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Abstract—Equations of motion for 3-dim heavy spring elastic pendulum are derived and
rescaled to contain a single parameter. Condition for the stability of vertical large amplitude
oscillations is derived analytically relating the parameter of the system and the amplitude
of the vertical oscillation. Numerical continuation is used to find the border of the stability
region in parameter space with high precision. The stability condition is approximated by a
simple formula valid for a large range of the parameter and of the amplitude of oscillation. The
bifurcation responsible for the loss of stability is identified.
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1. INTRODUCTION

The first known publication about the elastic pendulum is the paper [1] by Vitt and Gorelik. They
consider small amplitude oscillation of a planar elastic pendulum in the 2:1 resonance. Connection
to the Fermi resonance of CO2 is mentioned. This paper has been translated from Russian by Lisa
Shields and published by Peter Lynch on his web page.

Olsson in [2] excludes more than one parametric resonance. Cayton in [3] uses numerical
simulation and observes that in 3D “the swinging plane rotates by an (apparently arbitrary) angle”.
Relation to 3-wave interaction in nonlinear media is mentioned.

Rusbridge in [4] uses a light bulb with a battery attached to the bob of the elastic pendulum
and a film to record the motion of the bob and comes to the conclusion that “some pendulums
seem very bad for no obvious reasons (rotation of the swinging plane)”. Breitenberger and Mueller
in [5] derive two different criteria for the stability of the suspension mode.

Lai in [6] compares his analytical results for the slow varying amplitude and phases with his
experimental results. This is the only paper that briefly discusses the mass of the spring concluding
that the finite mass of the spring should not affect the results.

Deterministic chaos has been observed in numerical simulation and presented in the form of
Poincaré section, auto-correlation function, Lyapunov exponent and power spectrum in [7–9].

In [10] Anicin et al. study the stability of small amplitude vertical oscillation by means of a locus
line drawn in the Ince-Strut stability chart of the respective Matthieu equation. They determine
graphically the range of mass leading to instability for a particular amplitude of the initially vertical
oscillation and the corresponding growth coefficient.

Davidovic et al. in [11] use parabolic coordinates to find the parabolas bounding the accessible
domain in the x-y plane for small amplitude oscillation in the 2:1 resonance. A part of the bifurcation
diagram of a plane elastic pendulum is sketched in [12].
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Monodromy of an integrable approximation of the elastic pendulum is studied in [13]. The most
thorough treatment of small amplitude oscillation of both plane and space elastic pendulum can
be found in the works by Peter Lynch [14–19].

This paper is organized as follows. In Section 2 we define the system, derive equations of motion
and rescale them to get equations with a single parameter. In Section 3 we study the stability of the
linearized system using variational equations. The condition for the border of stable and unstable
regions in the parameter space is formulated. Numerical continuation is used to find this border
with a high precision. The resulting data are transformed and fitted to give a simple closed form
formula for stability. The accuracy of this formula is given. In conclusion we compare our method
to the classical approach based on Taylor approximation.

2. DEFINITION OF THE SYSTEM

Consider a pendulum consisting of a point bob of mass mB suspended on a homogeneous elastic
spring of mass mS with the elasticity constant k, see Fig. 1. Assume a homogeneous gravitational
field with intensity (0, 0,−g). Denoting the coordinates of the bob X, Y and Z, and assuming the
spring is stretched homogeneously, the kinetic energy of the system bob+spring is

Ekin =
1
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3

)

V 2

-
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Fig. 1. Heavy spring elastic pendulum consists of a point mass mB attached to a spring with mass mS which
is fixed at the other end point.

where V is the velocity of the bob. The potential energy is

Epot =
(
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2

)
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where ℓ0 is the length of the unloaded spring. Then the equations of motion are
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It is convenient to introduce dimensionless variables x, y, z, t by x = X
ℓ0

, y = Y
ℓ0

, z = Z
ℓ0

, t =

T
√

k

mB+
mS
3

because then the equations of motion are

ẍ =
( 1

√

x2 + y2 + z2
− 1

)

x,

ÿ =
( 1

√

x2 + y2 + z2
− 1

)

y,

z̈ =
( 1

√

x2 + y2 + z2
− 1

)

z − p,

(1)

where upper dot means the derivative with respect to time t. This system has the only parameter

p =
(mB + mS

2
)g

kℓ0

.

The parameter p has several interpretations: it is the (dimensionless) strength of the external field;
it is the relative prolongation

p =
ℓ − ℓ0

ℓ0

of the spring due to the effective load mB + mS

2
and it is related to

q =
p

1 + p
=

ℓ − ℓ0

ℓ
=

(

ΩP

ΩS

)2

, (2)

where

ΩP =

√

g(mB + mS

2
)

ℓ(mB + mS

3
)

is the frequency of the pendulum (or quasi-horizontal) motion and

ΩS =

√

k

mB + mS

3

is the frequency of the spring (or vertical) motion. Note that p > 0 is equivalent to 0 < q < 1 i.e.
ΩP < ΩS. Also note that the mass-less spring elastic pendulum (often discussed in the literature)
is a special case with mS = 0 included in our more general case.

The system (1) is conservative, the total dimensionless energy

e =
1

2
(ẋ2 + ẏ2 + ż2) +

1

2
(
√

x2 + y2 + z2 − 1)2 + pz

is conserved. An example of the potential energy for p = 0.3 is shown in Fig. 2.

3. STABILITY OF VERTICAL OSCILLATION

By introducing six variables

(x1, x2, x3, x4, x5, x6) = (x, ẋ, y, ẏ, z, ż)
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Fig. 2. The potential well of the elastic pendulum for p = 0.3 as a function of x and z for y = 0.

we rewrite the system (1) into a system of six equations of the first order

ẋ1 = x2,

ẋ2 =
( 1

√

x2
1
+ x2

3
+ x2

5

− 1
)
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ẋ4 =
( 1

√

x2
1
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3
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5

− 1
)

x3,

ẋ5 = x6,

ẋ6 =
( 1

√

x2
1
+ x2

3
+ x2

5

− 1
)

x5 − p.

(3)

There are exactly two equilibrium points of this system: one stable (a center) (0, 0, 0, 0,−1 − p, 0)

with the energy e = −p − p2

2
and the other unstable (a saddle) (0, 0, 0, 0, 1 − p, 0) with the energy

e = p − p2

2
(this one having physical meaning only for p < 1). This suggests another interpretation

of the parameter p: it is half of the difference between the energies of the two equilibrium points of
the system.

We want to investigate the stability of the vertical oscillation

(x1, x2, x3, x4, x5, x6) = (0, 0, 0, 0,−1 − p + a sin t, a cos t) (4)

of system (3), where a is the amplitude of the vertical oscillation.

Denoting f the right hand side of (3), the stability of a solution x(t) of ẋ = f(x) can be found
by investigating eigenvalues of the matrix M(t) where

Ṁ(t) = f ′(x(t)) · M(t) (5)
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(the variational equation) with the initial condition M(0) = E where E is the identity matrix and

f ′
ij = ∂fi

∂xj
is the matrix of partial derivatives of f .

Fig. 3. Rescaled maximum of absolute values of eigenvalues of the matrix M(2π) as a function of the strength
of the external field p and the amplitude of the periodic solution a. The two plateaus indicate a stable region
and the hill between them shows an unstable region. The value plotted is L = arctan(maxi |λi| − 1) to keep
the values finite.

In our case the matrix f ′ evaluated in the periodic solution (4) is

f ′ =





























0 1 0 0 0 0

f ′
21 0 0 0 0 0

0 0 0 1 0 0

0 0 f ′
43 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0





























(6)

where

f ′
21 = f ′

43 =
1

| − 1 − p + a sin t| − 1.

This brings a condition to the amplitude a

|a| < 1 + p. (7)

Note that this is much more general than the condition |a| ≪ 1 which is often used in the literature.
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In a more general case when the potential Epot = 1

2
(
√

x2 + y2 + z2 − 1)2 + pz is replaced by

Epot = s(r) + pz with r =
√

x2 + y2 + z2 where s(r) is the spherical component of the potential,
we get

f ′
21 = f ′

43 = −s′(r)

r
.

Now we can integrate (3) and (5) for one period τ = 2π to find the six eigenvalues λi(p, a),
i = 1 . . . 6 of the matrix M(2π). These are six complex functions of two real arguments: the strength
of the external field p and the amplitude of the periodic oscillation a.

Actually we do not have to integrate (3) because we know the solution (4) and we do not have
to integrate 36 equations (5) because (6) splits into three 2 × 2 blocks. It is sufficient to integrate
4 linear non-autonomous equations corresponding to the upper left block of (6).

Figure 3 shows the dependence of the rescaled maximum of absolute values of eigenvalues
L = arctan(maxi |λi| − 1) as a function of p (the strength of the external field) and a (the amplitude
of the vertical periodic solution). As maxi |λi| → ∞ for a → 1 + p, the function arctan(x − 1) is
used to keep the values finite. In this figure, we can identify two plateaus with maxi |λi| = 1
and a hill between them with maxi |λi| > 1. The hill corresponds to unstable solution. A small
initial perturbation will grow approximately exponentially (at least for some time) as there is one
eigenvalue (let us call it λ1) outside the unit circle in the complex plane. What are the remaining
five eigenvalues? As the eigenvalues come in pairs with reciprocal absolute values (for Hamiltonian
systems) there is another eigenvalue λ2 with absolute value less than 1. The next pair of eigenvalues
equals to the first one λ3 = λ1, λ4 = λ2. The remaining two eigenvalues are equal to 1 exactly, one
corresponding to the direction of the trajectory and the last one corresponding to the direction
perpendicular to the surface of constant total energy.

The two plateaus correspond to periodic solution that is orbitally stable with |λi| = 1 for
i = 1 . . . 6.

Our main interest is the border between the two plateaus corresponding to stable oscillation and
the hill corresponding to unstable solution. This border is a V-shaped curve in the p-a plane. We
can describe this curve as a = |aC(p)| where aC(p) is a function to be found. For a fixed p it gives
a critical value |aC |, such that for |a| < |aC | the periodic solution is stable and for |a| > |aC | it is
unstable. We want to find this function aC(p). As λi is an even function of a we can choose the
sign of aC(p) to be negative for small p and positive for large p, so that aC(p) is a smooth function.

When crossing this border from stable to unstable region then first one pair of eigenvalues
of M(2π) lies on the unit circle before the crossing, i.e. λ1,2 = exp(±iφ), then they are equal to
λ1,2 = −1 for the critical value, and finally they turn to two distinct real values λ1 > −1, λ2 < −1.
This is accompanied by a period-doubling bifurcation. A small homoclinic orbit (figure eight) to
the origin appears in the Poincaré section (this corresponds to a pinched torus for the continuous
time system).

This is a kind of parametric resonance, where the vertical oscillation is considered as the
periodic change of the parameter (the length of the pendulum) which results in unstability in
other directions.

We can describe this border by the condition

D(p, a) = 0

where

D = (M11 + M22)
2 − 4

is the discriminant of the characteristic equation of the upper left block of M(2π) (using also the
fact, that the determinant of this block is equal to 1). The discriminant as a function of p and a is
shown in Fig. 4. Actually the value arctan(D) is plotted to keep the values finite. We will detect
the border of stability by the condition D(p, a) = 0, where D(p, a) is a smooth function. This is
much more convenient than to consider the sharp edge between the plateau and the hill in Fig. 3.
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Fig. 4. Rescaled discriminant of the characteristic equation for the matrix M(2π) as a function of the strength
of the external field p and the amplitude of the periodic solution a. This is a suitable test function to detect
the border between stable and unstable regions in the p-a plane. The value plotted is atD = arctan(D) to
keep the values finite.

The graph of aC(p) crosses the p axis in a point somewhere between p = 0.2 and p = 0.4, see
Fig. 3. We can find this value exactly. If a = 0 then

f ′
21 =

1

1 + p
− 1 = − p

1 + p
= −q

is independent of time t and the variational equation

Ṁ = f ′ · M
with the upper left 2x2 block

f ′ =





0 1

−q 0





has the solution

M(2π) = exp



2π





0 1

−q 0
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cos(2π
√

q) 1√
q
sin(2π

√
q)

−√
q sin(2π

√
q) cos(2π

√
q)



 .

Then the discriminant of the characteristic equation is

D = (M11 + M22)
2 − 4 = (2 cos(2π

√
q))2 − 4 = −4 sin2

(

2π

√

p

p + 1

)
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and the equation of the border

D(p, 0) = 0

has for p > 0 the only solution

pres =
1

3
(8)

corresponding to

qres =
1

4
.

In other words, recalling (2), when the ratio of the two frequencies is

ΩP

ΩS

=
1

2
,

then arbitrarily small vertical oscillation is unstable, which is called 1:2 resonance.

Fig. 5. The function aC(p) giving the critical value such that the vertical oscillation with the amplitude a is
stable if |a| < |aC(p)|.

This is in agreement with our expectation based on Fig. 3. Also, this excludes other resonances
which one might expect for frequencies ΩP and ΩS in a ratio of small integers.

To prove this, for each point (p, a) in the p-a plane with p > 0, p 6= 1

3
, a = 0 we have D(p, a) < 0.

Then we can find a neighborhood of this point such that D(p, a) < 0 in this neighborhood as D(p, a)
is continuous in this point. Negative discriminant (together with determinant equal to 1) implies
two imaginary eigenvalues on the unit circle and thus no eigenvalue with the absolute value greater
than 1.

To find the function giving the critical value aC(p) we can use continuation, an efficient method
based on the predictor–corrector algorithm. It has the advantage, due to the corrector step, that
the error does not accumulate like in numerical solution of ODE. The result is presented in Fig. 5.
The curve crosses the p axis in p = 1

3
in agreement with (8). The shape of the curve aC(p) resembles

that of the square root, shifted one unit down. To find the correct exponent we plot log(a + 1) vs
log(p) in Fig. 6 together with a linear fit. As you can see the agreement is surprising, all the points
(computed with the error of order 10−16) lie on a straight line (with a deviation not observable
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Fig. 6. The dependence of the critical value of the amplitude of vertical oscillation a on the parameter p (as
in Fig. 5) in a log–log plot (after a shift by a). The circles represent the data computed with a high accuracy

(typically 10−16). The line is a least squares fit.

in the graph). The linear fit gives the slope in the log-log plot (and thus the exponent of p) to be

approximately 2

3
. Thus we can approximate the critical value aC(p) by a fitted one aF (p) in the

form

aC(p)
.
= aF (p) = (cp)

2

3 − 1

where the constant c can be found from the condition that the curve must cross the p axis in the
point p = 1

3
exactly. This gives c = 3 and the conclusion can be formulated in this

Theorem. The vertical oscillation of the 3-dim heavy spring elastic pendulum with the relative
amplitude a is stable for

|a| < |aC(p)|
where

aC(p)
.
= (3p)

2

3 − 1 (9)

with the parameter

p =
(mB + mS

2
)g

kℓ0

where mB is the mass of the bob, mS is the mass of the spring, k is the spring constant, g is the
acceleration due to gravity and ℓ0 is the length of the free spring. The unit of the amplitude a is the
length ℓ0 of the free spring. The error of this estimate of aC(p) is less than 0.005 for 0 < p < 0.6.

Unfortunately, this approximation is valid only for small p. For large p a similar approach gives
the estimate

aC(p)
.
= 1 + p − 5

p2
.

The error of this estimate of aC(p) is less than 0.03 for p > 4.

Figure 7 shows the regions in the p-a plane with stable (light shade) and unstable (dark shade)
vertical oscillation with the amplitude a and the parameter p.
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Fig. 7. The stable region (light shade) and the unstable region (dark shade) for the vertical oscillation with
the amplitude a and the external field p for p > 0 and |a| < 1 + p (only points with p < 3 are shown in the
graph for clarity reason).

4. CONCLUSION

The elastic pendulum is often studied under the assumption of a mass-less spring. We derived
the equations of motion for the elastic pendulum with a spring of arbitrary mass and we rescaled
the equations to contain a single parameter.

Also, the elastic pendulum is often studied [20, 21] by deriving formulas based on Taylor
approximation. Such results have a narrow (and often unspecified) range of validity. Also, it is
difficult to increase their precision. We suggest a complementary approach. After having derived
the condition of stability of vertical oscillations in a closed form we use the numerical continuation
technique to find the border of the stable region in the parameter space. Each step in this
continuation involves numerical solution of the variational equations. Both the numerical integration
and the numerical continuation can be done with any desired precision and the accuracy of the
results can be checked in each step. We have used 30 decimal digits for numerical integration and
16 decimal digits for continuation.

The computed border between the stable and the unstable region can be approximated by a
straight line (after appropriate pre-processing) giving a useful approximate closed form stability
condition: the vertical oscillation with period a is stable if

|a| < |aC(p)|
where

aC(p)
.
= (3p)

2

3 − 1.
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