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Dynamical systems with time evolution determined by two alternating vector fields are investi-
gated both analytically and numerically. When the two vector fields are related by an involutory
diffeomorphism G then the fixed points of G (either isolated or non-isolated) are shown to give
rise to branches of periodic solutions of the resulting non-autonomous system. The method of
averaging is used for small switching periods. Detailed numerical study of both conservative
(“blinking vortex”) and dissipative (“blinking nodes”, “blinking cycles” and “blinking Lorenz”)
systems shows that the technique of blinking can be used to initiating and controlling of chaos.

1. Introduction

In many applications the time evolution of a system
is determined by two (or more) alternating dynam-
ics. Such “kicked” systems arise naturally at the
modeling of a tubular catalytic reactor with flow
reversal, see for example [Rehédcek et al., 1992, at
the modeling of kicked rotator, see [Chirikov, 1979]
or in the case of blinking vortex flow, see [Ottino,
1989].

In this paper a kind of kicked system is inves-
tigated, which is described by a non-autonomous
periodic system of ODE of the form

& =v(z) + rp(t)(W(z) - v(z)), (1)

where rp(t) = 0 for t € [0, p], rp(t) =1 for t €
(p, 2p) and rp(t) is 2p—periodic function; the two
vector fields v and w, related by involutory dif-
feomorphism G, alternately operate on the phase
space. Once we fix the switching period p, we ob-
tain a piecewise continuous dynamical system.
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The contents of this paper are as follows. In
Sec. 2 basic notions and definitions are given. The
correspondence between the system (1) and a sys-
tem with impulses is reminded. Section 3 deals
with the existence of periodic solutions of Eq. (1).
In Sec. 4 the method of averaging is investigated.
Section 5 contains several results of numerical ex-
periments. Namely the “blinking nodes” system
where the vector field v has a single point attractor
to illustrate the method of averaging, the “blinking
cycles” system where the vector field v has a stable
limit cycle. Detailed numerical study reveals com-
plex dynamical behavior including the Feigenbaum
cascade. The case when the vector field v has a
chaotic attractor is also studied, showing, that for
some values of the switching period p, the chaos per-
sists while for other values the system has a single-
point attractor. This way, the blinking technique
can be used either for initiating or controlling chaos.
The following surveys on controlling chaos, which
is closely related to this paper, may be found in

2015



2016 A. Kli¢c & P. Pokorny

[Chen & Dong, 1993; Ogorzalek, 1993; Shinbrot
et al., 1993]. As an example of conservative sys-
tem the “blinking vortex” system is studied. In
Appendix A the Palmer’s theorem, used in Sec. 3,
is repeated for the convenience of the reader. In
Appendix B the first integral for the averaged
“blinking vortex” system is derived.

2. Preliminaries

Consider a sufficiently smooth vector field v on R™,
generating a global phase flow

¢:RxR*"— R"

(that is a 1-parameter subgroup of diffeomorphisms
¢, t € R).

Let us further consider an involutory diffeomor-
phism G satisfying

GoG=Id ie. Gl=@G

and the G-related vector field

W= G*(V) ’
ie. w(z)=D.G(G (z)) v(G Y (x)),
where D;G(G~*(x)) denotes the Jacobi matrix of
G at the point G™1(z).

We shall denote the flow of the vector field w
by ¥'. As w is G-related with v,

P =GogloG. (2)

Consider a 2p-periodic function 7,(t) defined by

r,,(t):{o for te |0, p]

1 for te(p,2p). ®)

Then the following 2p-periodic non-autonomous
system of ODE’s

& =1f(z, t) = v(z) +r,(t)(w(z) - v(z)) (4)

describes the system with two different alternating
dynamics.

Let us denote ®(t; 0, zo) as the solution of (4),
satisfying the initial condition ®(0; 0, z¢) = .
This solution can be expressed for ¢ € [0, 2p] in
the form

t €0, p|
t € (p, 2p).
(5)

o' (zp) for

®(t;0,20) = {W—p((pp(xo)) for

Let us denote
P(z) = &(2p; 0, z). (6)

Then the mapping P : R® — R™ is a period
map (also called a stroboscopic map) for the sys-
tem (4) and P is a differentiable mapping.

The relation (5) yields

P=yPogh (7)
and with respect to (2) we obtain
P=GopPoGoy”. (8)
Let us denote
H=Goy?, (9)

then

P=HoH=H?. (10)

Remark. With respect to the relation (8), the
system (4) can also be treated as a system with
impulses:

t#£m,=kp, k€N,

(1 +0) = G(x(m)) .

& =v(z),

3. Periodic Solutions

3.1. Isolated fixed points

In [Kli¢ & Rehédgek, 1994], the following theorem
has been proved:

Theorem 1. Let xo be an isolated fized point of G.
Then there is € > 0, such that the system (4) has
a 2p-periodic solution for each p € (0, €) and if vp
18 a solution curve of the corresponding 2p-periodic
solution, then v, — zo as p — 0 in the sense of
Hausdorff metric.

That means that the periodic solution curves
of (4) bifurcate from isolated fixed points z¢ analo-
gously to Hopf bifurcation.

Proof. The periodic solution of (4) corresponds to
the fixed point of period mapping P and hence to
the fixed point of the mapping H. If Z is a fixed
point of H, i.e. H(&) = &, then

(&) =G(z).
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We set

F(z, p) = ¢*(z) — G(z) (11)
and solve

F(z,p)=0 (12)

If (£, p) is a solution of Eq. (12) then the point
Z is a fixed point of the mapping H.

So let g be a fixed point of the diffeomorphism
G. Then (zg, 0) is a solution of Eq. (12), since

F(z0, 0) = ¢%(xg) — G(xo) = 20 — 20 = 0.

If D, F(zo, 0) is a regular matrix, then according to
the Implicit Function Theorem, there is an € > 0
. such that for every p € (—¢, ) there exists Z(p),
satisfying F'(Z(p), p) = 0. The matrix

o 0
D, F(z0,0) = ~(20) — DG(0)

= I — D,G(z0) (13)
(I being the unit matrix) is regular if and only if
1 is not an eigenvalue of D,G(x¢), which is exactly
when x¢ is an isolated fixed point of G.

3.2. Non-isolated fixed points

Now, the natural question arises, what happens if
the fixed point xg is not isolated.

Let us denote

M= {z € R", G(z) =z} (14)
and suppose M is a manifold, dim M =k <n, k >
0. If z¢g € M, then z¢ is not an isolated fixed point
of G.

As in the case of Theorem 1, we shall solve
Eq. (12), but when the fixed point x is not isolated,
the Implicit Function Theorem cannot be used. The
useful tool for investigation of Eq. (12) in this set-
ting is the K. J. Palmer’s Theorem 4.1 from [Palmer,
1984]. For the convenience of the reader, we recall
this theorem in Appendix A in a slightly modified
form.

Now we shall use the theorem to solve Eq. (12).
We have £ = F = R", hence the linear operator

L = Fy(z0,0) = I — G(z0) (15)
is Fredholm with index zero. (The G.(zo) denotes
the Jacobi matrix of G at the point zo € M.)

(i)

It is obvious, that for x € M
F(z, 0) = ¢°(z) - G(z) = 0.

Further, we shall determine the kernel M (L).
Because G is an involutory diffeomorphism and
Zg is a fixed point of G, then the matrix G(zo)
has only eigenvalues +1 and —1 (from GoG =
Id we obtain G;(G(z)) - Gz(xz) = I and for
zo = G(xp) we have [G(20)]? = I).

Let £ resp. £~ denote the eigenspace of
the matrix G;(zo) corresponding to the eigen-
value +1 resp. —1.

Then
N(L)=ET, (16)
because
heN(L) & [I - Go(zo)lh =0
& Gz(zo)h =h.
Similarly we obtain
R(L)y=€&E". (17

Now we shall determine T, M. Let c :
R — M, ¢(0) = zg, be a smooth curve on M
based at zg. Then

de .
%(0) =¢(0) € TpoM .
In view of the fact that c(t) € M for all t € R,

we have
G(c(t)) = c(t) (18)

for all t € R. Differentiating both sides of (18)
with respect to ¢, we obtain for t =0

G2 (x0)¢(0) = &(0) .
From (16) and (19) we obtain
TpeM =9 EBN(L) .

So, the condition (i) in Palmer’s theorem
is fulfilled.
Let us determine Fy(xo, 0). We have

Fy(zo, 0) = %wx) ~ G(z))

(19)

(z=z0,p=0)

0
= 5@

(z=z0,p=0)
— V(@) (smeopmt) = V(z0)-

Hence the condition (ii) from Palmer’s
theorem is

v(zo) €E™. (20)
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(iii) From the relation (13) we have
Foo(o, 0) = —Gaz(@0) (21)
and differentiating the relation
Fyp(z, p) = v(¢¥(2))
with respect to x, we obtain

ov

sz(an 0) = 9z (:BO) . (22)

For the sake of abbreviation we put

o
B = 8—;’(;.50) — Gaa(z0)u

where u is a solution of the equation
Lu = —v(zp).

Then the condition (iii) of Parmer’s
theorem implies:

(yeN(L)=€&T
and ByeR(L)=£T)=y=0.

Otherwise, the condition (iii) will be ful-
filled if
B(EY)n&™ ={0}.

So we have obtained

(23)

Theorem 2. Let 29 € M. If v(zg) € £ and
B(ET)n &~ = {0}, then there is € > 0, such that
the system (4) has a 2p-periodic solution for each
p € (0, €) and if yp is a solution curve of the cor-
responding 2p-periodic solution, then v, — To as
p — 0 in the sense of Hausdorff metric.

3.3. 2-periodic points of H

Until now we have investigated the existence of pe-
riodic solutions of (4) for small p, which correspond
to the fixed points of the mapping H = G o ¢P.

The period mapping P = H o H can have also
the fixed points, arising from the two periodic orbits
of the mapping H. More precisely, if the couple of
the points z1, xo exists such that

H(zy) =z and H(z3) =z, (24)

then these points xy and x5 are fixed points of the
period mapping P. In this way we obtain other
periodic solution of (4).

The relation (24) can be rewritten in the form

G o ¢P(z1) = x2

G o P(x3) = 11
or
@P(z1) — G(z2) =0 (25)
¢P(z2) — G(z1) =0
Let us denote
X = (z1, z2) € Rzn,
fl(xla Z2, p) = ‘pp(xl) - G($2)
f2(z1, 2, P) = ©P(23) — G(z1)
and
F = (fla f2) .
Then

F:R™x R— R™

and the Eq. (25) can be written in the form
F(X,p)=0.

The solution of this equation can be again in-
vestigated using Palmer’s theorem. Let

M ={(z, G()) € B, z € R"},

that is

M = graph(G)

is a smooth manifold, dim M = n. Considering that
F(X, 0) = F(z1, 22, 0) = (x1—G(z2), 22— G(21)),

then
F(X,0)=0

for all X € M.
Further application of the Palmer’s theorem is
straightforward.

Remark. The above described procedure can also
be used for large values of switching period p. The
results of this section are demonstrated on the well-
known example of blinking vortex flow in Sec. 5.



On Dynamical Systems Generated by Two Alternating Vector Fields 2019

4. Averaging

In this section, the vector fields v, w occurring at
the right-hand side of (4), can be arbitrary smooth
vector fields (i.e. not G-related).

If in the system (4) the time scale is changed
by the relation

t =2pr,
we obtain the system in the form
& =ef(z, ) (26)
where
e=2p,
f(z, ) = v(z) + #(1)[w(2) ~ v()]
0 forTe {0, %]
(1) = 1
1 forTe€ <§’ 1>,
and

#r+1) = #(r).
Then the system (26) can be treated as the sys-
tem with small parameter € > 0 and with 1-periodic
piecewise continuous right-hand side.
Then the associated autonomous averaged sys-
tem has the form

i=ef@) =@ +w), @)

because

. 1
fy) = /0 V() + #(r)[wly) - v(y)))dr

= V) + W)l

The problem of averaging for piecewise con-
tinuous right-hand side is solved in the paper by
[Matveev et al., 1978]. Our system (26) fulfills the
conditions of Theorem 2 in [Matveev et al., 1978],
hence we have the following results:

Let z(t, €) denote a solution of (26) and let
y(t, €) denote a solution of (27), (0, 1) = zo. Then
for arbitrary & > 0, there exists eg > 0 and p > 0
such that for every solution z(t, €) of (11) for which

|z(0, e) —zo| < p, €<ep
the inequality
|z(t, €) —y(t, e)| < 6

is correct for all ¢ € [0, O(1)].

(28)

Now, let yo be a hyperbolic singular point of
Eq. (27). Further we consider the Poincare map-
pings P,, P, associated with (26) and (27) respec-
tively. The mapping P. has the hyperbolic fixed
point yo. With respect to (28), the inequality

|P.(z) - P.(z)| < 6 (29)
holds on some neighborhood U(yo). Thus the map-
ping P. is é-close to FP., hence the P; has a fixed

point, which is é-close to yy.
So, we can formulate the following conclusion:

Theorem 3. If yo is a hyperbolic singular point of
(27), then there exists g > 0 such that for all 0 <
€ < €g, the system (26) possesses a periodic solution
of the same stability type as yp, its phase curve is
6-close to yo.

We shall illustrate this result by the example
“blinking nodes” in the next section.

5. Remarks and Examples

5.1. Remarks

Remark. The period mapping P is closely con-
nected with the mapping

Q=¢PoP =¢pPoGopPol.

The mappings P and @ are conjugated by the in-
volution G, i.e.

(30)

Q@=GoPod. (31)

However the mappings P and @ are also conjugated
by the mapping P, because

Q=¢PoPoy. (32)

Now, if we suppose that A is a unique attractor

of the period mapping P, then the mapping @ has

also a unique attractor B for which, with respect to
the relations (31) and (32)

B=G(A) and B=¢P(A).

Hence, if the period mapping P has a unique
attractor A, then this attractor must satisfy the
condition

G(A) = P(A). (33)
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Remark. The following question is natural: If the
flow ¢! of the vector field v has an attractor A (and
hence the flow 9! of the vector field w has the at-
tractor G(A)), what can be told about the attractor
of the period mapping P of the system (4)?

We shall demonstrate this problem by means
of four numerical experiments in this section using
[Pokorny, 1995a, 1995b, 1995¢].

5.2. “Blinking nodes”

Let us have the vector fields
V(:L‘, y) = (—.’I) +1, "'y)
w(z,y) =(-z -1, —y).

Their phase flows are

o'z, y) =1+ (z—1)e ", ye)
Pz, y) = (-1 + (x+1)e”*, ye ™).

The system (4) has the form

T=—x+1-—2ry(t)
, ? (34)
Yy=-y

and the associated autonomous averaged system is
(35)

with the hyperbolic (stable) singular point (0, 0).
It is easy to verify that the system (34) has the
periodic solution ®(t; 0, *), where

o e -1
e P41’
because
oP(z*, 0) = (—z*, 0)
and

PP(=2*,0) = (7, 0).

The phase curve of this periodic solution is the
segment on the x—axis with end points z* and —z*,
see Fig. 1. Also depicted is the phase curve of
the system (34) for p = 0.3, starting at the point
(-12-, 1) together with the trajectory of (35), passing
through the point (3, 1).

.’E* _x* 0.2 0.4 0.6 .'17

Fig. 1. Trajectory of the “blinking nodes” system (solid
line) and of the corresponding averaged system (dashed line).

In this simple example, the flow ¢* of the vector
field in question has a single-point attractor and the
corresponding period mapping P also has a single-
point attractor.

5.3. “Blinking cycles”

Let us consider the planar vector field

pz—1)—y—(z-1D)[(z—-1)%+y?]

vu(z, y)= (w_1)+uy_y[(:c—1)2+y2]

(36)

where i > 0.

The vector field v, has a unique attractor — a
stable limit cycle, centered at the point (1,0) with
the radius /u.

Let the involution G be a linear mapping de-
termined by the matrix

(5 )

G(.’E, y) = ("'x7 _y) .

Then the vector field w, = G.v, has the form

i.e.
(37)

wo(o, y)= [ﬂ(x+1) —y—(x+1)[(x+1)2+y21]
WOV @)ty -pla+)2497 |

(38)

where p > 0 and the phase portraits of v, and w,
are centrally symmetric with respect to the origin

(0, 0).
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Fig. 2. The attractor of the period map of the “blinking Fig. 3. Feigenbaum cascade in the “blinking cycles” system
cycles” system for 4 = 3.5 and p = 0.52 lies on a closed for p = 3.5. The z projection of the attractor for various
smooth finite-length curve. The attractor of the continuous- values of the switching period p is plotted.

time system is a 2-torus.

Fig. 4. The largest Lyapunov exponent A of the period map of the “blinking cycles” system as a function of the “amplitude”
parameter pu and the switching period p. For small values of u (corresponding to large amplitudes) ) is negative and the
dynamics is synchronized with the switching. For intermediate values of u chaotic regimes appear while for large x4 synchro-
nization occurs only for narrow intervals of p resembling Arnold tongues. Tongues of higher order seem to be interrupted
which is caused by the limited resolution of the grid (400 x 400 points yielding ép = 0.0075) and the small width of some
tongues (below 0.001).
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The origin (0, 0) is an isolated fixed point of
the involution G. Now we can use the Theorem 1
or Theorem 3 to obtain the fixed point of the period
mapping P for small p. By the continuation method
we can obtain the dependence of this fixed point on
the parameter p.

If we fix p = 3.5 then, for example, for the
switching period p € (2, 3), the period mapping P
has a single stable fixed point, i.e. P has a single-
point attractor.

For p = 0.52 the simple closed curve, plot-
ted in Fig. 2, is the attractor for the period map-
ping P.

For u = 3.5 and p € (1.24; 1.27) Feigenbaum
period-doubling cascade leading to chaos for de-
creasing p is shown in Fig. 3. We note that for the
same parameter values there is one more co-existing
period-doubling cascade with coinciding bifurcation

values. There is also the period-doubling cascade
for increasing p (for p around 0.84) which co-exists
with a period-3 solution with a much larger basin
of attraction.

Figure 4 shows the dependence of the largest
Lyapunov exponent A on the parameters y and p.
As the distance of centers of the two blinking cycles
is kept constant (equal to 2 in our example) and
the radius of the cycles is \/u, the reciprocal value
of the radius 1/,/i can be considered a mean am-
plitude of the forcing caused by the blinking. For
small p (large amplitude) the dynamics is synchro-
nized with the switching (considered here as exter-
nal signal). For intermediate values of x chaos and
bistability occurs. For large p (small amplitude)
the synchronization occurs only for narrow inter-
vals of p, which form a structure resembling Arnold
tongues.

Fig. 5. The 3-D phase portrait of the Lorenz system. Sampling period is Ts = 0.003, the number of samples is n = 20000.
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Fig. 6.
of samples is n = 20000.

5.4. “Blinking Lorenz”
Let us consider the vector field
o(y —z)
v(z,y,2)=|re—y—zz|, (39)
—bz +zy

where 0 =10, b = g—, r = 28, and linear involutory
diffeomorphism

G(.’L‘, Y, z) = (m,y, —Z) . (40)
Then the vector field w = G,v has the form
o(y —x)
w(z,y,2)=|rc—y+zxz
—bz — xy

50

The 3-D phase portrait of the period map of the “blinking Lorenz” system for switching period p = 0.18. The number

The attractor of the system X = v(X) (X =
(z, y, z)) — the Lorenz attractor [Lorenz, 1963] —
is plotted in Fig. 5, the attractor of the system
X = w(X) is its mirror image with respect to
the z—y plane. And finally the attractor of period
mapping P of the system (4), for switching period
p = 0.18 is plotted in Fig. 6. Lyapunov exponents
for this attractor are A\; = 1.377, A2 = —0.864,
A3 = —5.433 (evaluated using 10 iterations), which
gives, using the Kaplan—Yorke conjecture [Kaplan
& Yorke, 1979], the dimension estimate D = 2 +
(A1 + A2)/|As| = 2.094 for the discrete-time system
and 3.094 for the continuous-time system. Com-
pared to the same estimate of the dimension of the
original Lorenz attractor (D = 2.062) gives that the
procedure of “blinking” has increased the dimension
by slightly more than 1.
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The original system (39) has a strange attractor
above the z—y plane. The map (40) corresponds to
a symmetry with respect to the z—y plane. The

100

50

-50

-100

Fig. 7. The z-projection of the attractor of the period map
for the “blinking Lorenz” system is plotted for various values
of the switching period p. For certain intervals of p located
approximately around integer multiples of Ty (see text) the
attractor is a single point while for other values chaos persists.

2
Ay
1
O -
1+
-2
-3
4 : ; : :
0.0 0.2 04 Q.6 0.8 1.0
p
(a)
Fig. 8.

averaged system X = (v + w)/2 is linear with the
origin being a saddle steady state with one unstable
and two stable directions. Thus for small switching
period p the blinking system has an attractor whose
diameter becomes large as p — 0. When changing
p, there are intervals when the attractor of the pe-
riod map is a single point, while for other values
of p the attractor is more complex. This is illus-
trated in Fig. 7 where for different values of the
switching period p and random initial conditions
the z-projection of the attractor is plotted. The in-
tervals of p where the attractor is a single point are
located approximately around integer multiples of
To = 2w/w =~ 0.616 where w is the imaginary part
of the complex eigenvalue of the Jacobi matrix at
the nonzero steady point of the Lorenz system.
The largest Lyapunov exponent A; and the sum
of the two largest Lyapunov exponents A; + A, of the
period map as a function of p is plotted in Fig. 8.
For p — 0, A1 and ), are proportional to p as the pe-
riod map approaches identity. For certain intervals
of p, \; is negative which corresponds to the single-
point attractor of the period map shown in Fig. 7 or
equivalently to the stable limit cycle of the continu-
ous time system. For certain values of p, A; is posi-
tive indicating chaos. Note that inside the “mainly
chaotic” region (0.18;0.40) the sum A; + A changes

3 +

-4 t t t t
0.0 0.2 0.4 0.6 0.8 1.0

(b)

(a) the largest Lyapunov exponent and (b) the sum of the two largest Lyapunov exponents of the period map of the

“blinking Lorenz” system as a function of the switching period p.
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Fig. 9. Typical fixed points of the “blinking vortex” system (here p = 1). Rotation for more than 360° is indicated by a

dashed line.

the sign (for p =~ 0.27) meaning the decreasing of
the dimension estimate below 2.

5.5. “Blinking vortex”

The well-known blinking vortex flow, see for exam-
ple [Ottino, 1989], can be described using the sys-
tem (4) as follows:

Let us have

_ -y z—1
vz, y) = [(m—1)2+y2’ (x—1)2+y2]'

This vector field v determines the flow of a single
vortex located at the point (1, 0).
Let us put

Gi(z, y) = (-2, —v),

i.e. Gy is the symmetry with respect to the origin,
and

G2(.’L‘, y) = (—.’L‘, y)v

i.e. G2 is the symmetry with respect to the y-axis.
Then the vector field w; = G1.v has the form

wi(z, y) = [( -y z+1 ]

c+1)2+4+y2 (z+1)2+y?
and the vector field wy = G5, v has the form

y -z -1 ]
(x+1)2+y2 (z+1)2+y%]

wa(z, y) = [

The system (4), where w = wj, describes the sys-
tem with two co-rotating point vortices and the sys-
tem (4), where w = wy, describes the system with
two counter-rotating point vortices, the second vor-
tex located at the point (—1, 0). In the following
paragraph we shall consider the co-rotating case.

6
X+2y
4
2 4 /
4/;{2
e

i
)

0 5 10 15 20
P

Fig. 10. The bifurcation diagram of the period map of the
“blinking vortex” system. The projection & + 2y versus p is
chosen to avoid degeneracy due to symmetries present in the
system. Two nests of branches of steady points for small p
(only the 4 outermost are depicted here), the large branch
and numerous branches for large p can be seen.

Fized points of period mapping P.

With respect to the relation (10), the period
mapping P has two kinds of fixed points. The fixed
point of P is a fixed point of H or fixed point of P
corresponds to a 2-periodic orbit of H. The situ-
ation is illustrated in Fig. 9, where X = H(X) =
P(X), Y = ¢?(X) = G(X), see the relation (11).
Further H(X;) = X3 and H(X,) = X4, ie. Y7 =
©P(X1) = G(X3) and Y2 = ¢P(X2) = G(Xy), see
the relation (25).

The fixed points of H lie on the y-axis while
the other fixed points of P corresponding to the
2-periodic orbits of H do not lie on the y-axis.
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The dependence of the fixed points of P on the
switching period p, i.e. the bifurcation diagram, is
plotted in Fig. 10. Fixed points of the period map
of the blinking vortex flow system lie on 1-D curves
in the 3-D space z-y-p. Due to symmetries present
in the system some curves coincide in both the p-z
and the p-y projections. To get the complete picture
the projection x 4 2y versus p is chosen in Fig. 10.

In Appendix B six different qualitative cases of
the blinking vortex flow system are given accord-
ing to the strength a; and the sense of rotation of
the two vortices. The first integral of the averaged
system (for p — 0) is shown to be

a ,.a2

ritry? = const. (41)

6. Conclusion

Periodic flow reversal used in engineering has been
studied on a mathematical basis. Periodic solutions
of the non-autonomous system have been shown
to originate in fixed points (either isolated or non-
isolated) of the involutory diffeomorphism describ-
ing the geometrical reversion. Detailed numerical
study of both dissipative (“blinking nodes”, “blink-
ing cycles”, “blinking Lorenz”) and conservative
(“blinking vortex”) systems has shown that the
method of blinking can be used to originate and
control of chaos. For systems with a single limit
cycle, the blinking can be used to synchronize the
system, to change the period, to establish bistabil-
ity and to initiate chaotic motion in a defined way.
For systems already possessing a chaotic attractor
the method of blinking can be used either to stabi-
lize the motion at a fixed point or to enhance the
complexity (to increase the Lyapunov exponent and
the Hausdorff dimension of the attractor).
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Appendix A
Palmer’s Theorem

Theorem [Palmer, 1984].
spaces and let

Let £, F be Banach

F:ExR—F, (z,p)€EXR

be a C? mapping defined on a neighborhood of
(zo, 0) such that F(zp, 0) =0 and

L=F, (.’I:o, 0)
is Fredholm with index zero. Then if:

(i) F(z, 0) =0 for x € M a C? submanifold of £
containing xo with AM(L) as tangent space at
zg. (More precisely: TyoM =z ® N (L).)
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(i) Lr = —F,(x0,0) has a solution u, i.e.
Fu(xo, 0) € R(L).

(iii) y € M(L) and {Fyzz(zo, 0)u + Fpuz(zo, 0)}y €
R(L) & y = 0, then there is a neighborhood
of zg in £ such that for u sufficiently small the
equation F(z, u) = 0 has a solution z(u) in
this neighborhood which is unique when p #
0. Moreover, z(0) = xzp, z() is C! and when
p#0, Fp(x(p), p) is invertible.

(Remark: Note that if L is a linear operator,
we denote by N(L) its kernel and by R(L) its
range.)

Appendix B
Averaged “Blinking Vortex” System

We investigate a conservative, non-autonomous, 2-
dimensional dynamical system with continuous
time, whose dynamics switches with period 2p be-
tween two vector fields. For 0 <i¢ <p

dz

T (B.1)

= 2iw1(z - Z1)

and for p <t < 2p

% = 2iwe(z — 23),

where z is the complex state variable, z; and 2, are
two complex constants (two centers of rotation), w;
and wy are two angular velocities, that may or may
not depend on z. We shall assume that w; and
wy are real (if they are complex, the system is not
conservative).

If w; and wy do not depend on z, we have a com-
position of two rotations which is again a rotation
(the special case w; = —w» is a transition).

Let us consider the case when

ai
w1

and

ay
Wy = ———
2 |z — 2|2’

where |z| denotes the absolute value of z; a; and as
are real constants and their signs determine one of
the following six cases:

Table 1. Different types of “blinking vortex” system

1 a1 =0andaz; =0 identity
2 a;1=0andaz#0or

az=0and a; #0

single rotation

3 aiaz >0 co-rotation

4 aj=az#0 exact co-rotation

5 a1az <0 counter-rotation

6 a;=—ax#0 exact counter-rotation

First, we will investigate the limit p — 0. This
results in the autonomous system

dz |, z—2 . 2=
— =1a] + a2

dt |z — 212 (B.3)

|Z - 22|2 )

Let us investigate the distance 71 (r2 respectively)
between the state point z and the center z; (23 re-
spectively). The time evolution 7 = %’tl of the abso-
lute value r of a complex number z can be expressed
using

z=re*¥

logz =logr + iy

z T +id
— - 1
z T 4
z
T =rRe—;
z
using .
z— 21 =T
and
z — 23 = ro€'*?
we have
7:1 = TIRQM
zZ—21
= 1‘1Re (Z)
zZ— 21
. . zZ— 2
= r1Re (zal—— + tay )
|z = 21)? |z — 22|2(2z — 21)
R Z— 2
=riRe (za2 )
|2 — 22|2(2 — 21)
T z—z
= —-—;—azl 2
Tra z— 21
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Fig. 11. Trajectories of the averaged “blinking vortex” system constructed as level lines of the first integral I(z) = |z —

21[*' |z — 22|*2. (a) co-rotation, (b) exact co-rotation, (c) counter-rotation, (d) exact counter-rotation.
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and similarly

. ap .
T9 = ——sin(a; — az).
1
Combining these two results gives
1 T2
ai—4+ay— =90
T T2
log(ri*r3?) = const

a1,.a2

riiry? = const (B.4)

Specially for a; = aa (exact co-rotation)

7179 = const

and for a; = —a2 (exact counter-rotation)
T1
— = const .
T2

Result (B.4) is the first integral of motion of
Eq. (B.3). Level lines of I(2) = |z—21|*!|z— 22| for
different initial conditions are shown in Figs. 11(a)—
11(d) for poles z; = —1 and 22 = 1.

In Fig. 11(a) the case of co-rotation is depicted
(a1 = 2, ag = 1). It shows the trajectories of the
system in the z-plane with 3 singular points: the
poles z; and z9 and a saddle point zg. The poles
are surrounded by nearly circular trajectories with
high frequency. The sense of rotation around both
poles is the same and so are the values of the integral
I(z1) = I(22) = 0. The saddle point has coordinates

ai1za +az221
s a1 + as (B.5)
which is zg = 1/3 for Fig. 11(a).

Figure 11(b) shows trajectories for exact co-
rotation (a; = ag = 1). The saddle point has moved
to zg = 0.

Figure 11(c) shows trajectories for counter-
rotation (a; = —2, a3 = 1). The poles are again
surrounded by small nearly circular trajectories.
The sense of rotation around one pole is opposite to
the sense of rotation around the other pole and also
the integral differs: I(21) = oo, I(2z2) = 0. The sad-
dle point has moved outside the segment between z;
and 2;. For distant initial condition |2(0)] > |21 —
29| the trajectory is a large cycle (similar to that
for co-rotation) with the sense of rotation given by
the “stronger” pole (that with larger absolute value
of ai).

Figure 11(d) shows trajectories for exact
counter-rotation (a7 = —1, as = 1). The saddle
point has moved to infinity and the phase portrait
is symmetrical around the axis of the segment be-
tween the poles. This axis divides the entire phase
space to two regions with I > 1 and I < 1.

Now let us investigate what happens if we lift
the constraint p — 0. The parameter p is the time
for which the system (B.1) rotates around one of the
two poles. For small p > 0 the dynamics will change
qualitatively for those trajectories with rapid rota-
tion. From (B.2) we can see that the rapid motion
appears in the vicinity of poles, namely in distances
r < rc. We can find the scaling of the critical dis-
tance r¢ from the pole, beyond which the trajectory
for p > 0 will be similar to that for p — 0. From

1 2

Tx —xr
w

we have
rc X \/]_) .

This means that for p > 0 there may appear regions
of radius r¢ o ,/p around the poles with qualita-
tively different dynamics. Numerical observations
support this prediction.



