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1 Zadani

Spoctéte energii nabité ¢tvercové desky.

2 ReSeni

Uvazujme desku ve tvaru ¢tverce o strané délky L, kterd je nabita elektrickym
nabojem o velikosti ) s konstantni ndbojovou hustotou

Q

U:ﬁ.

(Deska musi byt z nevodivého materidlu, protoze jinak by se naboj vlivem
odpudivych sil mezi souhlasnymi ndboji premistil na okraj desky a uprostred
desky by byla nulovd ndbojova hustota.)

Urceme nejprve energii soustavy dvou bodovych néaboju o velikosti ¢; a
¢2. Podle Coulombova zakona se tyto dva naboje odpuzuji silou
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2
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kde € je permitivita prostiedi, a r je vzdalenost naboju. Integraci této sily
dostaneme praci, kterou musime vykonat, abychom premistili druhy naboj
z nekonecna do vzdalenosti r od prvniho naboje. To bude energie soustavy
dvou naboju
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Znaménko minus je nutné, protoze dz je zaporné.
Nabitou desku si muzeme predstavit jako slozenou z velkého poctu malych
nabitych kousku. Celkova energie nabité desky bude souc¢tem energii vsech



dvojic téchto malych nabitych kousku. Ozna¢me polohu jednoho kousku
(X,Y), jeho plochu dX dY andboj o dX dY a polohu druhého kousku (U, V'),
jeho plochu dU dV a naboj odU dV. Pozdéji prejdeme k bezrozmérnym
velicindm x, y, u, v. Vzdalenost téchto dvou kousku je

= V(X -U)2+ (Y - V)2

Celkova energie bude
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Prejdeme od soutadnic X,Y, U,V v délkovych jednotkéach, napf. v metrech,
k bezrozmérnym soutadnicim x,y,u,v vztahy X = Lx, Y = Ly, U = Lu a
V = Lv a dostaneme
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Abychom spocitali tento ¢tyfnasobny integral
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= / / / / dxdyduduv,
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pripravime si nejdiive nékolik pomocnych vysledku.

2.1 Pomocné vypocty
Exponencidlni funkci budeme z duvodu tspory mista psat na rfadku, tedy
e” = exp(x).
Pouzijeme komplexni exponencialu
exp(ip) = cos p + isin p,

kde i je imagindrn{ jednotka (tedy i = —1). Tento vztah lze dokdzat pouzitim
Taylorovy fady pro exponencialu a pro funkce sinus a cosinus
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sin(z) =z — a1 +
2

cos(z) =1— % +

Sectenim a odectenim vztahu

exp(iy) = cos p + isin g

exp(—ip) = cosp —ising
dostaneme vztah mezi exponencialni funkci a funkcemi sinus a cosinus:

s — exp(iz) —I—ZGXp(—m:)

G — exp(ix) —2.exp(—m)‘
i

Podobnym vztahem jsou definovany funkce hyperbolicky sinus a hyperbo-

licky cosinus
s = () exp(=1)

cosh e — SP@) +2€Xp(—x)'

Z definice téchto funkci piimo plynou vztahy
sinhiz = isinx
sinix = ¢sinh z
coshix = cosx
cosixr = coshz.

Pro¢ nesou slovo hyperbolicky ve svém nazvu je vidét z této tuvahy. Pro

funkce sinus a cosinus plati

sint + cos’t = 1

a parametricky zadana ktivka

xr = cost



Yy =sint

je kruznice
v? +y? =1

Podobné pro hyperbolicky cosinus a hyperbolicky sinus plati

(exp(t) + exp(—1))*  (exp(t) — exp(—1))> _
4 4

cosh?t — sinh?t =

exp(2t) + 2 + exp(—2t) — exp(2t) + 2 — exp(—2t)

prm— = ]_'
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Proto parametricky zadana kiivka
x = cosht
y = sinht
je hyperbola
2 — y2 =1.

Podobné jako pro derivace funkei sinus a cosinus plati
: !/
(sinz)" = cosx

(cosx) = —sinu,

Ize témeér zpaméti odvodit
(sinhz)" = coshz

(coshz)" = sinh z,

tedy bez znaménka minus.
Funkce sinh je rostouci a tedy prosta na R, proto k ni existuje inverzni
funkce arcsinh. Pro ni 1ze najit vyjadteni tak, ze fesime rovnici

y = sinh x
pro neznamou x. Pouzijeme substituci

w = exp(z) >0



a dostaneme

w—1/w

Yy = 2/
1

2 =w — —
w
2yw = w? — 1

w? — 2yw — 1= 0.

To je kvadraticka rovnice, ktera ma dva kofeny. Nés zajima ten kladny
w=y+ \/m )
tak dostavame vyraz pro inverzni hyperbolicky sinus
arcsinh z = log(z 4+ V22 + 1),

kde log je ptirozeny logaritmus.
Podobné pro hyperbolicky cosinus (pokud se omezime na nezédporné ar-
gumenty, aby byla funkce prostd) lze odvodit vztah pro inverzni funkci

arccosh x = log(x + Va2 — 1).

Tyto funkce maji uzitecné derivace

_z Valtita
(arcsinh :L‘)/ = (log(x+Vz2 + 1))’ — 1+ Valil 2241 _ 1 .
r+vVai+l z4+V22+1l V2241
Proto .
———dx = arcsinhz = log(z + Va2 + 1).
Va2 +1
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————dx = arcsinh —.
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Podobné lze odvodit

(arccoshx) = ———.
x?2—1



Odvodime si jesté nékolik dalsich integralu, které budeme potiebovat. Po-
dobné, jako lze vyuzit substituci x = sint pro vypocet integralu

— i 1 2t
/\/1—x2da::‘ ;; s /cothdt:/—i_C—Osdt:

— costdt | 2

1 in 2¢ 1 1
= §(t+ SH; ) = §<t+sintcost> = §<arcsinx+x\/1 —x2>,

muzeme pouzit substituci x = sinh ¢ pro vypocet integralu
/ V1+ x%de.

Tak, jako jsme pouzili vztah

1+ cos2t
cos’t = — 5

odvodime si podobny vztah pro hyperbolicky cosinus

(exp(t) +exp(—t))®  exp(2t) + exp(—2t) +2 1+ cosh2t

h?t =
COS 4 4 2

A tak, jako jsme pii zdvéreénych tupravach pouzili vztah
sin 2t = 2sintcost,

odvodime si obdobny vztah pro hyperbolické funkce

2sinhtcosht = 2exp(t) _QGXP(_t) exp(t) +2€XP(—t) -

_ exp(2t) — exp(—2t)
2

= sinh 2¢.

Spoctéme tedy integral

/\/1+x2dx—‘ fx sinh ¢ /cosh%dt—/idt—

= coshtdt | 2

1 inh 2¢ 1 1
= 5(2&—1— sm2 > = §<t+sinhtcosht) = E(arcsinhx+xv1+x2).



Déle s vyuzitim

1 1
(arcsinh =) = —

1
x /1_|_#1’2_ V1 + 2

metodou per partes spoc¢teme integral

o1 v o= 1 v = arcsinh %
arcsinh —dx = U — o = 1 =
oy - - V142

! d inh 1 + inh
———dx = xarcsinh — + arcsinh z.
1+ 22 z

Budeme jesté potiebovat tuto limitu typu nula krat nekonecno

1
= g arcsinh — + /
T

lim z arcsinh —.

x—0+ x
Protoze 1
arcsinh y . 1442
im —— = lim =0,
Y—00 Y y—oo 1

je s pouzitim substituce x = i také

lim zx arcsinh — = 0.
x—0+ €T

Tato funkce je sudd, tak muzeme prejit od jednostranné limity k oboustranné

lim z arcsinh — = 0.
x—0 x

A také
lim 22 arcsinh — = 0.
x—0 x

2.2 Dvojny integral

Pti vypoctu ctyindsobného integralu

11 1 1 .
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pres jednotkovou ¢tyirozmérnou hyperkrychli si nejdiive spo¢teme vnitini
dvojny integral

pres jednotkovy ¢tverec.
Oznac¢ime konstantu

b=ly—vl
a v integralu
11
1
I, = // dxdu
(x —u)? 4+ b?
0 0
pouzijeme substituci
s—1t
xr =
V2
s+t
u = ,
V2
neboli
T+u
S =
V2
uU—2x
t= ,
V2
tedy
x s
(2)=+(0)
kde

1 1 -1
=)
Matice A predstavuje otoceni o 45°, jeji determinant je

det A =1.

V novych soufadnicich s a t je integrovana funkce nezavisla na s a suda v t,
muzeme proto integrovat pres jednu ¢tvrtinu otoceného ¢tverce (viz obrazek,



kde je modrou barvou vyznacena mnozina, pres kterou integrujeme v roviné
x-u a v roviné s-t) a integral vynasobit ¢tyimi.
U t

Tim dostavame

1
V2 W

4
—dsdt = —
/ V212 £ 12 \/_0/ b_

2

1 b2
—7 t2 + —2arcsmh + 20 — 2¢/1 + b2,

2.3 Ctyinasobny integral
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Puvodni ¢tyfnasobny integral je
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Pouzijeme opét stejnou substituci jako pti vypoctu integrélu I, tedy otoceni
0 45° matici A. A i zde je potom integrovana funkce sudd v t a nezavisla
na s, takze muzeme opét integrovat pouze ptes jednu ctvrtinu ctverce. Situaci
ilustruje stejny obrazek, jako pti vypoctu I. Dostaneme

1
= 4// (2 arcsinhm -+ Qt\/_— 2\/ 1 -+ 2t2)d8dt =
0
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A pouzitim drobné substituce
g= 2

dostaneme
1

1
1y :4/(1 — g)(arcsinh — + g — /1 + ¢gdg =
g

0
o1 . g 1 .
=4 [g arcsinh — + arcsinh g + (97/1+ g2 + arcsinh g)—
g

2 2
V2 -1
3

2

1 1 31 1
—%arcsinh——5\/1+92—%+§(1+92)%} = 4(arcsinh 1 —
g 0

).

Takze zaver je

V2 —
3

1
= 4(arcsinh 1 — ) = 2.97321.

Vsimnéte si, Ze a¢ neni integrovand funkce omezend shora, jedna se o nevlastni
integral, je tento integral konvergentni, tedy méa konecnou hodnotu.

2.4 Vypocet na pocitaci
2.4.1 Pomoci software Mathematica

Pro symbolické vypocty na pocitaci muzeme s vyhodou pouzit pocitacovy
algebraicky systém Mathematica. Pro vypocet integralu se pouzije piikaz
Integrate a pro ziskani priblizné numerické hodnoty pouzijeme piikaz N
takto:

i=Integrate[1/Sqrt[(x-u) ~2+(y-v)~2],{x,0,1},{y,0,1},{u,0,1},{v,0,1}]

-4 (-1 + Sqrt[2] - 3 ArcSinh[1])

In[2]:= N[il]
Out [2]= 2.97321
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Na pocitaci typu notebook s procesorem Intel Core i7 vypocet trval necelé
dvé minuty. Tento vysledek je ve shodé s nasim ruénim vypoctem.
Konkurenc¢ni software Maple verze 2018 tento integral nespocital viibec.

2.4.2 Vypocet metodou Monte Carlo

Pro vicenasobné integraly muzeme pouzit metodu Monte Carlo. To je sou-
hrnny nazev pro numerické algoritmy, které vyuzivaji generator pseudo-
nahodnych ¢isel. Pro numericky vypocet nepotiebujeme symbolické ope-
race, tak muzeme napsal program napi. v programovacim jazyce C. Ten ma
vyhodu, ze je dostupny na kazdém pocitaci s opera¢nim systémem Linux.
Vypocet probihd tak, ze vygenerujeme velky pocet ctvetic pseudondhodnych
¢isel mezi nulou a jednickou, to budou argumenty integrované funkce. V téchto
pseudonahodnych ¢tveticich vycislime integrovanou funkci a vysledek prici-
tame do proménné, do které na zacatku vypoctu ulozime nulu. Na zaveér
soucet vydélime poctem vygenerovanych bodu. Pro generovani pseudona-
hodnych cisel pouzijeme funkci drand48(). Program muze vypadat napf.
takto:

# include <stdio.h>
# include <math.h>
# include <stdlib.h>
int main ()
{

int i,im=100000000;
double x,y,u,v,w,s=0;
for (i=0;i<im;i++) {

x = drand48();
y = drand48();
u = drand48(Q);
v = drand48();
w = sqrt ((x—u)*(x-w)+(y-v)*(y-v)) ;

if (w>0) s += 1/w;
};
printf ("%G\n",s/im) ;
return(0) ;

b
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Tento program generuje 10® pseudondhodnych étvefic a vypocet na po-
¢itaci s procesorem Intel Core i7 trval 3 sekundy a dal vysledek 2.9729,
coz se shoduje s presnym vysledkem na 4 platné ¢islice. To je v souladu
s oCekavanim, ze relativni chyba vysledku je nepifimo imérna odmocniné
z poctu bodu.
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