
Aplikace na lineárńı diferenciálńı rovnici druhého řádu –

elektrický obvod (Wien̊uv článek)

0.1 Odvozeńı rovnice

Uvažujme následuj́ıćı elektrický obvod, který se skládá ze dvou odpor̊u a
dvou kondenzátor̊u, se vstupńım napět́ım U1 a výstupńım napět́ım U podle
tohoto obrázku

c cq qR C

R C

U1 U

Obrázek 1: Elektrický obvod s dvěma odpory a dvěma kondenzátory

Pro sestaveńı diferenciálńı rovnice popisuj́ıćı tento obvod použijeme vztah
mezi napět́ım U a proudem I na odporu R (Ohmům zákon) U = RI a
podobně pro kondenzátor o kapacitě C plat́ı CU̇ = I, kde tečka znač́ı derivaci
podle času U̇ = dU

dt
. Uvažujeme konstantńı odpor R a konstantńı kapacitu C.

Označ́ıme vstupńı napět́ı U1 a výstupńı napět́ı U (viz obrázek). Proud I
protékaj́ıćı vodorovnou větv́ı je roven součtu proud̊u ve dvou svislých větv́ıch

I =
U

R
+ CU̇

a časová derivace rozd́ılu napět́ı U1 − U je rovna součtu časových derivaćı
napět́ı na odporu a kondenzátoru ve vodorovné větvi

U̇1 − U̇ = Rİ +
I

C
.

(Ta posledńı tečka je tečka za větou, neznamená časovou derivaci.) Vy-
louč́ıme I t́ım, že vyjádř́ıme I z prvńı rovnice a dosad́ıme do druhé

U̇1 − U̇ = R(
U̇

R
+ CÜ) +

1

C
(
U

R
+ CU̇)
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Označme
τ = RC

a dostaneme

U̇1 − U̇ = U̇ + τÜ +
U

τ
+ U̇

a nakonec
τ 2Ü + 3τU̇ + U = τU̇1.

To je lineárńı nehomogenńı diferenciálńı rovnice druhého řádu s konstantńımi
koeficienty. Můžeme tuto rovnici zjednodušit t́ım, že zavedeme bezrozměrný
čas

x =
t

τ
nebo

t = τx

s
dt

dx
= τ

a novou závislou veličinu
y(x) = U(t).

Pak
dy

dx
=
dU

dt

dt

dx
čili

y′ = τU̇

a podobně
y′′ = τ 2Ü

a rovnice bude
y′′ + 3y′ + y = f ′(x),

kde f ′(x) = τU̇1(t) představuje derivaci vstupńıho signálu. Tento krok se
nazývá změna měř́ıtka nebo také přechod k bezrozměrným veličinám (ang-
licky rescaling) a použ́ıvá se ke sńıžeńı počtu parametr̊u v rovnici. Jinými
slovy, změńıme jednotku času ze sekundy na novou jednotku rovnou τ .

Nejdř́ıve budeme řešit odpov́ıdaj́ıćı homogenńı rovnici

y′′ + 3y′ + y = 0

a pak budeme řešit nehomogenńı rovnici dvěma r̊uznými metodami: metodou
odhadu a metodou variace konstant.
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0.2 Homogenńı rovnice

Uvažujme rovnici
y′′ + 3y′ + y = 0.

Odpov́ıdaj́ıćı charakteristická rovnice je

λ2 + 3λ+ 1 = 0

s dvěma r̊uznými reálnými kořeny

λ1 =
−3 +

√
5

2
.
= −0.381966

a

λ2 =
−3−

√
5

2
.
= −2.61803.

Těmto dvěma kořen̊um charakteristické rovnice odpov́ıdaj́ı dvě řešeńı dife-
renciálńı rovnice

y1 = exp(λ1x) = exp(
−3 +

√
5

2
x)

a

y2 = exp(λ2x) = exp(
−3−

√
5

2
x)

a obecné řešeńı homogenńı rovnice je

yGH = c1y1 + c2y2

kde c1, c2 jsou libovolné konstanty. Protože oba kořeny charakteristické rov-
nice jsou záporné, řešeńı homogenńı rovnice se rychle bĺıž́ı k nule s rostoućım
časem, nebot’ pro λ < 0 je

lim
x→∞

exp(λx) = 0.

0.2.1 Metoda odhadu

Metodu odhadu lze použ́ıt pro lineárńı nehomogenńı rovnici se speciálńı pra-
vou stranou (ve tvaru lineárńı kombinace součin̊u mnohočlen̊u, exponenciálńı
funkce a goniometrických funkćı sinus a kosinus). Uvažujme náš elektrický
obvod s periodickým harmonickým vstupńım signálem. Vyjádřeme takový
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vstupńı signál funkćı sinωx nebo cosωx. Zápisy budou kratš́ı, když použijeme
komplexńı exponenciálu

exp(iϕ) = cosϕ+ i sinϕ,

kde i je imaginárńı jednotka (tedy i2 = −1). Tento vztah lze dokázat použit́ım
Taylorovy řady pro exponenciálu a pro funkce sinus a kosinus

exp(x) = 1 + x+
x2

2
+
x3

3!
+ . . .

sin(x) = x− x3

3!
+ . . .

cos(x) = 1− x2

2
+ . . .

Uvažujme tedy vstupńı signál

f(x) = exp(iωx),

kde ω je úhlová frekvence vstupńıho signálu. A pravá strana je tedy

f ′(x) = iω exp(iωx)

a rovnice zńı
y′′ + 3y′ + y = iω exp(iωx).

Metoda odhadu nám ř́ıká, že partikulárńı řešeńı lze psát ve tvaru

y = A exp(iωx)

za předpokladu, že tato funkce neńı řešeńım homogenńı rovnice. Tento předpoklad
je v našem př́ıpadě splněn, protože, jak jsme uvedli, řešeńı homogenńı rovnice
je utuchaj́ıćı, tedy bĺıž́ıćı se k nule pro x jdoućı k nekonečnu.

Konstantu A najdete tak, že tento tvar řešeńı dosad́ıme do diferenciálńı
rovnice. K tomu si připrav́ıme prvńı a druhou derivaci

y′ = iωA exp(iωx)

a
y′′ = −ω2A exp(iωx).
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Když dosad́ıme tyto výrazy do diferenciálńı rovnice, tak dostaneme

−ω2A exp(iωx) + 3iωA exp(iωx) + A exp(iωx) = iω exp(iωx).

Vyděĺıme výrazem exp(iωx) a vytkneme A

A(−ω2 + 3iω + 1) = iω

A =
iω

−ω2 + 3iω + 1

a řešeńı je

y =
iω

−ω2 + 3iω + 1
exp(iωt).

Komplexńı č́ıslo A je komplexńı amplituda. Jeho absolutńı hodnota určuje
maximum signálu a jeho argument (úhel) určuje fázi.

Pro diskuzi bude výhodné vyjádřit

1

A
=
−ω2 + 3iω + 1

iω
= 3 + i(ω − 1

ω
).

Výstupńı signál bude mı́t maximálńı amplitudu, když bude maximálńı abso-
lutńı hodnota komplexńı amplitudy A. A toto nastane, když bude minimálńı
absolutńı hodnota převrácené hodnoty č́ısla A. Č́ıslo 1

A
je komplexńı č́ıslo

s konstantńı reálnou část́ı rovnou 3 a imaginárńı část́ı (ω − 1
ω

). Tedy | 1
A
|

bude nejmenš́ı, když imaginárńı část bude nulová

ω − 1

ω
= 0

To nastane pro |ω| = 1.
Když uvažujeme pouze kladné frekvence, tak amplituda výstupńıho signálu

bude maximálńı pro ω = 1. Pro jiné frekvence bude výstupńı signál slabš́ı.
Vid́ıme tedy, že tento elektrický obvod slouž́ı jako pasivńı filtr typu pásmová
propust’. Nı́zké a vysoké frekvence potlačuje. Tento obvod se nazývá Wien̊uv
filtr.

0.2.2 Variace konstant

Uvažujme opět rovnici
y′′ + 3y′ + y = f ′(x).
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Metodu odhadu nelze použ́ıt, pokud pravá strana neńı ve speciálńım tvaru.
Pak muśıme použ́ıt metodu variace konstant. Použijeme obecné řešeńı ho-
mogenńı rovnice

y = c1y1 + c2y2,

kde c1 a c2 jsou konstanty, a naṕı̌seme řešeńı nehomogenńı rovnice ve tvaru

y = c1(x)y1 + c2(x)y2,

kde c1(x) a c2(x) jsou dvě dosud neznámé funkce. Abychom je nalezli, do-
sad́ıme tento tvar řešeńı do diferenciálńı rovnice a za dodatečného předpokladu
c′1y1 + c′2y2 = 0 (zde vynecháváme (x) u c1 a c2, aby byl zápis stručněǰśı) do-
staneme po úpravách soustavu dvou rovnic pro c′1(x) a c′2(x)

c′1y1 + c′2y2 = 0

c′1y
′
1 + c′2y

′
2 = f ′(x).

Toto je zaj́ımavé mı́sto z terminologického hlediska. Jako soustava rovnic
pro neznámé c1 a c2 je to soustava diferenciálńıch rovnic. Ale jako soustava
rovnic pro neznámé c′1 a c′2 je to soustava dvou algebraických rovnic. A tu
můžeme vyřešit např. Cramerovým pravidlem. Za t́ım účelem spočteme tyto
tři determinanty

D =

∣∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣∣ =

∣∣∣∣∣ exp(λ1x) exp(λ2x)
λ1 exp(λ1x) λ2 exp(λ2x)

∣∣∣∣∣ = (λ2 − λ1) exp((λ1 + λ2)x)

D1 =

∣∣∣∣∣ 0 y2
f ′ y′2

∣∣∣∣∣ = −y2f ′ = − exp(λ2x)f ′

D2 =

∣∣∣∣∣ y1 0
y′1 f ′

∣∣∣∣∣ = y1f
′ = exp(λ1x)f ′

a pak

c′1(x) =
D1

D
= − exp(λ2x)f ′

(λ2 − λ1) exp((λ1 + λ2)x)
= − 1

λ2 − λ1
exp(−λ1x)f ′

c′2(x) =
D2

D
=

exp(λ1x)f ′

(λ2 − λ1) exp((λ1 + λ2)x)
=

1

λ2 − λ1
exp(−λ2x)f ′.

6



Abychom našli c1(x) z c′1(x) můžeme použ́ıt bud’to neurčitý integrál

c1(x) =
∫
c′1(x)dx

nebo můžeme použ́ıt určitý integrál s proměnnou horńı meźı x (a s libovolnou
dolńı meźı, např. a) s novou integračńı proměnnou, např. v

c1(x) =
∫ x

a
c′1(v)dv.

Když vezmeme limitu pro a jdoućı k −∞, tak dostaneme

c1(x) =
∫ x

−∞
c′1(v)dv = −

∫ x

−∞

1

λ2 − λ1
exp(−λ1v)f ′(v)dv

a podobně pro c2

c2(x) =
∫ x

−∞
c′2(v)dv =

∫ x

−∞

1

λ2 − λ1
exp(−λ2v)f ′(v)dv.

Pak řešeńı je
y(x) = c1(x)y1(x) + c2(x)y2(x) =

= exp(λ1x)
∫ x

−∞
− 1

λ2 − λ1
exp(−λ1v)f ′(v)dv+

+ exp(λ2x)
∫ x

−∞

1

λ2 − λ1
exp(−λ2v)f ′(v)dv =

=
∫ x

−∞

exp(λ2(x− v))− exp(λ1(x− v))

λ2 − λ1
f ′(v)dv.

Nyńı můžeme použ́ıt Heavisideovou skokovou funkci

H(x) =

{
1 pro x ≥ 0
0 pro x < 0

a můžeme rozš́ı̌rit tento integrál na celou př́ımku

y(x) =
∫ ∞
−∞

H(x− v)
exp(λ2(x− v))− exp(λ1(x− v))

λ2 − λ1
f ′(v)dv.

Když označ́ıme

g(u) = H(u)
exp(λ2u)− exp(λ1u)

λ2 − λ1
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Obrázek 2: Greenova funkce pro Wien̊uv filtr

viz. Obr. 2, můžeme napsat řešeńı

y(x) =
∫ ∞
−∞

g(x− v)f ′(v)dv.

Terminologická poznámka pro zv́ıdavého čtenáře: tato operace, tedy in-
tegrál součinu dvou funkćı v bodech, které daj́ı v součtu x se nazývá konvo-
luce. A funkce g která dovoluje napsat řešeńı jako konvoluci funkce g s pravou
stranou rovnice, se nazývá Greenova funkce.

0.2.3 Daj́ı obě metody stejný výsledek ?

Co když použijeme metodu variace konstant pro př́ıpad se speciálńı pravou
stranou? Dostaneme stejný výsledek jako při metodě odhadu?

Uvažujme tedy opět
f(x) = exp(iωt)

f ′(x) = iω exp(iωt)

a řešeńı
y(x) =

∫ ∞
−∞

g(x− v)f ′(v)dv =

=
∫ ∞
−∞

H(x− v)
exp(λ2(x− v))− exp(λ1(x− v))

λ2 − λ1
iω exp(iωv)dv =

=
iω

λ2 − λ1

∫ x

−∞
(exp(λ2x− λ2v + iωv)− exp(λ1x− λ1v + iωv))dv =

8



=
iω

λ2 − λ1

[
exp(λ2x− λ2v + iωv)

−λ2 + iω
− exp(λ1x− λ1v + iωv)

−λ1 + iω

]x
−∞

=

=
iω exp(iωx)

λ2 − λ1

(
1

−λ2 + iω
− 1

−λ1 + iω

)
=

=
iω exp(iωx)

λ2 − λ1
−λ1 + λ2

λ1λ2 − iω(λ2 + λ1)− ω2
=

=
iω exp(iωx)

λ1λ2 − iω(λ2 + λ1)− ω2
.

A s našimi hodnotami

λ1 =
−3 +

√
5

2
.
= −0.381966

a

λ2 =
−3−

√
5

2
.
= −2.61803

máme
λ1λ2 = 1

a
λ1 + λ2 = −3,

takže

y(x) =
iω

1− ω2 + 3iω
exp(iωx),

což je v dokonalém souladu s výsledkem źıskaným metodou odhadu.
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