---------------------------------------------- ClearAll["Global`*"]; ---------------------------------------------- $Post=N; (* default: not defined *) Sin[1] $Post=. ---------------------------------------------- Plot[x^2 + 1/x, {x, -3, 3}, Prolog -> {PointSize[0.3], Red , Point[{ 2, 3}]}, Epilog -> {PointSize[0.2], Green, Point[{-2, 3}]}] -------------------------------------------------- Thread[{l1, l2} == {r1, r2}] ---------------------------------------------- e1 = {l1, l2} == {r1, r2} e2 = Thread[e1] z1 = Apply[List, e2, {1}] z2 = Transpose[z1] e3 = Apply[Equal, z2] ---------------------------------------------- Rule @@@ {{a,b},{c,d}} {a -> b, c -> d} ---------------------------------------------- f[x_] := Sum[a[n]*x^n, {n, 0, 4}] f[z] f[0] q^0 0^0 g[x_] = Sum[a[n]*x^n, {n, 0, 4}] a[0] + x a[1] + x^2 a[2] + x^3 a[3] + x^4 a[4] g[0] 0^0 = 1 Unprotect[Power] 0^0 = 1 h[x_] := Sum[a[n]*x^n, {n, 0, 4}] ---------------------------------------------- Jacobian as a funcion: f[{x_,y_}]:={x^2+y^3,x^4-y^5}; j=Function[{x,y},Evaluate[D[f[{x,y}],{{x,y}}]]]@@#1&; a = {2,3}; j[a]; -------------------------------------------------- Inner[Rule,{x0,y0},{7,8},List] {x0 -> 7, y0 -> 8} Inner[Equal,{x0,y0},{7,8},List] {x0 == 7, y0 == 8} Reduce[{a,b}=={8,9}] b == 9 && a == 8 Reduce[{{a,b},{c,d}}=={{6,7},{8,9}}] d == 9 && c == 8 && b == 7 && a == 6 ---------------------------------------------- D[f,{x,2}] -> fxx D[f,{{x,y}}] -> grad f D[z,{{x,y},2}] -> Hessian Jacobian: D[{x+y,x-y},{{x,y}}] -------------------------------------------------- f[x_] := Sqrt[2] + x/Pi NestList[f, 1/3, 5] NestList[f, 1/3, 5.0] NestList[f, 1/3.0, 5] NestList[f, N[1/3, 40], 30] // TableForm -------------------------------------------------- hadanka: x=If[#1==1,1,#1#0[#1-1]]&; -------------------------------------------------- Clear["Global`*"]; xm = 30; y0 = 0.5; rovnice = 4y''[x]+2(y'[x])^2+y[x]==0; pocpodm = {y[0]==y0,y'[0]==0}; sol[y0_]:=NDSolve[{rovnice,pocpodm},y,{x,0,xm}]; Plot[Evaluate[y[t] /. sol[y0]], {t, 0, xm}] ParametricPlot[Evaluate[{y[t], y'[t]} /. sol[y0] ], {t, 0, xm}] -------------------------------------------------- Clear["Global`*"]; xm = 30; rovnice = 4y''[x]+2(y'[x])^2+y[x]==0; pocpodm = {y[0]==y0,y'[0]==0}; sol[y0_]:=NDSolve[{rovnice,pocpodm},y,{x,0,xm}]; Plot[Evaluate[Table[y[t] /. sol[y0], {y0, 0, 1, 0.1}]], {t, 0, xm}] ParametricPlot[Evaluate[Table[{y[t], y'[t]} /. sol[y0], {y0, 0, 1, 0.1}]], {t, 0, xm}] -------------------------------------------------- matrix with rational eigenvalues n=3; Table[ a=Table[Random[Integer,{1,9}],{n},{n}]; e=Eigenvalues[a]; If[Element[e,Rationals], Print[a,e]]; ,{10000}]; -------------------------------------------------- Pythagorova veta s prirozenymi cisly 4.12.2010 m = 99; r = {{3,4,5}}; Print[r[[-1]]]; Table[ c = Sqrt[a^2+b^2]; If[Round[c]==c, p = Product[Norm[Cross[{a,b,c},r[[i]]]],{i,Length[r]}]; If[Round[c]==c && p!=0, AppendTo[r,{a,b,c}]; Print[r[[-1]]]; ]; ]; ,{a,1,m},{b,a+1,m}]; {3, 4, 5} {5, 12, 13} {7, 24, 25} {8, 15, 17} {9, 40, 41} {11, 60, 61} {12, 35, 37} {13, 84, 85} {16, 63, 65} {20, 21, 29} {20, 99, 101} {28, 45, 53} {33, 56, 65} {36, 77, 85} {39, 80, 89} {48, 55, 73} {60, 91, 109} {65, 72, 97} -------------------------------------------------- (* rational singular values 29.11.2011 *) g[n_] := (q = {}; Table[m = {{a, b}, {c, d}}; mm = Union[Flatten[m]]; If[Element[SingularValueList[m], Rationals] && Det[m] != 0 && Transpose[m] != m && ! MemberQ[q, mm], Print[m]; AppendTo[q, mm];], {a, n}, {b, n}, {c, n}, {d, n}];) {{2,2},{5,2}} {{2,3},{6,2}} {{2,4},{7,2}} {{2,5},{8,2}} {{2,6},{9,2}} {{4,1},{7,4}} {{4,3},{9,4}} {{6,1},{6,6}} {{6,2},{7,6}} {{6,3},{8,6}} ------------------------------------------------------------