
Math. Slovaca, 52 (2002), No. 1, nn{nn

a
o


c 2002

Mathematical Institute

Slovak Academy of Sciences

ZIG-ZAG DYNAMICAL SYSTEMS AND

THE BAKER-CAMPBELL-HAUSDORFF FORMULA

Alois Kl���c
�

| Pavel Pokorn�y
�

| Jan �Reh�a�cek
��

(Communicated by Milan Medved')

ABSTRACT. Possibilities of using the Baker-Campbell-Hausdor� (BCH) for-

mula to describe the ! -limit behavior of dynamical systems generated by two

alternating vector �elds (zig-zag dynamical systems) are studied. It is shown that

in the case when the two vector �elds generating the zig-zag dynamical system

are linear the usage of the BCH formula is useful. Limitation for nonlinear case

are discussed.

1. Introduction

In this paper we are going to study a particular class of dynamical systems
that we chose to call \zig-zag dynamical systems" for its dynamics is determined
by two smooth vector �elds alternately operating on the phase space. Motivation
for the study of such systems can be found in [5] and partially also in [6]. Both
papers deal primarily with the study of periodic points of the zig-zag system,
mostly in the case where the two vector �elds are F -related by some involutive
di�eomorphism F . In this article we will consider arbitrary smooth vector �elds.

2. Preliminaries

Let M be a smooth manifold of dimension m with two smooth vector �elds

u;v : M ! TM
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de�ned on it. The 
ows of these vector �elds will be denoted by 't ,  t; where

t 2 R , respectively.

Next, we consider a 2p periodic function rp(t) de�ned on [0; 2p) by

rp(t) =

�
0 for t 2 [0; p) ;

1 for t 2 [p; 2p) :
(1)

The zig-zag dynamical system is now described by the following non-autonomous

di�erential equation with a 2p-periodic piece-wise continuous right hand side

_x = f(x; t) = u(x) + rp(t)
�
v(x) � u(x)

�
: (2)

Figure 1. The trajectory of the zig-zag dynamical system. Starting from the

initial condition x
0
the motion in the phase space is governed by the equation

_x = u(x) for the �rst half of the period and by the equation _x = v(x) for the

second half of the period. The vector �eld u has the 
ow 't and the vector �eld

v has the 
ow  t .

x0

P (x0) =  p
�
�p(x0)

�

P 2(x0)

P 3(x0)

P 4(x0)

�p(x0)

_x = u(x)

_x = v(x)
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Let us denote by �(t; 0; x0) the solution of (2) satisfying the initial condition

�(0; 0; x0) = x0 . Using the phase 
ows 't and  t we can express this solution
for t 2 [0; 2p) in the form

�(t; 0; x0) =

�
't(x0) for t 2 [0; p) ;

 t�p('p(x0)) for t 2 [p; 2p) :
(3)

Let us de�ne

P (x) = �(2p; 0; x) : (4)

Then the mapping P is a period map (also called a stroboscopic map) for the

equation (2) and the ! -limit behavior of the solution of (2) can be described by
the ! -limit behavior of the mapping P , i.e. by the ! -limit behavior of the orbit�
x0; P (x0); P

2(x0); : : :
	
=
�
Pn(x0)

	
1

n=0
.

From (3) and (4) it follows that

P =  p � 'p : (5)

The situation is depicted on Fig. 1.

3. Averaging method and the BCH formula

In [5] we used the averaging method for �nding periodic solutions of (2), with
which we have associated an autonomous averaged system

_x = u(x) + v(x) (6)

whose trajectories, as is well known, approximate solutions of (2) for small p on
some �nite interval. The right hand side of (6) is the �rst term of the Baker-
Campbell-Hausdor� (BCH) formula, which, for the reader's convenience, we now
brie
y review, hoping that in the process we illustrate its importance in the study
of the zig-zag systems.

The BCH formula for matrices.

From the classical theory of Lie groups and Lie algebras it follows that the
matrix exponential satis�es

eA eB = e(A+B) if and only if AB = BA

i.e. if the two matrices commute. In case the matrices A , B do not commute,

then eA eB = eC , where the matrix C is given by the BCH formula (see [10],
[3])

C = A+B+ 1
2
[A;B] + 1

12

��
A; [A;B]

�
�
�
B; [A;B]

��
+ � � � ; (7)

where [A;B] = AB�BA is the commutator of the matrices A and B . We will
use this fact in Sections 5 and 6.
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The BCH formula for vector �elds.

Here, we would like to provide some heuristic and motivational reason-

ing. Following [1], we denote by Di�1c (M) the group of C1 di�eomorphisms

with compact support. The set Di�1c (M) is an in�nite-dimensional Lie group,
whose Lie algebra is the algebra Xc(M) of smooth vector �elds on M . For

u;v 2 Xc(M) we denote by [u;v] the usual Lie bracket of the two vector �elds,

(see e.g. [2]).

It is well known that a vector �eld u 2 Xc(M) generates a phase 
ow

't 2 Di�1c (M) , t 2 R . The di�eomorphism '1 is called the time one map

of the 
ow 't . The correspondence

u 7! '1

is a well de�ned mapping

Exp: Xc(M) �! Di�1c (M) ; (8)

that is called the exponential mapping. This mapping is an analogy of the expo-

nential mapping for �nite dimensional Lie groups.

Unfortunately, for the vector �elds, this exponential mapping does not have
the nice properties of the �nite dimensional case (see [1], [4], [7], [11]), particu-
larly it is neither one-to-one nor surjective near the identity (cf. [1], [7]), so there
are di�eomorphisms from Di�1c (M) that are arbitrarily close to the identity,
and yet do not have any pre-image in Xc(M) under the exponential mapping.
The set

Exp
�
Xc(M)

�
= E (9)

will be called the set of embeddable di�eomorphisms, i.e. the di�eomorphisms
that can be embedded into a 
ow 't of some vector �eld u 2 Xc(M) . Typically,
the set E is a rather irregular �rst category | like subset of Di�1c (M) , (see [9]).

Let us now return to our zig-zag dynamical system and consider the vector
�elds u , v from (2). Then

Exp(u) = '1

and

Exp(v) =  1 ;

and thus

'p = Exp(pu)

and

 p = Exp(pv) :

Let us assume, for this moment, the validity of the BCH formula even in this
in�nite-dimensional case, i.e. let us assume that the following holds�

Exp(v)
�
�
�
Exp(u)

�
= Exp

�
w(v : u)

�
: (10)
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One might expect that then the vector �eld w(v : u) is given by the BCH

formula

w(v : u) = (v + u) +
1
2
[v;u] +

1
12

��
v; [v;u]

�
�
�
u; [v;u]

��
+ � � � : (11)

In Paragraph 7 we show that this is not true and we derive a correct formula.
With respect to relation (10) the period map P for the zig-zag system would be

given by

P =  p � 'p = Exp(pv) � Exp(pu) = Exp
�
w(pv : pu)

�
; (12)

where

w(pv : pu) = p(v + u) +
p2

2
[v;u] +

p3

12

��
v; [v;u]

�
�
�
u; [v;u]

��
+ � � � : (13)

Then we could embed the period map P into the phase 
ow of the vector
�eld w(pv : pu) . The orbits of the mapping P would lie on trajectories of the

vector �eld w and the ! -limit behavior of these orbits will be determined by the
! -limit behavior of the trajectories of w . At the same time we see that using
the averaging method we obtain the �rst term in the BCH formula.

In Paragraph 4, the case is investigated, when the right-hand side of (11) is
reduced to its �rst term and in Paragraphs 5 and 6 we will consider two cases in
which the BCH formula for matrices can be applied for the study of qualitative
properties of the linear zig-zag systems. Finally in Paragraph 7 the nonlinear
case of zig-zag system is treated. In the last Paragraph 8 the numerical study is
provided as a demonstration of using the BCH formula for an example of zig-zag
system.

4. The case [u;v] = 0

In this paragraph, we will assume that the Lie bracket of the vector �elds
u;v from (2) is equal to 0, i.e.

[u;v] = 0 : (14)

It is well known (see [2; p. 155, Theorem 7.12]) that the relation (14) is

equivalent to

't �  s =  s � 't for all t; s 2 R ; (15)

where 't and  t are the phase 
ows of the vector �elds u , v respectively. In
this case, the following theorem holds.
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Theorem 1. Let u , v be two vector �elds in Xc(M) and 't ,  t their phase


ows. If [u;v] = 0 , then

�t =  t � 't ; t 2 R ; (16)

is the phase 
ow of the vector �eld u+ v .

P r o o f . The �rst two properties of the 
ow are evident.

(i) �0 =  0 � '0 = id jM ;

(ii) �t � �s =  t � 't �  s � 's =  t+s � 't+s = �t+s .

For (iii) we need to show that

d�t(x)

dt
= u

�
�t(x)

�
+ v

�
�t(x)

�
:

We have
d

dt
(�t(x)) =

d

dt

�
 t � 't(x)

�
=
@ t

�
�t(x)

�
@t

+
@ t

�
't(x)

�
@x

d't(x)

dt

= v
�
�t(x)

�
+  t

�

�
't(x)

�
u
�
't(x)

�
;

or more brie
y
_�t = _ t +  t

�
_'t = v +  t

�
u ; (17)

where we use the notation from [1; p. 3]. According to [2; p. 141, Theorem 5.7],
we obtain that

 t
�
u = u ;

so that
_�t = u+ v ;

which was to be proved.

Remark 4.1. In this case, the BCH formula takes the form

Exp(v) � Exp(u) = Exp(u+ v) (18)

and the period map for the equation (2) is simply

P (x) = �p(x) :

The orbits of the mapping P lie on the trajectories of the vector �eld u+ v .

Remark 4.2. For each u 2 Xc(M) and for each F 2 Di�1c (M)

Exp(F
�
u) = F � Exp(u) � F�1 ; (19)

as follows from considerations in [2; p. 137, Example 4]. The relationship (19)
implies that for all F 2 Di�1c (M)

F �
�
Exp

�
Xc(M)

��
� F�1 � Exp

�
Xc(M)

�
: (20)

Let us now recall the Thurston's theorem (see [1; p. 24]):
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Theorem T. For any smooth manifold M; the identity component Di�1c (M)0
in Di�1c (M) is a simple group.

This theorem and the relation (20) clearly imply that the set Exp
�
Xc(M)

�
cannot be a subgroup of the group Di�1c (M) for if it were one, then by (20) it

would have to be a normal subgroup which contradicts the Theorem T.

Remark 4.3. Suppose that

Exp(u) � Exp(v) = Exp
�
w(u : v)

�
; (21)

where w 2 Xc(M) i.e. the di�eomorphism '1 � 1 is embeddable. Then for each

F 2 Di�1c (M) we get

Exp(F
�
u) � Exp(F

�
v) = Exp

�
F
�
w(u : v)

�
; (22)

since on the left hand side we have, according to (19)

F � Exp(u) � F�1 � F � Exp(v) � F�1

=F � Exp(u) � Exp(v) � F�1

=F � Exp
�
w(u : v)

�
� F�1

= Exp
�
F
�
w(u : v)

�
:

5. The linear zig-zag system

In this paragraph we set M = R
n and consider two linear vector �elds

u(x) = Ax and v(x) = Bx ; (23)

where A , B are arbitrary square matrices of order n , x 2 Rn. The corresponding
phase 
ows are then

't(x) = etA x and  t(x) = etB x ; (24)

so that
Exp(Ax) = eA x and Exp(Bx) = eB x :

That implies

Exp(Ax) � Exp(Bx) = eA eB x = eC x = Exp(Cx) ; (25)

where the matrix C is determined by (7).

Let us now return to the period map P for the equation (2), where the vector

�elds u and v are given by (23). Then, considering (24) we obtain

P (x) =  p � 'p(x) = epB epA x = eD x ;

7
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where the matrix D is, according to (7), given by

D = p(B +A) +
p2

2
[B;A] +

p3

12

��
B; [B;A]

�
�
�
A; [B;A]

��
+ � � � : (26)

Thus the mapping P (x) can be embedded into the 
ow �t(x) , which is the

phase 
ow of the linear system

_x = Dx :

The orbits of the period map P are lying on the trajectories of this linear

system. Thus we have proved the following theorem.

Theorem 2. Let A , B be matrices of order n and rp(t) be a function de�ned

by (1). Let furthermore P : Rn ! R
n be the period (time 2p) map of the system

_x = Ax + rp(t)[Bx �Ax] :

Then for su�ciently small p > 0 there exists a matrix D , given by (26),
such that every orbit OP =

�
Pn(x0) : n 2 N

	
of the mapping P , lies on the

trajectory of the linear system _x = Dx , passing though the initial state x0 .

Remark 5.1. Let us return to the relation (25). It was obtained by using the
BCH formula for matrices. We will show how to write this relation using the
BCH formula for linear vector �elds. For this purpose we must consider that the
usual bracket product of linear vector �elds satis�es

[Ax;Bx] = BAx �ABx = �[A;B]x :

When we introduce a more convenient bracket product (see [7; p. 1041])

[v;u]� = �[v;u] ;

i.e. the appropriate bracket product is just the negative of the usual bracket
product of vector �elds, then

[Ax;Bx]� = [A;B]x

and the vector �eld Cx in (25) can be expressed in the form

Cx = Ax+Bx+ 1
2
[Ax;Bx]�+ 1

12

��
Ax; [Ax;Bx]�

�
�

�
�
Bx; [Ax;Bx]�

�
�

�
+� � � ;

(27)

which is just the BCH formula for linear vector �elds.
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6. Nonhomogeneous linear zig-zag system

In this paragraph we set M = R
n again and consider two vector �elds

u(x) = A(x � x0) and v(x) = B(x � x1) ; (28)

where x0; x1 2 R
n and x0 6= x1 .

Remark 6.1. The case when x0 = x1 can be converted to the linear case using

(22) from the Remark 4.3. If we choose F in the form

F (x) = x + x0 ;

then F
�
(Ax) = A(x�x0) and F

�
(Bx) = B(x�x0) and we obtain easily a result

similar to Theorem 2.

The vector �elds (28) determine nonhomogeneous linear di�erential equations

_x = A(x � x0) and _x = B(x � x1)

with the corresponding phase 
ows

't(x) = x0 + etA(x � x0) and  t(x) = x1 + etB(x � x1) : (29)

The corresponding period map has the form

P (x) =  p � 'p(x) = x1 + epB
�
x0 + epA(x � x0) � x1

�
: (30)

Let us set

epB � epA = eD ;

where the matrix D is given by (26) and let us consider the di�erential equation

_x = D(x � x
�)

with the phase 
ow

�t(x) = x
� + etD(x � x

�) (31)

into which we want to embed the mapping P =  p � 'p so that

 p � 'p = �1 : (32)

Substituting (30) and (31) into (32) we get

x1 + epB
�
x
0
+ epA(x � x

0
) � x

1

�
= x

� + eD(x � x
�)

and after simpli�cation�
E� epB epA

�
x
� = x1 + epB(x0 � x1)� epB epA x0 ; (33)

9
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where E is the identity matrix. Assuming that E � eD is regular, we can solve

this equation for x� :

x
� =

�
E� eD

�
�1

�
�
x
1 + epB(x0 � x1)� eD x0

�
: (34)

This fully determines the phase 
ow (31).

Remark 6.2. The previous argument shows that the embedding of the di�eo-

morphism (30) into the 
ow (31) may not be always possible but if the matrix

E� eD is not regular then the di�eomorphism (30) can still be embedded into
a 
ow of a more general vector �eld, namely

_x = Dx + x
D
;

where x
D

is a constant vector.

Example 6.1. As an illustration, we will discuss a simple example from [5],

which is called \blinking nodes" there.

We will consider two two-dimensional vector �elds

u(x; y) = (�x + 1;�y) ; v(x; y) = (�x � 1;�y) ; (35)

and the corresponding di�erential equations

_x = �x + 1 ;

_y = �y ;

and

_x = �x � 1 ;

_y = �y ;

whose phase 
ows are described explicitly as

't(x; y) =
�
1 + (x � 1) e�t; y e�t

�
;

 t(x; y) =
�
�1 + (x + 1) e�t; y e�t

�
:

In this case, considering the notation (28), we obtain

A = B = �E ; x0 = (1; 0) = �x1 ; pA = pB = �pE :

The equation (34) has then the form

x
� =

h
E� e�2pE

i
�1

�
h
�x0 + 2x0 e

�pE�x0 e
�2pE

i
=
h
E� e�2pE

i
�1

�
h
�E+ 2e�pE� e�2pE

i
x
0
:

10
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Considering the matrix identities

e�2pE =

�
e�2p 0

0 e�2p

�
;

h
E� e�2pE

i
�1

=

�
1

1�e�2p
0

0 1
1�e�2p

�
and �

2 e�pE� e�2pE�E
�
=

�
�(e�p�1)2 0

0 �(e�p�1)2

�
;

we obtain

x
� =

"
(e�p �1)2

1�e�2p
0

0
(e�p �1)

1�e�2p

#
�

�
1

0

�
=

�
e�p �1
e�p+1

0

�
:

0.2 0.4 0.6
x

0.2

0.4

0.6

0.8

1

y

Figure 2. The solid line is the trajectory of the zig-zag system \blinking nodes".

Our goal is to �nd a vector �eld whose trajectory (the dashed line) contains the

orbit of the period map of the \zig-zag" system. The point x� is the attractor of

the period map P .

The situation is depicted in Fig. 2, where the solution curve of the zig-zag
system (2) is marked by a solid line, while the trajectory of the phase 
ow (31)

is marked by a dashed line. We note that this result agrees with the result from
[5], which was obtained by a di�erent way.
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7. Nonlinear zig-zag system

From the reasons discussed in [7] it follows that the generalization of the BCH

formula from �nite dimensional Lie groups to in�nite dimensional Lie groups is
possible only in the case when this in�nite dimensional Lie group can be provided

with a real analytic structure. This is not possible for Di�1c (M) (cf. [7]). Thus

the BCH formula in general setting for the group Di�1c (M) does not even make

sense.

Another di�culty with the BCH formula for the group Di�1c (M) follows

from the Remark 4.2, namely even when the di�eomorphisms

'1 = Exp(u) and  1 = Exp(v)

are embeddable, then their composition  1 � '1 is not necessarily embeddable,

because the set Exp
�
Xc(M)

�
is not a group.

Despite of this it seems to us reasonable to consider the following problem.

Problem Formulation. Let us consider two vector �elds u;v 2 Xc(M)
(su�ciently \small") with the phase 
ows 't ,  t , i.e.

'1 = Exp(u) and  1 = Exp(v) :

Let us suppose that
 1 � '1 2 Exp

�
Xc(M)

�
; (36)

i.e. the composition of corresponding 1-
ows is an embeddable di�eomorphism.
That means there exists a vector �eld w 2 Xc(M) with the phase 
ow �t

satisfying
�1 =  1 � '1 ; (37)

or
Exp(w) =  1 � '1 : (38)

Let us try to �nd the vector �eld w satisfying (38). There may exist more
than one such vector �elds because the mapping Exp is not one-to-one. It is
obvious that the vector �eld w depends on the two vector �elds u and v . We
denote this dependence w(v : u) . We want to express the vector �eld w in
terms of the two vector �elds v and u .

The method used below is based on the expression of the phase 
ow 't of a

vector �eld u 2 Xc(M) using the relation [8; (1.19)], i.e. for t 2 R , x 2 M we
have the Lie series

't(x) =

1X
k=0

tk

k!
u
k(x) = x + tu(x) + t2

2
u
2(x) + � � � : (39)

For details see [8].

12
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We will work with local coordinates and let us set M = R
n for simplicity

and the vector �elds will be given using the coordinate functions in the form

u(x) =

nX
i=1

ui(x)
@

@xi
;

v(x) =

nX
i=1

vi(x)
@

@xi
;

where x = (x1; x2; � � � ; xn) 2 R
n. Let us recall that the Lie bracket of these

vector �elds is given by

[u;v] =

nX
i=1

 
nX

j=1

�
uj
@vi
@xj

� vj
@ui
@xj

�!
@

@xi
:

We will use the short form

[u;v] = u(v) � v(u) = v
0

u� u
0

v ;

where

u
0 =

�
@ui
@xj

�
i;j=1;:::;n

:

Further we will write brie
y

u
2 = u(u); u

3 = u(u2) etc.

Let us denote for t = p

y = 'p(x) = x + pu(x) +
p2

2
u
2(x) + � � � (40)

and

z =  p(y) = y + pv(y) +
p2

2
v
2(y) + � � � : (41)

Now we want to �nd a vector �eld w with the phase 
ow �t such that

�1 =  p � 'p ; (42)

i.e.

�1(x) = z =  p(y) : (43)

We want to �nd the vector �eld w = w(v : u) as a formal series

w(x) = w1(x) +w2(x) +w3(x) + � � � =
1X
k=1

wk(x) ; (44)

13
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where wk(x) 2 Xc(M) and

wk(pv : pu) = pkwk(v : u) : (45)

By substituting from (40) into (41) we get after simpli�cation

z = x + pu(x) +
p2

2
u
2(x) +

p3

3!
u
3(x) +O(p4)

+ p
n
v

�
x + pu(x) +

p2

2
u
2(x) +O(p3)

�o
+
p2

2

�
v
2
�
x + pu(x) +O(p2)

�	
+
p3

3!

�
v
3
�
x +O(p)

�	
= x + pu(x) +

p2

2
u
2(x) +

p3

3!
u
3(x) +O(p4)

+ p
n
v(x) + v

0(x)
h
pu(x) +

p2

2
u
2(x) +O(p3)

io
+
p2

2

�
v
2(x) +

�
v
2(x)

�
0
�
pu(x) +O(p2)

�	
+
p3

3!

�
v
3(x) +O(p)

	
= x + pu(x) +

p2

2
u
2(x) +

p3

3!
u
3(x) +O(p4)

+ p
n
v(x) + pu

�
v(x)

�
+
p2

2
u
2
�
v(x)

�
+O(p3)

o
+
p2

2

�
v
2(x) + pu

�
v
2(x)

�
+O(p2)

	
+
p3

3!

�
v
3(x) +O(p)

	
;

so that

z = x + p
�
v(x) + u(x)

	
+
p2

2

�
v
2(x) + 2u

�
v(x)

�
+ u

2(x)
	
+

+
p3

3!

�
v
3(x) + u

3(x) + 3u2
�
v(x)

�
+ 3u

�
v
2(x)

�	
+O(p4) :

(46)

Now we rewrite (43) in the form

z = �1(x) = x +w(x) +
1

2
w
2(x) +

1

3!
w
3(x) + � � � ; (47)

and we use (44) for w(x) . Then (when omitting x )

w
2 = (w1 +w2 +w3 + � � �)(w1 +w2 +w3 + � � �)

= w
2
1
+w

1
(w

2
) +w

1
(w

3
) + � � �+w

2
(w

1
) +w

2
2
+ � � �+w

3
(w

1
) + � � �

(48)

w
3 = w(w2) = (w

1
+w

2
+ � � �)

�
w
2
1 +w1(w2) +w2(w1) + � � �

�
= w

3
1 +w

2
1(w2) +w2(w

2
1) + � � � :

(49)

14
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From (48) and (49) we put into (47) and we get

z = x + (w1 +w2 +w3 + � � �) + 1
2

�
w
2
1 +w1(w2) +w2(w1) + � � �

�
+

1

3!
[w3

1 + � � � ] +O(p4) :
(50)

By comparing (46) and (50) and using (45) we get

p1 : w1 = v + u ; (51)

p2 : w2 +
1
2
w
2
1 =

1
2

�
v
2 + 2u(v) + u

2
	
; (52)

p3 : w3 +
1
2
w1(w2) +

1
2
w2(w1) +

1
3!
w
3
1 =

1
3!

�
v
3 + 3u2(v) + 3u(v2) + u

3
�
:

(53)

Now we put from (51) into (52) using

w
2
1 = (v + u)(v + u) = v

2 + v(u) + u(v) + u
2 (54)

and we get

w2 =
1
2

�
u(v)� v(u)

�
= � 1

2
[v;u] =

1
2
[v;u]� ; (55)

where we use the modi�ed Lie bracket [�; �]� from Remark 5.1. Now we put into
(53) using

w
3
1 = w1(w

2
1) = (v + u)

�
v
2 + v(u) + u(v) + u

2
�

= v
3 + v

2(u) + v
�
u(v)

�
+ v(u2) + u(v2) + u

�
v(u)

�
+ u

2(v) + u
3 ;

(56)

w1(w2) = (v+u)
�
1
2

�
u(v) � v(u)

��
= 1

2

�
v
2(u) � v

�
u(v)

�
+u

�
v(u)

�
� u

2(v)
�
;

(57)

w2(w1) =
1
2

�
v(u) � u(v)

�
(v + u) = 1

2

�
v
�
u(v)

�
+ v(u2)� u(v2) � u

�
v(u)

��
:

(58)

After putting (56), (57) and (58) into (53) and simplifying we get

w3 =
1
12

��
v; [v;u]

�
�
�
u; [v;u]

��
= 1

12

��
v; [v;u]�

�
�

�
�
u; [v;u]�

�
�

�
: (59)

This result suggests the following hypothesis:

Hypothesis. One of the vector �elds satisfying (38), i.e. Exp(w) =
Exp(v) � Exp(u) , is the vector �eld w(v : u) given by the following BCH
formula

w(v : u) = v + u+ 1
2
[v;u]� +

1

12

��
v; [v;u]�

�
�

�
�
u; [v;u]�

�
�

�
+ � � �

and the convergence of the right-hand side implies that the di�eomorphism
 1 � '1 is embeddable.

Remark 7.1. It is useful to note that our hypothesis is also supported by the

result from the Paragraph 5, because the result (27) from Remark 5.1, obtained
by a fully rigorous way, agrees with our hypothesis for linear vector �elds.

15
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8. Numerical experiment

As mentioned in the Remark 7.1 the full proof of our Hypothesis is not

complete in the sense that the problemswith the convergence in the BCH formula

are not yet solved.

Because of this, we have made the following numerical experiment to shed

more light on the relation between the ! -limit behavior of the orbits of pe-
riod mapping P and the ! -limit behavior of the trajectories of the vector �eld

w(v : u) .

-1.0 -0.5 0.0 0.5 1.0
-2

-1

0

1

2

Figure 3. Invariant curve of the period map P for the zig-zag dynamical system

\blinking cycles".

Let us have two planar vector �elds

u(x; y) =

�
�(x � 1)� y � (x � 1)

�
(x � 1)2 + y2

�
(x � 1) + �y � y

�
(x � 1)2 + y2

� �
; (60)

v(x; y) =

�
�(x + 1)� y � (x + 1)

�
(x + 1)2 + y2

�
(x + 1) + �y � y

�
(x + 1)2 + y2

� �
(61)

each of which has a stable limit cycle with the radius
p
� and the center (1; 0),

(�1; 0) respectively. Consider now the zig-zag dynamical system (2) with these
vector �elds for the switching period p = 0:02, where � = 3:5.

16
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Then the corresponding period map P has the invariant closed curve depicted

in Fig. 3.

-1.0 -0.5 0.0 0.5 1.0
-2

-1

0

1

2

Figure 4. To approximate the dynamics of the zig-zag system \blinking cycles"

shown in Fig. 3, we use the �rst 1 to 4 terms of the BCH formula. When taking

the �rst 1 or 2 terms the resulting dynamical system has a qualitatively di�erent

attractor (a stable stationary point) not shown here. When taking the �rst 3

or 4 terms the resulting dynamical system has a stable limit cycle that is almost

indistinguishable from the invariant curve of the original zig-zag system. Cf. Fig. 3.

Now we construct using (60) and (61) the vector �elds

w1 = v + u ;

w2 =
1
2
[v;u]� ;

w
3
= 1

12

�
v � u; [v;u]�

�
�

;

w4 = � 1
24

�
v;
�
u; [v;u]�

�
�
�
�

;

i.e. these vector �elds are successive terms in the BCH formula. The computation

of wk was made using the computer algebra system Mathematica. Further we
construct the vector �elds

17
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w1;1 = w1 ;

w1;2 = w1 +w2 ;

w1;3 = w1 +w2 +w3 ;

w1;4 = w1 +w2 +w3 +w4 ;

and we solve numerically the di�erential equations

_x = w1;i(x) ; i = 1; 2; 3; 4 : (62)

The �rst two systems have only stable steady states, while the last two systems

have an almost indistinguishable stable limit cycle depicted in Fig. 4. The reader

can convince himself that the coincidence of the invariant curve from Fig. 3 with
the closed trajectory in Fig. 4 is surprisingly good.

This demonstrates clearly how the BCH formula can be used to approximate

the dynamics of a zig-zag dynamical system by an autonomous system. The BCH
formula gives an essential re�nement of the averaging method studied in [5].
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