
Relace neurčitosti

Ćıl:
chceme ukázat, že signál nemůže být přesně lokalizován současně v čase i ve
frekvenci, konkrétně

σtσω ¥
1

2

Označeńı:

• Fourierova transformace pfpνq � ³
R

fptq expp�i2πνtqdt

• inverzńı Fourierova transformace qfpνq � ³
R

fptq exppi2πνtqdt

• komplexně sdružené č́ıslo z�

• absolutńı hodnota splňuje |z|2 � zz�

• skalárńı součin xf, gy �
³
R

fptqg�ptqdt

• derivace f 1

• středńı hodnota času t̄ �

³
R

t|fptq|2dt
³
R

|fptq|2dt

• středńı kvadratická hodnota času t̄2 �

³
R

t2|fptq|2dt
³
R

|fptq|2dt

• středńı hodnota frekvence ν̄ �

³
R

ν| pfpνq|2dν
³
R

| pfpνq|2dν

• středńı kvadratická hodnota frekvence sν2 �

³
R

ν2| pfpνq|2dν
³
R

| pfpνq|2dν

• rozptyl času σ2
t � t̄2 � pt̄q2

• rozptyl frekvence σ2
ν � ν̄2 � pν̄q2

• úhlová frekvence ω � 2πν a jej́ı rozptyl σω � 2πσν
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Použijeme:

• |νpg � g1

i2π
a opakováńım }ν2pg � g2

�4π2

Důkaz:� qf	1 � ³
R

fpνqpi2πνq exppi2πνtqdν � i2π�νfpνq
substitućı g � qf a tedy f � pg dostaneme g1 � i2π|νpg a tedy g1

i2π
� |νpg

• pg� � pqgq�
Důkaz:pg� � ³ g� expp�i . . . q � p

³
g exppi . . . qq� � pqgq�

•
³ pfg � ³ fpg
Důkaz:³ pfg � ³p³ f exppqqg �

³
fp
³
g exppqq �

³
fpg

• x pf, gy � xf, qgy
Důkaz:
x pf, gy � ³ pfg� � ³ f pg� � ³ fpqgq� � xf, qgy

• x pf, pgy � xf, gy
odtud okamžitě plyne také
x qf, qgy � xf, gy

x pf, pfy � x qf, qfy � xf, fy
Důkaz:
x pf, pgy � xf, qpgy � xf, gy

• xf, fy xg, gy ¥ |xf, gy|2 (Cauchyho–Schwarzova nerovnost)
Důkaz:
Pro xf, gy � 0 máme na levé straně nezáporné č́ıslo, na pravé straně
nulu, tedy nerovnost plat́ı. Pro xf, gy � 0 hledejme č́ıslo λ takové, aby
z � f � λg bylo kolmé na g. Tedy 0 � xz, gy � xf � λg, gy � 0
xf, gy � λxg, gy

λ � xf,gy
xg,gy

Z Pythagorovy věty xf, fy � xλg, λgy � xz, zy máme

xf, fy ¥ xλg, λgy � |λ|2xg, gy � | xf,gyxg,gy |
2xg, gy a tedy

xf, fy xg, gy ¥ |xf, gy|2
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Bez újmy na obecnosti můžeme předpokládat
t̄ � 0, ν̄ � 0,

³
R

|fptq|2dt �
³
R

| pfpνq|2dν � 1.

Potom
σ2
t �

³
R

t2|fptq|2dt � xtf, tfy

σ2
ν �

³
R

ν2| pfptq|2dν � xν pf, ν pfy � x
}
ν pf,}ν pfy � x f

1

i2π
, f 1

i2π
y � 1

4π2 xf
1, f 1y

Takže (užit́ım Cauchyho–Schwarzovy nerovnosti)
σ2
t σ

2
ω � 4π2σ2

t σ
2
ν � xtf, tfy xf 1, f 1y ¥ |xtf, f 1y|2

σtσω ¥ |xtf, f 1y|.
Upravme (užit́ım integrace per partes)
xtf, f 1y �

³
R

tfptqf 1�ptqdt � rtfptqf�ptqs8�8 �
³
R

ptfptqq1f�ptqdt �

� �
³
R

pfptqf�ptq � tf 1ptqf�ptqqdt � �1 � xtf, f 1y�.

Dostali jsme xtf, f 1y � �1 � xtf, f 1y�,
tedy xtf, f 1y � xtf, f 1y� � 2Rextf, f 1y � �1
takže Rextf, f 1y � �1

2

a |xtf, f 1y| ¥ 1
2

Takže

σtσω ¥
1

2

Odvozený vztah můžeme ilustrovat na třech př́ıkladech.
Př́ıklad 1:

fptq � expp�πt2qpfpνq � expp�πν2q
σ2
t �

1
4π

σ2
ν �

1
4π

σtσν �
1

4π

σtσω �
1
2

Pro tuto funkci (tzv. Gaussova) nastává minimum součinu σtσω.
Př́ıklad 2:

fptq � expp�|t|qpfpνq � 2
1�4π2ν2

σ2
t �

1
2

σ2
ν �

1
4π2

σtσν �
?

2
2

1
2π

σtσω �
?

2
2
¡ 1

2

3



Pro tuto funkci je součin σtσω větš́ı než 1
2
.

Př́ıklad 3:

fptq � r 1
2
ptq �

"
1 pro |t| ¤ 1

2

0 pro |t| ¡ 1
2
.pfpνq � sinπν

πν

σ2
t �

1
12

σ2
ν � 8

Pro tuto funkci je součin σtσω roven nekonečnu.
V př́ıkladu 1 se nám podařilo uhádnout funkci, pro kterou je součin σtσω

minimálńı. Nab́ıźı se otázka, jestli je to jediná funkce, která minimalizuje
tento součin, a pokud ne, jak vypadaj́ı daľśı funkce.

Ukážeme si postup, jak lze tuto funkci naj́ıt jako řešeńı diferenciálńı
rovnice, kterou odvod́ıme. T́ım dokážeme, že Gaussova funkce je opravdu
jediná funkce s touto vlastnost́ı.

Pro funkci f můžeme spoč́ıtat č́ıslo σ2
t σ

2
ω. Tedy máme zobrazeńı S z mno-

žiny funkćı do množiny č́ısel (tzv. funkcionál) Spfq � σ2
t σ

2
ω. Hledáme funkci,

pro kterou je toto č́ıslo minimálńı, označme ji g. To znamemá, že funkce
fptq � gptq � εhptq pro libovolné č́ıslo ε a libovolnou funkci h dá stejné nebo
větš́ı č́ıslo.

Spgq ¤ Spg � εhq

Takže zobrazeńı z množiny č́ısel do množiny č́ısel spεq � Spg�εhq má v bodě
ε � 0 minimum. To lze naj́ıt pomoćı derivace funkce s

ds

dε

���
ε�0

Označme vlnkou derivaci podle ε (ne podle t ani ν ani x) vyč́ıslenou v bodě
ε � 0

pq� �
dpq

dε

���
ε�0

Hledáme funkci g, pro kterou je

pσ2
t σ

2
ωq

� � 0.

Připrav́ıme si:

• f� � h

• pf�q� � h�
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• pff�q� � hg� � gh� � 2Reph�gq

• pσ2
t σ

2
ωq

� � pσ2
t q
�σ2

ω � σ2
t pσ

2
ωq

�

• σ2
t � t̄2 � pt̄q2

• pσ2
t q
� � pt̄2q� � 2t̄pt̄q�

• t̄2 �

³
R

t2|fptq|2dt
³
R

|fptq|2dt

• pt̄2q� �

³
R

t22Reph�gqdt ³
R

|gptq|2dt� ³
R

t2|gptq|2dt ³
R

2Reph�gqdt
p ³
R

|gptq|2dtq2

• σ2
ν � ν̄2 � pν̄q2

• ν̄2 �

³
R

ν2| pfpνq|2dν
³
R

| pfpνq|2dν

• pν̄2q� �

³
R

ν22Repph�pgqdν ³
R

|pgpνq|2dν� ³
R

ν2|pgpνq|2dν ³
R

2Repph�pgqdν
p ³
R

|pgpνq|2dνq2

• pg � ³
R

gptq expp�i2πνtqdt

• ppgq� � ³
R

g� exppi2πνtqdt � qg�
•

XX��
ppgq� � g�

•
³
R

puv dν � ³
R

upv dν
•
³
R

ν2 pphq� pg dν � ³
R

|h� ν2pg dν � ³
R

h�}ν2pg dν � ³
R

h� g2

�4π2 dν

Bez újmy na obecnosti můžeme předpokládat

• t̄ � 0

• ν̄ � 0

•
³
R

|gptq|2dt �
³
R

|pgpνq|2dν � 1
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• σ2
t � σ2

ν �
1

4π

A dostaneme

Re

»
R

h�
�
t2g � σ2

t g �
g2

4π2
� σ2

νg



� 0

Má-li být tento integrál roven nule pro všechny komplexńı funkce h, muśı
být výraz v závorce nulový, což po úpravě dá rovnici pro neznámou funkci g

g2 � p2π � 4π2t2qg � 0

To je zvláštńı př́ıpad Weberovy rovnice

g2ptq � P2ptqgptq � 0,

kde P2ptq je kvadratický mnohočlen. Jej́ı řešeńı se nazývaj́ı parabolické
válcové funkce. V některých speciálńıch př́ıpadech lze tyto funkce vyjádřit
pomoćı elementárńıch funkćı. Tak je tomu i v našem př́ıpadě. Jde o lineárńı
diferenciálńı rovnici druhého řádu s nekonstantńımi koeficienty. Jedno jej́ı
řešeńı je

g1ptq � expp�πt2q.

To lze ověřit zkouškou.
Toto řešeńı splňuje g1p0q � 1, g11p0q � 0, limtÑ8 g1ptq � 0.

Druhé řešeńı g2 najdeme tak, že předpokládáme g2ptq � g1ptqϕptq, kde
ϕ je neznámá funkce. Tu najdeme dosazeńım tohoto tvaru do rovnice. Po
úpravě dostaneme

ϕ2ptq � 4πtϕ1ptq � 0

Substitućı ϕ1ptq � yptq dostaneme rovnici prvńıho řádu

y1ptq � 4πtyptq,

kterou vyřeš́ıme separaćı proměnných a dostaneme

yptq � expp2πt2q

takže

ϕptq �

t»
0

expp2πx2qdx
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a

g2ptq � g1ptqϕptq � expp�πt2q

t»
0

expp2πx2qdx

Toto řešeńı splňuje g2p0q � 0, g12p0q � 1, limtÑ8 g2ptq � 8 a pro toto řešeńı
neexistuj́ı hodnoty σt a σν . Takže Gaussova funkce

g1ptq � expp�πt2q

je jediná funkce (až na násobek, změnu měř́ıtka a translaci v čase a ve
frekvenci), pro kterou plat́ı σtσω �

1
2
.

Jaké jsou fyzikálńı interpretace vztahu

σtσω ¥
1

2

který se nazývá relace neurčitosti? Ukážeme si dvě použit́ı, jedno v klasické
fyzice a jedno v kvantové mechanice.

Funkci f můžeme považovat za matematický popis zvukového signálu,
např. zavislost okamžitého tlaku vzduchu v uchu posluchače na čase. Pokud
je zvukem jeden hudebńı tón zněj́ıćı po dostatečně dlouho dobu (velké σt),
může posluchač určit jeho výšku, tedy frekvenci, dostatečně přesně (malé σω).
Když budeme zkracovat dobu trváńı tónu (malé σt), bude se ztrácet přesnost
určeńı frekvence (velké σω). V krajńım př́ıpadě, kdy doba trváńı zvuku bude
výrazně kratš́ı než perioda p̊uvodńıho tónu, bude určeńı frekvence nemožné.
Takový zvuk bychom popsali jako cvaknut́ı, ne tón.

Druhou zaj́ımavou aplikaci najdeme v kvantové mechanice, kde mikro-
částice popisujeme vlnovou funkćı ψ. Ta určuje pravděpodobnost toho, že

poloha částice x je v intervalu mezi a a b vztahem P pa ¤ x ¤ bq �
b³
a

|ψpxq|2dx.

Pohybuj́ıćı se částici můžeme popsat vlnovou funkćı

ψpxq9 exppikxq

kde k je vlnové č́ıslo. To lze pomoćı de Broglieho vztahu k � p
h̄

vyjádřit
pomoćı hybnosti částice p a Planckovy konstanty h̄

ψpxq9 exppi
p

h̄
xq
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V obecněǰśım př́ıpadě může být vlnová funkce vyjádřena jako lineárńı kom-
binace těchto vln pomoćı součtu

ψpxq9
¸
n

An exppi
pn
h̄
xq

nebo integrálu

ψpxq9

»
R

φppq exppi
p

h̄
xqdp

kde funkce φppq udává amplitudu módu s hybnost́ı p. Vid́ıme, že funkce ψ
a φ jsou spojeny Fourierovou transformaćı. Mı́sto časové proměnné t máme
prostorovou proměnnou x a mı́sto úhlové frekvence ω zde vystupuje p{h̄, hyb-
nost dělená Planckovou konstantou. Relace neurčitosti tedy je σxσ p

h̄
¥ 1

2
a

po vynásobeńı Planckovou konstantou máme slavný vztah nazývaný Heisen-
bergovy relace neurčitosti

σxσp ¥
h̄

2
zapisovaný často jako

∆x ∆p ¥
h̄

2

To je v souladu s experimentem, kdy proud částic, např. elektron̊u, dopadá
na štěrbinu. Je-li štěrbina úzká, konkrétně je-li jej́ı š́ı̌rka srovnatelná s vl-
novou délkou částic, docháźı k ohybu částic. Na st́ıńıtku za štěrbinou po-
zorujeme stopu větš́ı než je š́ı̌rka štěrbiny. Č́ım je štěrbina užš́ı, tedy přesné
určeńı polohy (malé σx), t́ım je stopa širš́ı, tedy nepřesné určeńı hybnosti
(velké σp) a obráceně. (Zde prostorová souřadnice x mı́̌ŕı kolmo na proud
částic.)

Závěr:
Odvodili jsme relace neurčitosti

σtσω ¥
1

2

uvedli jsme př́ıklad funkce, pro kterou plat́ı ostrá nerovnost, a př́ıklad funkce
(Gaussova funkce)

expp�πt2q

pro kterou plat́ı rovnost. Ukázali jsme si, že je to jediná funkce (až na
násobek, změnu měř́ıtka a translaci v čase a ve frekvenci), pro kterou nastává
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minimum. Uvedli jsme si dvě fyzikálńı interpretace relace neurčitosti. Jednu
z klasické fyziky, kdy přesnost výšky tónu je nepř́ımo úměrná době trváńı
tónu. Druhá z kvantové mechaniky

∆x ∆p ¥
h̄

2

kdy součin neurčitost́ı polohy a hybnosti je omezen zdola. To jsme si ilus-
trovali pokusem na úzké štěrbině, kdy proud částic zanechá na st́ıńıtku stopu,
jej́ıž š́ı̌rka (mı́ra neurčitosti hybnosti) je nepř́ımo úměrná š́ı̌rce štěrbiny (mı́ra
neurčitosti polohy).

Pokud Vás tento text zaujal,
kladně nebo záporně,

budu rád, když mi dáte vědět na adresu
Pavel.Pokorny@vscht.cz

V Praze, 2. ledna 2014
Pavel Pokorný

Ústav matematiky
Vysoká škola chemicko–technologická v Praze
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