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Pavel.Pokorny@vscht.cz

19.2.2019

1 Zadáńı

Spočtěte energii nabité čtvercové desky.

2 Řešeńı

Uvažujme desku ve tvaru čtverce o straně délky L, která je nabita elektrickým
nábojem o velikosti Q s konstantńı nábojovou hustotou

σ =
Q

L2
.

(Deska muśı být z nevodivého materiálu, protože jinak by se náboj vlivem
odpudivých sil mezi souhlasnými náboji přemı́stil na okraj desky a uprostřed
desky by byla nulová nábojová hustota.)

Určeme nejprve energii soustavy dvou bodových náboj̊u o velikosti q1 a
q2. Podle Coulombova zákona se tyto dva náboje odpuzuj́ı silou

F = k
q1q2
r2

,

zde

k =
1

4πε
,

kde ε je permitivita prostřed́ı, a r je vzdálenost náboj̊u. Integraćı této śıly
dostaneme práci, kterou muśıme vykonat, abychom přemı́stili druhý náboj
z nekonečna do vzdálenosti r od prvńıho náboje. To bude energie soustavy
dvou náboj̊u

E =

r∫
∞

−Fdx =

r∫
∞

−kq1q2
x2

dx = kq1q2

[1

x

]r
∞

= k
q1q2
r
.

Znaménko minus je nutné, protože dx je záporné.
Nabitou desku si můžeme představit jako složenou z velkého počtu malých

nabitých kousk̊u. Celková energie nabité desky bude součtem energíı všech
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dvojic těchto malých nabitých kousk̊u. Označme polohu jednoho kousku
(X, Y ), jeho plochu dX dY a náboj σ dX dY a polohu druhého kousku (U, V ),
jeho plochu dU dV a náboj σ dU dV . Později přejdeme k bezrozměrným
veličinám x, y, u, v. Vzdálenost těchto dvou kousk̊u je

r =
√

(X − U)2 + (Y − V )2.

Celková energie bude

E =

L∫
0

L∫
0

L∫
0

L∫
0

k
σdXdY σdUdV

r
.

Přejdeme od souřadnic X, Y, U, V v délkových jednotkách, např. v metrech,
k bezrozměrným souřadnićım x, y, u, v vztahy X = Lx, Y = Ly, U = Lu a
V = Lv a dostaneme

E = k
Q2

L

1∫
0

1∫
0

1∫
0

1∫
0

1√
(x− u)2 + (y − v)2

dxdydudv.

Abychom spoč́ıtali tento čtyřnásobný integrál

I4 =

1∫
0

1∫
0

1∫
0

1∫
0

1√
(x− u)2 + (y − v)2

dxdydudv,

připrav́ıme si nejdř́ıve několik pomocných výsledk̊u.

2.1 Pomocné výpočty

Exponenciálńı funkci budeme z d̊uvodu úspory mı́sta psát na řádku, tedy

ex = exp(x).

Použijeme komplexńı exponenciálu

exp(iϕ) = cosϕ+ i sinϕ,

kde i je imaginárńı jednotka (tedy i2 = −1). Tento vztah lze dokázat použit́ım
Taylorovy řady pro exponenciálu a pro funkce sinus a cosinus

exp(x) = 1 + x+
x2

2
+
x3

3!
+ . . .
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sin(x) = x− x3

3!
+ . . .

cos(x) = 1− x2

2
+ . . .

Sečteńım a odečteńım vztah̊u

exp(iϕ) = cosϕ+ i sinϕ

a
exp(−iϕ) = cosϕ− i sinϕ

dostaneme vztah mezi exponenciálńı funkćı a funkcemi sinus a cosinus:

cosx =
exp(ix) + exp(−ix)

2

sinx =
exp(ix)− exp(−ix)

2i
.

Podobným vztahem jsou definovány funkce hyperbolický sinus a hyperbo-
lický cosinus

sinhx =
exp(x)− exp(−x)

2

coshx =
exp(x) + exp(−x)

2
.

Z definice těchto funkćı př́ımo plynou vztahy

sinh ix = i sinx

sin ix = i sinhx

cosh ix = cosx

cos ix = coshx.

Proč nesou slovo hyperbolický ve svém názvu je vidět z této úvahy. Pro
funkce sinus a cosinus plat́ı

sin2 t+ cos2 t = 1

a parametricky zadaná křivka

x = cos t
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y = sin t

je kružnice
x2 + y2 = 1.

Podobně pro hyperbolický cosinus a hyperbolický sinus plat́ı

cosh2 t− sinh2 t =
(exp(t) + exp(−t))2

4
− (exp(t)− exp(−t))2

4
=

=
exp(2t) + 2 + exp(−2t)− exp(2t) + 2− exp(−2t)

4
= 1.

Proto parametricky zadaná křivka

x = cosh t

y = sinh t

je hyperbola
x2 − y2 = 1.

Podobně jako pro derivace funkćı sinus a cosinus plat́ı

(sinx)′ = cosx

(cosx)′ = − sinx,

lze téměř zpaměti odvodit

(sinhx)′ = coshx

(coshx)′ = sinhx,

tedy bez znaménka minus.
Funkce sinh je rostoućı a tedy prostá na R, proto k ńı existuje inverzńı

funkce arcsinh. Pro ni lze naj́ıt vyjádřeńı tak, že řeš́ıme rovnici

y = sinhx

pro neznámou x. Použijeme substituci

w = exp(x) > 0
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a dostaneme

y =
w − 1/w

2

2y = w − 1

w

2yw = w2 − 1

w2 − 2yw − 1 = 0.

To je kvadratická rovnice, která má dva kořeny. Nás zaj́ımá ten kladný

w = y +
√
y2 + 1,

tak dostáváme výraz pro inverzńı hyperbolický sinus

arcsinhx = log(x+
√
x2 + 1),

kde log je přirozený logaritmus.
Podobně pro hyperbolický cosinus (pokud se omeźıme na nezáporné ar-

gumenty, aby byla funkce prostá) lze odvodit vztah pro inverzńı funkci

arccoshx = log(x+
√
x2 − 1).

Tyto funkce maj́ı užitečné derivace

(arcsinhx)′ = (log(x+
√
x2 + 1))′ =

1 + x√
x2+1

x+
√
x2 + 1

=

√
x2+1+x√
x2+1

x+
√
x2 + 1

=
1√

x2 + 1
.

Proto ∫
1√

x2 + 1
dx = arcsinhx = log(x+

√
x2 + 1).

A pro b > 0 je

(arcsinh
x

b
)′ =

1√
(x
b
)2 + 1

1

b
=

1√
x2 + b2

.

Proto ∫
1√

x2 + b2
dx = arcsinh

x

b
.

Podobně lze odvodit

(arccoshx)′ =
1√

x2 − 1
.
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Odvod́ıme si ještě několik daľśıch integrál̊u, které budeme potřebovat. Po-
dobně, jako lze využ́ıt substituci x = sin t pro výpočet integrálu∫ √

1− x2dx =
∣∣∣ x = sin t
dx = cos tdt

∣∣∣ =

∫
cos2 tdt =

∫
1 + cos 2t

2
dt =

=
1

2

(
t+

sin 2t

2

)
=

1

2

(
t+ sin t cos t

)
=

1

2

(
arcsinx+ x

√
1− x2

)
,

můžeme použ́ıt substituci x = sinh t pro výpočet integrálu∫ √
1 + x2dx.

Tak, jako jsme použili vztah

cos2 t =
1 + cos 2t

2
,

odvod́ıme si podobný vztah pro hyperbolický cosinus

cosh2 t =
(exp(t) + exp(−t))2

4
=

exp(2t) + exp(−2t) + 2

4
=

1 + cosh 2t

2
.

A tak, jako jsme při závěrečných úpravách použili vztah

sin 2t = 2 sin t cos t,

odvod́ıme si obdobný vztah pro hyperbolické funkce

2 sinh t cosh t = 2
exp(t)− exp(−t)

2

exp(t) + exp(−t)
2

=

=
exp(2t)− exp(−2t)

2
= sinh 2t.

Spočtěme tedy integrál∫ √
1 + x2dx =

∣∣∣ x = sinh t
dx = cosh tdt

∣∣∣ =

∫
cosh2 tdt =

∫
1 + cosh 2t

2
dt =

=
1

2

(
t+

sinh 2t

2

)
=

1

2

(
t+ sinh t cosh t

)
=

1

2

(
arcsinhx+ x

√
1 + x2

)
.
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Dále s využit́ım

(arcsinh
1

x
)′ = − 1√

1 + 1
x2

1

x2
= − 1

x
√

1 + x2

metodou per partes spočteme integrál∫
arcsinh

1

x
dx =

∣∣∣ u′ = 1 v = arcsinh 1
x

u = x v′ = − 1
x
√
1+x2

∣∣∣ =

= x arcsinh
1

x
+

∫
1√

1 + x2
dx = x arcsinh

1

x
+ arcsinhx.

Budeme ještě potřebovat tuto limitu typu nula krát nekonečno

lim
x→0+

x arcsinh
1

x
.

Protože

lim
y→∞

arcsinh y

y
= lim

y→∞

1√
1+y2

1
= 0,

je s použit́ım substituce x = 1
y

také

lim
x→0+

x arcsinh
1

x
= 0.

Tato funkce je sudá, tak můžeme přej́ıt od jednostranné limity k oboustranné

lim
x→0

x arcsinh
1

x
= 0.

A také

lim
x→0

x2 arcsinh
1

x
= 0.

2.2 Dvojný integrál

Při výpočtu čtyřnásobného integrálu

I4 =

1∫
0

1∫
0

1∫
0

1∫
0

1√
(x− u)2 + (y − v)2

dxdydudv,
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přes jednotkovou čtyřrozměrnou hyperkrychli si nejdř́ıve spočteme vnitřńı
dvojný integrál

I2 =

1∫
0

1∫
0

1√
(x− u)2 + (y − v)2

dxdu

přes jednotkový čtverec.
Označ́ıme konstantu

b = |y − v|

a v integrálu

I2 =

1∫
0

1∫
0

1√
(x− u)2 + b2

dxdu

použijeme substituci

x =
s− t√

2

u =
s+ t√

2
,

neboli

s =
x+ u√

2

t =
u− x√

2
,

tedy (
x
u

)
= A ·

(
s
t

)
kde

A =
1√
2

(
1 −1
1 1

)
.

Matice A představuje otočeńı o 45◦, jej́ı determinant je

detA = 1.

V nových souřadnićıch s a t je integrovaná funkce nezávislá na s a sudá v t,
můžeme proto integrovat přes jednu čtvrtinu otočeného čtverce (viz obrázek,
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kde je modrou barvou vyznačena množina, přes kterou integrujeme v rovině
x-u a v rovině s-t) a integrál vynásobit čtyřmi.

x

u

s

t

T́ım dostáváme

I2 = 4

1√
2∫

0

1√
2∫

t

1√
2t2 + b2

dsdt =
4√
2

1√
2∫

0

1√
2
− t√

t2 + b2

2

dt =

= 4
[1

2
arcsinh

t
√

2

b
− 1√

2

√
t2 +

b2

2

] 1√
2

0
= 2 arcsinh

1

b
+ 2b− 2

√
1 + b2.

2.3 Čtyřnásobný integrál

Původńı čtyřnásobný integrál je

I4 =

1∫
0

1∫
0

(
2 arcsinh

1

|y − v|
+ 2|y − v| − 2

√
1 + (y − v)2

)
dydv.

Použijeme opět stejnou substituci jako při výpočtu integrálu I2, tedy otočeńı
o 45◦ matićı A. A i zde je potom integrovaná funkce sudá v t a nezávislá
na s, takže můžeme opět integrovat pouze přes jednu čtvrtinu čtverce. Situaci
ilustruje stejný obrázek, jako při výpočtu I2. Dostaneme

I4 = 4

1√
2∫

0

1√
2∫

t

(
2 arcsinh

1

t
√

2
+ 2t
√

2− 2
√

1 + 2t2
)
dsdt =

= 8

1√
2∫

0

( 1√
2
− t
)(

arcsinh
1

t
√

2
+ t
√

2−
√

1 + 2t2
)
dt.
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A použit́ım drobné substituce

g = t
√

2

dostaneme

I4 = 4

1∫
0

(1− g)(arcsinh
1

g
+ g −

√
1 + g2dg =

= 4
[
g arcsinh

1

g
+ arcsinh g +

g2

2
− 1

2
(g
√

1 + g2 + arcsinh g)−

−g
2

2
arcsinh

1

g
− 1

2

√
1 + g2 − g3

3
+

1

3
(1 + g2)

3
2

]1
0

= 4(arcsinh 1−
√

2− 1

3
).

Takže závěr je

I4 =

1∫
0

1∫
0

1∫
0

1∫
0

1√
(x− u)2 + (y − v)2

dxdydudv =

= 4(arcsinh 1−
√

2− 1

3
)
.
= 2.97321.

Všimněte si, že ač neńı integrovaná funkce omezená shora, jedná se o nevlastńı
integrál, je tento integrál konvergentńı, tedy má konečnou hodnotu.

2.4 Výpočet na poč́ıtači

2.4.1 Pomoćı software Mathematica

Pro symbolické výpočty na poč́ıtači můžeme s výhodou použ́ıt poč́ıtačový
algebraický systém Mathematica. Pro výpočet integrálu se použije př́ıkaz
Integrate a pro źıskáńı přibližné numerické hodnoty použijeme př́ıkaz N
takto:

i=Integrate[1/Sqrt[(x-u)^2+(y-v)^2],{x,0,1},{y,0,1},{u,0,1},{v,0,1}]

-4 (-1 + Sqrt[2] - 3 ArcSinh[1])

Out[1]= --------------------------------

3

In[2]:= N[i]

Out[2]= 2.97321
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Na poč́ıtači typu notebook s procesorem Intel Core i7 výpočet trval necelé
dvě minuty. Tento výsledek je ve shodě s naš́ım ručńım výpočtem.

Konkurenčńı software Maple verze 2018 tento integrál nespoč́ıtal v̊ubec.

2.4.2 Výpočet metodou Monte Carlo

Pro v́ıcenásobné integrály můžeme použ́ıt metodu Monte Carlo. To je sou-
hrnný název pro numerické algoritmy, které využ́ıvaj́ı generátor pseudo-
náhodných č́ısel. Pro numerický výpočet nepotřebujeme symbolické ope-
race, tak můžeme napsal program např. v programovaćım jazyce C. Ten má
výhodu, že je dostupný na každém poč́ıtači s operačńım systémem Linux.
Výpočet prob́ıhá tak, že vygenerujeme velký počet čtveřic pseudonáhodných
č́ısel mezi nulou a jedničkou, to budou argumenty integrované funkce. V těchto
pseudonáhodných čtveřićıch vyč́ısĺıme integrovanou funkci a výsledek přič́ı-
táme do proměnné, do které na začátku výpočtu ulož́ıme nulu. Na závěr
součet vyděĺıme počtem vygenerovaných bod̊u. Pro generováńı pseudoná-
hodných č́ısel použijeme funkci drand48(). Program může vypadat např.
takto:

# include <stdio.h>

# include <math.h>

# include <stdlib.h>

int main ()

{

int i,im=100000000;

double x,y,u,v,w,s=0;

for (i=0;i<im;i++) {

x = drand48();

y = drand48();

u = drand48();

v = drand48();

w = sqrt((x-u)*(x-u)+(y-v)*(y-v));

if(w>0) s += 1/w;

};

printf("%G\n",s/im);

return(0);

}
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Tento program generuje 108 pseudonáhodných čtveřic a výpočet na po-
č́ıtači s procesorem Intel Core i7 trval 3 sekundy a dal výsledek 2.9729,
což se shoduje s přesným výsledkem na 4 platné č́ıslice. To je v souladu
s očekáváńım, že relativńı chyba výsledku je nepř́ımo úměrná odmocnině
z počtu bod̊u.
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