Aplikace na linearni diferencialni rovnici druhého radu —
elektricky obvod (Wienuv ¢lanek)

0.1 Odvozeni rovnice

Uvazujme nasledujici elektricky obvod, ktery se sklada ze dvou odporu a
dvou kondenzatoru, se vstupnim napétim U; a vystupnim napétim U podle
tohoto obrazku

R C

Obrazek 1: Elektricky obvod s dvéma odpory a dvéma kondenzatory

Pro sestaveni diferencialni rovnice popisujici tento obvod pouzijeme vztah
mezi napétim U a proudem [ na odporu R (Ohmum zdkon) U = RI a
podobné pro kondenzétor o kapacité C plati CU = I, kde tecka znacf derivaci
podle casu U = %. Uvazujeme konstantni odpor R a konstantni kapacitu C.
Oznac¢ime vstupni napéti U; a vystupni napéti U (viz obrazek). Proud [
protékajici vodorovnou vétvi je roven souc¢tu proudu ve dvou svislych vétvich

U .
I=—+4+CU
R
a casova derivace rozdilu napéti U; — U je rovna souctu c¢asovych derivaci
napéti na odporu a kondenzatoru ve vodorovné vétvi
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Uy —U=RI+ rok
(Ta posledni tecka je tecka za vétou, neznamend casovou derivaci.) Vy-
louc¢ime I tim, ze vyjadiime I z prvni rovnice a dosadime do druhé
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Oznacme
T=RC
a dostaneme U
U-U=U+1U+—+U

T

a nakonec ) ' '
U 4+ 37U + U = 1U;.

To je linearni nehomogenni diferencialni rovnice druhého radu s konstantnimi

koeficienty. Muzeme tuto rovnici zjednodusit tim, ze zavedeme bezrozmérny
cas

t
r=—
-
nebo
t=71x
S
dt
= 7
dx
a novou zavislou veli¢inu
y(r) =U(t)
Pak
dy _dU dt
dr  dt dx
¢ili '
y =710
a podobné
y// _ 7_2 U

a rovnice bude
y' +3y +y = f(2),
kde f'(z) = 7U,(t) predstavuje derivaci vstupniho signdlu. Tento krok se
nazyva zmeéna méfitka nebo také prechod k bezrozmérnym veli¢cindm (ang-
licky rescaling) a pouzivéd se ke snizeni poc¢tu parametru v rovnici. Jinymi
slovy, zménime jednotku casu ze sekundy na novou jednotku rovnou 7.
Nejdrive budeme tesit odpovidajici homogenni rovnici

y' +3y +y=0

a pak budeme fesit nehomogenni rovnici dvéma ruznymi metodami: metodou
odhadu a metodou variace konstant.



0.2 Homogenni rovnice

Uvazujme rovnici
y' +3y +y=0.

Odpovidajici charakteristickd rovnice je
N +30+1=0

s dvéma ruznymi realnymi koteny

_ =3+45
- ==

Ay = _3;\/5 =~ _92.61803.

Témto dvéma korenum charakteristické rovnice odpovidaji dvé reseni dife-
rencialni rovnice

A = —0.381966
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y1 = exp(Mx) = exp(
Y2 = exp(Aex) = exp( )

a obecné Teseni homogenni rovnice je

YaH = C1Y1 + CoY2

kde ¢y, ¢o jsou libovolné konstanty. Protoze oba kofeny charakteristické rov-
nice jsou zaporné, feSeni homogenni rovnice se rychle blizi k nule s rostoucim
¢asem, nebot pro A < 0 je

lim exp(Az) = 0.

T—00

0.2.1 Metoda odhadu

Metodu odhadu lze pouzit pro linedrni nehomogenni rovnici se specialni pra-
vou stranou (ve tvaru linearni kombinace sou¢inti mnohoclenu, exponencialni
funkce a goniometrickych funkef sinus a kosinus). Uvazujme nés elektricky
obvod s periodickym harmonickym vstupnim signalem. Vyjadieme takovy



vstupni signdal funkei sin wx nebo cos wx. Zapisy budou kratsi, kdyz pouzijeme
komplexni exponencidlu

exp(iy) = cos e + isin p,

kde 7 je imagindrn{ jednotka (tedy i> = —1). Tento vztah lze dokdzat pouzitim
Taylorovy fady pro exponencialu a pro funkce sinus a kosinus

2 .3
ex ($)=1+x+—+x—+...
P 2 3l
3
, T
sm(x)—x—g—i—...
2
cos(x)=1—%+...

Uvazujme tedy vstupni signal
f(x) = exp(iwz),
kde w je uhlova frekvence vstupniho signdlu. A prava strana je tedy
f'(z) = iw exp(iwz)

a rovnice zni
y" + 3y +y = iwexp(iwz).

Metoda odhadu nam tika, ze partikularni feseni lze psat ve tvaru
y = Aexp(iwz)

za predpokladu, ze tato funkce neni feSenim homogenni rovnice. Tento predpoklad
je v nasem pripadeé splnén, protoze, jak jsme uvedli, feSeni homogenni rovnice
je utuchajici, tedy blizici se k nule pro x jdouci k nekonecnu.

Konstantu A najdete tak, ze tento tvar feseni dosadime do diferencialni
rovnice. K tomu si ptipravime prvni a druhou derivaci

Y = iwAexp(iwr)

1/

y' = —w?Aexp(iwr).



Kdyz dosadime tyto vyrazy do diferencialni rovnice, tak dostaneme
—w? Aexp(iwz) + 3iwA exp(iwr) + Aexp(iwz) = iw exp(iwr).
Vydélime vyrazem exp(iwz) a vytkneme A
A(—w? + 3iw + 1) = iw

w
—w?2+3iw+1

a feseni je '
iw
—w? + 3iw + 1
Komplexni ¢islo A je komplexni amplituda. Jeho absolutni hodnota urcuje
maximum signdlu a jeho argument (dhel) urcuje fazi.
Pro diskuzi bude vyhodné vyjadrit

Y= exp(iwt).

1 —w?+3iw+1 344 )
= (w— —).
A iw w

Vystupni signal bude mit maximalni amplitudu, kdyz bude maximélni abso-
lutni hodnota komplexni amplitudy A. A toto nastane, kdyz bude minimalni
absolutni hodnota prevrdcené hodnoty ¢isla A. Cislo % je komplexni ¢islo
s konstantni redlnou ¢dsti rovnou 3 a imagindrni ¢dsti (w — 1). Tedy ||
bude nejmensi, kdyz imaginarni ¢ast bude nulova

w——=20
w
To nastane pro |w| = 1.

Kdyz uvazujeme pouze kladné frekvence, tak amplituda vystupniho signalu
bude maximélni pro w = 1. Pro jiné frekvence bude vystupni signdl slabsi.
Vidime tedy, ze tento elektricky obvod slouzi jako pasivni filtr typu pasmova
propust. Nizké a vysoké frekvence potlacuje. Tento obvod se nazyva Wienuv
filtr.

0.2.2 Variace konstant

Uvazujme opét rovnici
y'+3y +y=f(2).



Metodu odhadu nelze pouzit, pokud prava strana neni ve specialnim tvaru.
Pak musime pouzit metodu variace konstant. Pouzijeme obecné teseni ho-
mogenni rovnice

Y = 1y + C2Y2,

kde ¢; a ¢ jsou konstanty, a napiSeme feSeni nehomogenni rovnice ve tvaru

y = c1(z)yr + c2(2)y2,

kde ¢;(z) a ca(x) jsou dvé dosud neznamé funkce. Abychom je nalezli, do-
sadime tento tvar feSeni do diferencialni rovnice a za dodate¢ného predpokladu
Ay + cyya = 0 (zde vynechdvame (z) u ¢ a co, aby byl zépis strucnéjsi) do-
staneme po tpravach soustavu dvou rovnic pro ¢ (z) a dy(z)

Aty = 0
Ayr+cyy = fl(x).

Toto je zajimavé misto z terminologického hlediska. Jako soustava rovnic
pro neznamé c; a co je to soustava diferencialnich rovnic. Ale jako soustava
rovnic pro neznamé ¢, a ¢, je to soustava dvou algebraickych rovnic. A tu
muzeme vytesit napi. Cramerovym pravidlem. Za tim uc¢elem spocteme tyto
tfi determinanty
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Abychom nasli ¢;(z) z ¢} (z) muzeme pouzit bud'to neurcity integral

ci(x) = /c’l(a:)da:

nebo muzeme pouzit uré¢ity integral s proménnou horni mezi = (a s libovolnou
dolni mezi, napf. a) s novou integra¢ni proménnou, napf. v

c(z) = /j ¢ (v)dv.

Kdyz vezmeme limitu pro a jdouci k —oo, tak dostaneme

ci(x) = /x i (v)dv = — /_g; ! " exp(—A\) f'(v)dv

—o0 Ao —

a podobné pro co

co(z) = /2 cy(v)dv = /joo " i " exp(—Av) f'(v)dv.

Pak teseni je
y(x) = cr(@)yn(z) + cax)y2(z) =
= exp(\1x) /_moo N i N exp(—\v) f'(v)do+

T 1 ,
+ exp(Aa) Lm N exp(—Av) f'(v)dv =

_ /:v exp(Ag(x — v)) — exp(A(z — v))
o Ny — N\

Nyni muzeme pouzit Heavisideovou skokovou funkci

>
H<$>:{ 1 prox>0

f'(v)dv.

0 prox <O

a muzeme rozsitit tento integrédl na celou piimku

/oo Hr U)exp()u(x —)) —exp(Ai (2 — U))f’(v)dv.

y(r) = » N

Kdyz oznacime
exp(Aau) — exp(Aju)
A2 — A\

g(u) = H(u)



Obrazek 2: Greenova funkce pro Wienuv filtr

viz. Obr. 2, muzeme napsat Teseni

o
y@) = [ gle—v)f ()do.
—00
Terminologicka poznamka pro zvidavého ¢tenéte: tato operace, tedy in-
tegréal soucinu dvou funkci v bodech, které daji v souctu x se nazyva konvo-
luce. A funkce g ktera dovoluje napsat feseni jako konvoluci funkce g s pravou
stranou rovnice, se nazyva Greenova funkce.

0.2.3 Daji obé metody stejny vysledek ?

Co kdyz pouzijeme metodu variace konstant pro pripad se specidlni pravou
stranou? Dostaneme stejny vysledek jako pii metodé odhadu?
Uvazujme tedy opét
f(z) = exp(iwt)

f'(z) = iw exp(iwt)

y) = [ gl —v)f )y =
= /OO H(z — U)exp()\g(:c —v)) = explu(z - v))iw exp(iwv)dv =

—oc0 A2 — A1

=3 zw)\ /x (exp(Aaz — Aov + iwv) — exp(Mz — A\jv + iwv))dv =
2 — A1 /o0
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A s nasimi hodnotami

_ =3+5 |

A1 5 = —0.381966
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Ay = —5 = —2.61803
mame
AAg =1
a
>\1 + )\2 - —3,
takze »
w ,
Y@ = T g, OPlw),

coz je v dokonalém souladu s vysledkem ziskanym metodou odhadu.
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