
1 Jak lze předpov́ıdat počaśı pomoćı baro-

metru

Obrázek 1: Vlevo: Barometr měř́ı tlak vzduchu, na stupnici je v oblasti
ńızkého tlaku uvedeno déšt’ a v oblasti vysokého tlaku slunečno. Vpravo:
Dř́ıve se mı́sto č́ıselné stupnice použ́ıvalo zobrazeńı pomoćı panenky, která
znamenala pěkné počaśı, a panáčka, který znamenal ošklivé počaśı.

1.1 Coriolisova śıla

V d̊usledku otáčeńı Země p̊usob́ı na tělesa, která se pohybuj́ı po jej́ım po-
vrchu, zdánlivá śıla, která se nazývá Coriolisova śıla. Odvod́ıme si jej́ı směr
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a velikost.
Uvažujme hmotný bod v rovině. Jeho polohu můžeme popsat dvěma

reálnými kartézskými souřadnicemi x a y nebo jednou komplexńı souřadnićı
z = x + iy, kde i je imaginárńı jednotka. Uvažujme druhý souřadnico-
vý systém, který je v̊uči prvńımu otočený o úhel ϕ. Je-li v tomto druhém
souřadnicovém systému poloha bodu popsána komplexńım č́ıslem Z, pak v
prvńım souřadném systému je souřadnice bodu

z = Z exp(iϕ).

Uvažujme př́ıpad, kdy prvńı souřadnicový systém je inerciálńı a druhý sou-
řadnicový systém je neinerciálńı a v̊uči prvńım systému se otáč́ı s konstantńı
úhlovou rychlost́ı ω. Pak v čase t plat́ı

z = Z exp(iωt).

Abychom dostali zrychleńı, dvakrát tento vztah zderivujeme podle času t

ż = Ż exp(iωt) + iωZ exp(iωt)

z̈ = Z̈ exp(iωt) + 2iωŻ exp(iωt) − ω2Z exp(iωt)

a vyjádř́ıme
Z̈ = z̈ exp(−iωt) − 2iωŻ + ω2Z.

Vid́ıme, že zrychleńı bodu v otáčej́ıćım se neinerciálńım systému má tři členy.
Prvńı člen odpov́ıdá skutečné śıle. Pokud na hmotný bod o hmotnosti m
p̊usob́ı v inerciálńım systému skutečná śıla F , tak mu uděluje zrychleńı

z̈ =
F

m

a toto zrychleńı je v otáčej́ıćım se systému popsáno prvńım členem

z̈ exp(−iωt).

Třet́ı člen
ω2Z

je odstředivé zrychleńı. Mı́̌ŕı od středu otáčeńı, je nezávislé na rychlosti Ż,
je úměrné vzdálenosti od osy otáčeńı, a je úměrné druhé mocnině úhlové
rychlosti otáčeńı ω. Lze je vysvětlit p̊usobeńım zdánlivé śıly, která se nazývá
odstředivá śıla.
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Pod́ıvejme se podrobně na druhý člen

aC = −2iωŻ.

To je zrychleńı, které se nazývá Coriolisovo zrychleńı. Lze je vysvětlit p̊usobeńım
zdánlivé śıly, která se nazývá Coriolisova śıla. Toto zrychleńı (a tato śıla)
je úměrné rychlosti pohybu Ż, je úměrné rychlosti otáčeńı ω a v d̊usledku
násobeńı imaginárńı jednotkou i je toto zrychleńı kolmé na směr pohybu Ż
a mı́̌ŕı doprava.

Dosud jsme uvažovali pohyb v rovině. V tř́ırozměrném prostoru můžeme
uvažovat třet́ı osu ve směru otáčeńı neinerciálńıho systému v̊uči inerciálńımu.
Zavedeme vektor úhlové rychlosti ~ω, jeho velikost bude úhlová rychlost ω a
jeho směr bude v ose otáčeńı podle pravidla pravé ruky. Př́ıpadný pohyb
hmotného bodu ve směru osy otáčeńı neńı otáčeńım ovlivněn. Můžeme pak
napsat vektor Coriolisova zrychleńı ve tvaru vektorového součinu

~aC = 2~v × ~ω,

kde ~v je vektor rychlosti hmotného bodu v otáčej́ıćı se neinerciálńı soustavě.

1.2 Důsledek bočné śıly

Pro vyšetřeńı účinku této śıly, která p̊usob́ı kolmo na směr pohybu, uvažujme
opět pohyb hmotného bodu v rovině, kde jeho polohu poṕı̌seme komplexńım
č́ıslem Z. Uvažujme nejprve p̊usobeńı konstantńı exterńı śıly, která bodu
uděluje konstantńı zrychleńı aE. Pohyb bodu pak popisuje diferenciálńı rov-
nice

Z̈ = aE.

Uvažujme počátečńı podmı́nky

Z(0) = 0,

tedy výchoźı poloha bodu v počátku a

Ż(0) = 0,

tedy výchoźı rychlost nulová. Pak integraćı diferenciálńı rovnice dostaneme

Ż(t) = aEt
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a

Z(t) =
1

2
aEt

2.

Tedy rychlost roste lineárně s časem, ve směru p̊usob́ıćı śıly, a poloha roste
kvadraticky s časem, také ve směru p̊usob́ıćı śıly.

Uvažujme nyńı př́ıpad, kdy na hmotný bod p̊usob́ı jednak konstantńı śıla
uděluj́ıćı mu konstantńı zrychleńı podobně jako v předchoźım př́ıpadě, ale
také Coriolosova śıla p̊usob́ıćı kolmo na směr pohybu a úměrná rychlosti
pohybu. Pohyb bodu bude pak popsán diferenciálńı rovnićı

Ż = aE − 2iωZ.

To je diferenciálńı rovnice druhého řádu, kterou lze převést na rovnici prvńıho
řádu substitućı

v = Ż,

kde v je rychlost. T́ım dostaneme rovnici

v̇ = aE − 2iωv

s počátečńı podmı́nkou
v(0) = 0.

Pro reálné nenulové aE a pro reálné ωv tato rovnice nemá konstantńı řešeńı,
pravá strana se nikdy nerovná nule. Tuto rovnici lze řešit separaćı proměnných

dv

aE − 2iωv
= dt

ln(aE − 2iωv) = ln aE − 2iωt

aE − 2iωv = aE exp(−2iωt)

v = aE
1 − exp(−2iωt)

2iω
.

Integraćı rychlosti bychom dostali závislost polohy bodu na čase. Vid́ıme, že
rychlost v má dva členy. Jeden je konstantńı

vK = − i

2ω
aE

a mı́̌ŕı překvapivě kolmo na p̊usob́ıćı śılu. Druhý je periodický s nulovou
středńı hodnotou. Pohyb bodu je tedy po cykloidě a skládá se z rovnoměrného
kruhového pohybu a rovnoměrného př́ımočarého pohybu kolmo na směr p̊usob́ıćı
śıly.
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