
Aplikace na lineárńı diferenciálńı rovnici druhého řádu –

elektrický obvod (Wien̊uv článek)

0.1 Odvozeńı rovnice

Uvažujme následuj́ıćı elektrický obvod, který se skládá ze dvou odpor̊u a
dvou kondenzátor̊u, se vstupńım napět́ım U1 a výstupńım napět́ım U podle
tohoto obrázku
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Obrázek 1: Elektrický obvod s dvěma odpory a dvěma kondenzátory

Pro sestaveńı diferenciálńı rovnice popisuj́ıćı tento obvod použijeme vztah
mezi napět́ım U a proudem I na odporu R (Ohmům zákon) U = RI a
podobně pro kondenzátor o kapacitě C plat́ı CU̇ = I, kde tečka znač́ı derivaci
podle času U̇ = dU

dt
. Uvažujeme konstantńı odpor R a konstantńı kapacitu C.

Označ́ıme vstupńı napět́ı U1 a výstupńı napět́ı U (viz obrázek). Proud I
protékaj́ıćı vodorovnou větv́ı je

I =
U

R
+ CU̇

a časová derivace rozd́ılu U1 − U je

U̇1 − U̇ = Rİ +
I

C
.

(Ta posledńı tečka je tečka za větou, neznamená časovou derivaci.) Vy-
louč́ıme I t́ım, že vyjádř́ıme I z prvńı rovnice a dosad́ıme do druhé

U̇1 − U̇ = R(
U̇

R
+ CÜ) +

1

C
(
U

R
+ CU̇)
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Označme
τ = RC

a dostaneme

U̇1 − U̇ = U̇ + τÜ +
U

τ
+ U̇

a nakonec
τ 2Ü + 3τU̇ + U = τU̇1.

To je lineárńı nehomogenńı diferenciálńı rovnice druhého řádu s konstantńımi
koeficienty. Můžeme tuto rovnici zjednodušit t́ım, že zavedeme bezrozměrný
čas

x =
t

τ
nebo

t = τx

s
dt

dx
= τ

a novou závislou veličinu
y(x) = U(t).

Pak
dy

dx
=
dU

dt

dt

dx
čili

y′ = τU̇

a podobně
y′′ = τ 2Ü

a rovnice bude
y′′ + 3y′ + y = f ′(x),

kde f ′(x) = τU̇1(t) představuje derivaci vstupńıho signálu. Tento krok se
nazývá změna měř́ıtka nebo také přechod k bezrozměrným veličinám (ang-
licky rescaling) a použ́ıvá se ke sńıžeńı počtu parametr̊u v rovnici. Jinými
slovy, změńıme jednotku času ze sekundy na novou jednotku rovnou τ .

Nejdř́ıve budeme řešit odpov́ıdaj́ıćı homogenńı rovnici

y′′ + 3y′ + y = 0

a pak budeme řešit nehomogenńı rovnici metodou odhadu.
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0.2 Homogenńı rovnice

Uvažujme rovnici
y′′ + 3y′ + y = 0.

Odpov́ıdaj́ıćı charakteristická rovnice je

λ2 + 3λ+ 1 = 0

s dvěma r̊uznými reálnými kořeny

λ1 =
−3 +

√
5

2
.
= −0.381966

a

λ2 =
−3−

√
5

2
.
= −2.61803.

Těmto dvěma kořen̊um charakteristické rovnice odpov́ıdaj́ı dvě řešeńı dife-
renciálńı rovnice

y1 = exp(λ1x) = exp(
−3 +

√
5

2
x)

a

y2 = exp(λ2x) = exp(
−3−

√
5

2
x)

a obecné řešeńı homogenńı rovnice je

yGH = c1y1 + c2y2

kde c1, c2 jsou libovolné konstanty. Protože oba kořeny charakteristické rov-
nice jsou záporné, řešeńı homogenńı rovnice se rychle bĺıž́ı k nule s rostoućım
časem, nebot’ pro λ < 0 je

lim
x→∞

exp(λx) = 0.

0.2.1 Metoda odhadu

Metodu odhadu lze použ́ıt pro lineárńı nehomogenńı rovnici se speciálńı pra-
vou stranou (ve tvaru lineárńı kombinace součin̊u mnohočlen̊u, exponenciálńı
funkce a goniometrických funkćı sinus a kosinus). Uvažujme náš elektrický
obvod s periodickým harmonickým vstupńım signálem. Vyjádřeme takový
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vstupńı signál funkćı sinωx nebo cosωx. Zápisy budou kratš́ı, když použijeme
komplexńı exponenciálu

exp(iϕ) = cosϕ+ i sinϕ,

kde i je imaginárńı jednotka (tedy i2 = −1). Tento vztah lze dokázat použit́ım
Taylorovy řady pro exponenciálu a pro funkce sinus a kosinus

exp(x) = 1 + x+
x2

2
+
x3

3!
+ . . .

sin(x) = x− x3

3!
+ . . .

cos(x) = 1− x2

2
+ . . .

Uvažujme tedy vstupńı signál

f(x) = exp(iωx),

kde ω je úhlová frekvence vstupńıho signálu. A pravá strana je tedy

f ′(x) = iω exp(iωx)

a rovnice zńı
y′′ + 3y′ + y = iω exp(iωx).

Metoda odhadu nám ř́ıká, že partikulárńı řešeńı lze psát ve tvaru

y = A exp(iωx)

za předpokladu, že tato funkce neńı řešeńım homogenńı rovnice. Tento předpoklad
je v našem př́ıpadě splněn, protože, jak jsme uvedli, řešeńı homogenńı rovnice
je utuchaj́ıćı, tedy bĺıž́ıćı se k nule pro x jdoućı k nekonečnu.

Konstantu A najdete tak, že tento tvar řešeńı dosad́ıme do diferenciálńı
rovnice. K tomu si připrav́ıme prvńı a druhou derivaci

y′ = iωA exp(iωx)

a
y′′ = −ω2A exp(iωx).
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Když dosad́ıme tyto výrazy do diferenciálńı rovnice, tak dostaneme

−ω2A exp(iωx) + 3iωA exp(iωx) + A exp(iωx) = iω exp(iωx).

Vyděĺıme výrazem exp(iωx) a vytkneme A

A(−ω2 + 3iω + 1) = iω

A =
iω

−ω2 + 3iω + 1

a řešeńı je

y =
iω

−ω2 + 3iω + 1
exp(iωt).

Komplexńı č́ıslo A je komplexńı amplituda. Jeho absolutńı hodnota určuje
maximum signálu a jeho argument (úhel) určuje fázi.

Pro diskuzi bude výhodné vyjádřit

1

A
=
−ω2 + 3iω + 1

iω
= 3 + i(ω − 1

ω
).

Výstupńı signál bude mı́t maximálńı amplitudu, když bude maximálńı abso-
lutńı hodnota komplexńı amplitudy A. A toto nastane, když bude minimálńı
absolutńı hodnota převrácené hodnoty č́ısla A. Č́ıslo 1

A
je komplexńı č́ıslo

s konstantńı reálnou část́ı rovnou 3 a imaginárńı část́ı (ω − 1
ω

). Tedy | 1
A
|

bude nejmenš́ı, když imaginárńı část bude nulová

ω − 1

ω
= 0

To nastane pro |ω| = 1.
Když uvažujeme pouze kladné frekvence, tak amplituda výstupńıho signálu

bude maximálńı pro ω = 1. Pro jiné frekvence bude výstupńı signál slabš́ı.
Vid́ıme tedy, že tento elektrický obvod slouž́ı jako pasivńı filtr typu pásmová
propust’. Nı́zké a vysoké frekvence potlačuje. Tento obvod se nazývá Wien̊uv
filtr.
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