve with parametric equation� ¯ � � ¯ � � �
of the “zig+zag-zig-zag” system generated by four vector fields, where the third
vector field is the opposite to the first one and the fourth vector field is the opposite
to the second one.

A Appendices

A.1 Proof of the BCH formula
The main idea of the proof by Djokovic in [5] that

>* can be expressed by com-
mutators of

>% and
>' only is as follows. He denotes

� � PRQUS
� E�FHG � � >% � E+F�G � � >' ��� � J�� L � � � � >%d� >' ��� �
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and
Ad

sv� � � � c s ���-e � s � W � s
and � the formal differentiation with respect to

�
. Then he derives step by step

two different results of
� � E+FHG ��� ��� E+F�G �1W�� � , namely� � E�FHG ��� ��� E�FHG �XW�� � � >% � E�FHG � Ad

� � � >' �
and � � E+FHG ��� ��� E+F�G �1W�� � ��� � Ad

� � � � � �
where � � � � � E�FHG � � � WüY� � J�� L � � � Z �� � � Y � � � � � �� � �
b��� � � ¯Y ��� � g\g\g
Thus � � Ad

� � � � � � � >% � E+F�G � Ad
� � � >' � g

IntroducingÏ � � � � Y� � � � � �E+FHG � � � WüYB� YºW � � � � �Y � W � ¯� � � � r� �íñ � � g\g\g
� � can be expressed as

� � � Ï � Ad
� � � >% � E�FHG � Ad

� � � >' ��� g
This is a differential equation for

�
that provides a recursion formulas for

� � . The
coefficient of

� �
on the left is � � � Y � � � ¼ �

and that on the right is a linear combination of expressions of the form

Ad
� � æ g\g\g Ad

� � 7 � � �
where � � >% or

>' and ÿ � � gkg\g � ÿ 0 � � . Thus if
� / are Lie elements (i.e.

can be expressed by commutators of
>% and

>' only) for q � � so is
� � ¼ � . Since� 	 ��� (and also

� � � >% � >' ),
�

is a Lie element.
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A.2 Alternative way to find the terms in the BCH series
Reinsch in [25] in order to find the j -th order term in the BCH series uses two� j � Y � o � j � Y � matrices n Ó / ��� Ó ¼ � ß /
and x Ó / ��� Ó ¼ � ß /�� Ó
i.e.

n �
×ØØØØØØØØØØØÙ
� Y � g\g\g� Y � gkg\gg g g � Y�

Ú1ÛÛÛÛÛÛÛÛÛÛÛÜ
and

x �
×ØØØØØØØØØØØÙ
� � � � g\gkg� � � � g\g\gg g g � � h�

Ú1ÛÛÛÛÛÛÛÛÛÛÛÜ g
When these matrices multiply a

� j � Y � -dim vector� � � � �kg\g\g�� Y � ï
from the left, then the only nonzero component of the vector moves one posi-
tion up with each multiplication. Multiplication by the matrix

n
leaves this

nonzero component unchanged, while multiplication by the matrix
x

multiplies
this nonzero component by one more � Ó , thus leaving a mark to be used later by
the transformation rule � .

Then the j -th order term of� � PRQUS
� E�FHG � n � E�FHG � x ���
is � h ��� ��PlQUS
� E�FHG � n � E+FHG � x ����� � ß h ¼ �
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where � stands for a transformation that puts � at è -th position when � Ó is found
(this is the mark left by multiplication by the matrix

x
) and it puts � at è -th

position when � Ó is not found.

A.3 Example 3: Parking problem
To illustrate the Zig+Zag-Zig-Zag system consider the following example from
[17] and [26]: how to park your car into a space that is just a little longer than
your car?

A car can be driven forward or backward (along an arc depending on the po-
sition of the driving wheel). In a situation shown in Fig. 3 where each rectangle
represents a car parked in a street, the driver may wish to be able to drive his car
to the right instead. Surprising enough, this can be done as a limiting case of a
Zig+Zag-Zig-Zag dynamical system.

�
?

Figure 3: Parking problem: how to park your car into a space that is just a little
longer than your car? Each black rectangle represents a parked car in a street, the
red rectangle is your car.

The configuration of a car in a plane can be given by four real values (see
Fig. 4):� the position of the center � of the front axle in Cartesian coordinates

� ��� � � ,� the angle � specifying the orientation of the car relative to a chosen direction� the angle � specifying the orientation of the driving wheel of the car relative
to the axis of the car.
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� ø� �� �

Figure 4: A driving car with a fixed orientation of the driving wheel.
f

(the center
of the rear axle) moves on a circle with radius

� � , � (the center of the front axle)
moves on a circle with radius

� � , ø is the length of the car, � is the orientation of
the car (relative to a chosen direction), � is the orientation of the driving wheel of
the car (relative to the axis of the car).

The driver can perform two actions: steering (turning the driving wheel) and
driving. Let us denote the vector field describing steering by Steer and the vector
field describing driving by Drive. Then

Steer � � � � � � � � Y � ï (54)

meaning �� � ��� � ��
� � ��
� � Y g

Using Fig. 4 we find that the center � of the front axle has coordinates� � � �! Q#"\� � � � W�$ � � � � � "&%'� � � � ��²� � � "(%)'�� � � � W $ � � � W � �! Q#"�� � � � �
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and thus
�� � �

� � �! Q#"�� � � � � � !* Q#"\� � � � ���²� �
� � � "(%'?� � � � � � ! "(%)'?� � � � �

where the velocity ! is ! � �
� � �\g

Since "(%' ��� ø� �
we have

�
�¥� !� � � !ø "(%)' � g

Choosing the length scale so that the length of the car is øô� Y
and choosing the

time scale so that the velocity is ! � Y
we get the vector field corresponding to

driving
Drive � �  Q#"�� � � � � � "(%'� � � � � � "&%' � � � � ï (55)

meaning �� �  Q+"�� � � � ��� � "(%)'�� � � � ��
� � "(%)'�� � ��
� � � g

Let us compute the commutatorc  ��"!Îe � ! , �  W  , � !
of the two vector fields Steer and Drive. As

Steer , � ×ØØØÙ � � � �� � � �� � � �� � � �
Ú1ÛÛÛÜ

and

Drive , � ×ØØØÙ � � W,"&%'� � � � � W,"&%'�� � � � �� �  Q+"�� � � � �  Q#"�� � � � �� � �  Q#"�� � �� � � �
Ú1ÛÛÛÜ
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we have c
Steer � Drivee � �XW,"(%)'?� � � � � �� Q#"�� � � � � �( Q#"\� � � � � � ï (56)

meaning �� � W-"(%'?� � � � ��� �  Q#"�� � � � ��
� �  Q#"�� � ��
� � � g

Note that the angle � gives the orientation of the car (relative to a chosen direc-
tion), the angle � gives the orientation of the driving wheel (relative to the car)
and the angle � � � gives the direction at which the center of the front axle moves
when driving. Then the vector field (56) describes a motion of the car when the
car moves in a direction perpendicular to the direction it would drive; rotating
with a constant angular velocity

�
� �  Q#"�� � � ; with fixed position � of the driving

wheel. This motion can be called Wriggle (česky: vrtět se) defined by

Wriggle � c
Steer � Drive etg

It is easy to show that c
Wriggle � Steer e � Drive

thus giving nothing new. Butc
Wriggle � Drive e � �1W-"(%'?� � � �� Q+"\� � � � � � � � ï g

This motion can be called Slide, thus

Slide � c
Wriggle � Drive e

because the car moves in a direction perpendicular to its axis and does not rotate!
This is the very motion needed to park a car to a space that is just a little longer
than the length of the car (or to come out of such a difficult position).

To give the complete picture we add thatc
Slide � Steer e � � � � � � � � � � ï �c

Slide � Drive e � "&%' � �  Q#" � � "&%' � � � � � � ï �
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and c
Slide � Wriggle e �  Q#" � �  Q#" � � "(%)' � � � � � � ï g

The last two vector fields are proportional to the vector field�  Q#" � � "(%)' � � � � � � ï
which, in turn, is equal to Drive for ����� , thus giving nothing new.

This can be conveniently computed by the following Mathematica program

Steer = {0,0,0,1};
Drive = {Cos[a+b],Sin[a+b],Sin[b],0};
d[f_]:= Outer[D,f,{x,y,a,b}];
com[f_,g_] := d[g].f - d[f].g;
Wriggle = com[Steer,Drive];
Slide = com[Wriggle,Drive]//Simplify;
SlideSteer = com[Slide,Steer];
SlideDrive = com[Slide,Drive];
SlideWriggle = com[Slide,Wriggle];

Print["Slide=",Slide];
Print["[Slide,Steer]=",SlideSteer];
Print["[Slide,Drive]=",SlideDrive];
Print["[Slide,Wriggle]=",SlideWriggle];
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[41] Pokorný, Turzı́k, Dubcová, Klı́č: On Spectra of Certain Class of Linear Op-
erators. Proceedings of 3rd Scientific Colloquium, Math. Dept. Prague Insti-
tute of Chemical Technology, 2001, pp. 55-63.
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mus a náhoda) Herbertov 5.-7.9.2005.

Contributed lectures:

[55] Coupled Map Lattices. Summer School Mathematical Modeling in Chemical
Engineering. 5.-9.9.1988 Seč, Czech Republic.
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