Cil:

Relace neurcitosti

chceme ukazat, ze signdl nemuze byt presné lokalizovan soucasné v case i ve
frekvenci, konkrétné

N —

Oznaceni:

~

Fourierova transformace f(v) = { f(t) exp(—i27wvt)dt
R

inverzni Fourierova transformace f(y) = { f(t) exp(i2mvt)dt
R

komplexné sdruzené ¢islo z*

absolutn{ hodnota spliuje |z]* = zz*

skaldrnf soucin {f, gy = { f(¢)g*(t)dt
R

derivace f’
t1f()Pdt

stfedni hodnota casu ¢t = oA

D] W

1)t

. , C 14 % 2 - R
sttedni kvadratickd hodnota ¢asu t? = ]Si O

stfedni hodnota frekvence v =

§ v2|f(v)|2dv

R

stfedni kvadratickd hodnota frekvence 12 = &————
IS% |f(v)|2dv

rozptyl casu o = 2 — (f)?
rozptyl frekvence o2 = v2 — (7)?

uhlova frekvence w = 27v a jeji rozptyl o, = 270,



Pouzijeme:

° Vg = 2 a opakovanim 12§ =
Dukaz

( ) = Sf (i2nv) exp(i2nvt)dv = i2wv f (V)

substltum g = f a tedy f = g dostaneme ¢ = i27r1>§ a tedy % =vg

/!

g
—472

o g* = ()"

Qﬁkaz:

g* = Sg*exp(—i...) = (Sgexp(i...))* =(9)*
o {fo="513

Dﬁkaz:

§fg=1(fexp()g=§f(fgexp()) =§fg

o (f.9) =<0
Dukaz:

Fogy=(Fo=Sfa* =S F@)* =<9

hd <fa§> = <fvg>
odtud okamzité plyne také

<f 9 =<9
<f f> <f f> L)
Dukaz:

9 =10 ={fr9)

o {f,{g, 9> = [f, 9)|* (Cauchyho-Schwarzova nerovnost)
Dukaz:
Pro {f,g) = 0 médme na levé strané nezaporné ¢islo, na pravé strané
nulu, tedy nerovnost plati. Pro {f,g) # 0 hledejme ¢islo A takové, aby
z = f — Ag bylo kolmé na g. Tedy 0 = (z,9) ={f —Ag,g) =0
{f; g> A<9 9
A= <g
Z Pythagorovy véty (f, [ = (\g, A\g) +{z, z) mdme
o £y = g, 0g) = INXg, 9) = [£21%g, gy a tedy
o DXg, 9 = Kf 9l



Bez jmy na obecnosti muzeme predpoklddat
t=0,v=0J[f()Pdt = §|f(v)[dv = L.
R R

Potom

of = {C|f(O))Pdt = C&f,tf)
R

o2 = VI FWOPdy = wF.vf> = whvf) = (e ey =

R
Takze (uzitim Cauchyho—Schwarzovy nerovnosti)
ofol, = An’cioy = (Lf L)) ) = KUf )
010w = |<tf>f >|
Upravme (uzitim integrace per partes)

<tff>—§tf ) (E)dt = [tf () f*(¢ ISZ
Z—S +tf()f())dt——1—<t [

Dostali jsme <tf, [y ==1—="{tf, ),
tedy (tf, " + U, )" = 2ReCtf, ) = —
takze Re(tf, f") = _%

a |Ctf, [l = 3

Takze

1
2

0t0w Z

#<f/’ f/>

Odvozeny vztah muzeme ilustrovat na tiech ptikladech.

Piiklad 1:
f(t) = exp(—nt?)

00w =

Pro tuto funkci (tzv. Gaussova) nastava minimum soucinu o,0,.

Priklad 2:



Pro tuto funkci je souc¢in o0, vétsi nez %
Priklad 3:

0=y = |

flo) = e
2= L

02 = 0

Pro tuto funkci je soucin 0,0, roven nekonecnu.

V piikladu 1 se ndm podarilo uhadnout funkci, pro kterou je soucin 0,0,
minimalni. Nabizi se otazka, jestli je to jedina funkce, ktera minimalizuje
tento soucin, a pokud ne, jak vypadaji dalsi funkce.

Ukazeme si postup, jak lze tuto funkci najit jako feSeni diferencialni
rovnice, kterou odvodime. Tim dokézeme, ze Gaussova funkce je opravdu
jedind funkce s touto vlastnosti.

Pro funkci f muzeme spocitat ¢islo o702, Tedy mdme zobrazeni S z mno-
ziny funkef do mnoziny ¢isel (tzv. funkciondl) S(f) = o?c?2. Hleddme funkei,
pro kterou je toto ¢islo minimalni, ozna¢me ji g. To znamemad, ze funkce
f(t) = g(t) + eh(t) pro libovolné ¢islo € a libovolnou funkci h d& stejné nebo

veétsi ¢islo.

1 pro |t] <
0 pro |t| >

N[0 =

S(g) < S(g + €h)

Takze zobrazeni z mnoziny ¢isel do mnoziny ¢isel s(e) = S(g +€h) mé v bodé
¢ = 0 minimum. To Ize najit pomoci derivace funkce s

@
de

e=0
Ozna¢me vlnkou derivaci podle € (ne podle ¢t ani v ani x) vy¢islenou v bodé

e=0 J
0=

e=0
Hleddame funkci g, pro kterou je

2 2\~ _
(o;02)~ =0.
Ptipravime si:

e Y =h
« (7=



(ff*)™ = hg" + gh* = 2Re(h*g)
o (0702)™ = (o7) 0 + 07 (02)"
e 0l = £2 — (1)
o (07)" = ()~ = 205"

§ 21 ()]t
R______

S If@)]2dt

R

o {2 =

{ t22Re(h*g)dt | |g(t) 2dt—§ 12|g(t)|2dt § 2Re(h*g)dt
R R R R

(§ la(®)dt)?
R

° (t_Z)N =

° 012/ 252—(5)2

_ § 21 f(v)2dv
2 _ R

EIOR
R

. };VQQRe(IAz*@)du}S% \@(z/)|2dy—1j%u2|§(u)|2du}S{QRe(ﬁ*ﬁ)du
o () = NCOIZDE

o §={g(t)exp(—i2mvt)dt
R

o (§)* = | g*exp(i2mvt)dt = g*
R

~

o {12 (h)*gdv = Sﬁgﬁﬁdu = Sh*%du = {h*
R R R R

i

g9
— 472

dv

Bez 1jmy na obecnosti muzeme predpokladat

|

e t=20

=0

. Iglg(t)Ith = }%I@(V)IQdV =1

)
N



A dostaneme

"
Refh* (th —olg— 4“(;2 — agg) =0
R

Ma-li byt tento integral roven nule pro vSechny komplexni funkce h, musi
byt vyraz v zavorce nulovy, coz po upravé da rovnici pro neznamou funkci g

g+ (21 —47*t*)g =0
To je zvlastni pripad Weberovy rovnice

g"(t) + Pa(t)g(t) = 0,

kde Py(t) je kvadraticky mnohoclen. Jeji feSeni se nazyvaji parabolické
valcové funkce. V nékterych specialnich pripadech lze tyto funkce vyjadrit
pomoci elementarnich funkci. Tak je tomu i v nasem piipadé. Jde o linedrni
diferencidlni rovnici druhého fadu s nekonstantnimi koeficienty. Jedno jeji
feseni je
g1(t) = exp(—7t?).

To lze ovérit zkouskou.
Toto feseni spliuje g1(0) =1, ¢;(0) = 0, lim; o g1(¢) = 0.

Druhé feseni go najdeme tak, ze predpokladdme go(t) = ¢1(t)p(t), kde
@ je neznama funkce. Tu najdeme dosazenim tohoto tvaru do rovnice. Po
upravé dostaneme

¢"(t) — At/ (t) =0
Substituci ¢'(t) = y(t) dostaneme rovnici prvniho radu

y(t) = drty(t),

kterou vyfesime separaci proménnych a dostaneme

y(t) = exp(2nt?)

takze
t

o(t) = Jexp(Zm:Q)d:c



3alt) = 91 (0)9(0) = exp(—t?) [ exp(2na?)da

Toto Feseni spliiuje go(0) = 0, g5(0) = 1, limy_, g2(t) = 00 a pro toto Feseni
neexistuji hodnoty o; a 0,. Takze Gaussova funkce

g1(t) = exp(—nt?)

je jedina funkce (az na nasobek, zménu méfitka a translaci v case a ve

frekvenci), pro kterou plati 0,0, = %

Jaké jsou fyzikalni interpretace vztahu

0t0w Z

N —

ktery se nazyva relace neurcitosti? Ukazeme si dvé pouziti, jedno v klasické
fyzice a jedno v kvantové mechanice.

Funkci f muzeme povazovat za matematicky popis zvukového signalu,
napft. zavislost okamzitého tlaku vzduchu v uchu posluchace na ¢ase. Pokud
je zvukem jeden hudebni tén znéjici po dostatecné dlouho dobu (velké o),
muze posluchac uréit jeho vysku, tedy frekvenci, dostateéné presné (malé o).
Kdyz budeme zkracovat dobu trvani ténu (malé o;), bude se ztrécet presnost
urceni frekvence (velké o,,). V krajnim piipadé, kdy doba trvani zvuku bude
vyrazné kratsi nez perioda puvodniho ténu, bude uréeni frekvence nemozné.
Takovy zvuk bychom popsali jako cvaknuti, ne ton.

Druhou zajimavou aplikaci najdeme v kvantové mechanice, kde mikro-
castice popisujeme vlnovou funkei ¢. Ta urcuje pravdépodobnost toho, ze

b
poloha ¢dstice x je v intervalu mezi a a b vztahem P(a < z < b) = { [¢(z)|*dz.
a

Pohybujici se ¢astici mtuzeme popsat vinovou funkei

(x)ocexp(ik)

kde k je vlnové cislo. To lze pomoci de Broglieho vztahu k = % vyjadiit
pomoci hybnosti ¢astice p a Planckovy konstanty 7

.p
Y(x)ocexp(iza)



V obecnéjsim piipadé muze byt vinova funkce vyjadiena jako linedrni kom-
binace téchto vin pomoci souctu

W(x)oc Z A, exp(z’%x)

nebo integralu

wla)e | olp) exp(ifa)dp

kde funkce ¢(p) udava amplitudu médu s hybnosti p. Vidime, ze funkce v
a ¢ jsou spojeny Fourierovou transformaci. Misto ¢asové proménné ¢ mame
prostorovou proménnou x a misto tithlové frekvence w zde vystupuje p/h, hyb-
nost délena Planckovou konstantou. Relace neurcitosti tedy je 002 = % a
po vynasobeni Planckovou konstantou méame slavny vztah nazyvany Heisen-

bergovy relace neurcitosti

Ox0p 2

DO | St

zapisovany casto jako

A:L’Ap?%

To je v souladu s experimentem, kdy proud ¢astic, napt. elektront, dopada
na Stérbinu. Je-li stérbina tzka, konkrétné je-li jeji sitka srovnatelna s vl-
novou délkou c¢astic, dochazi k ohybu ¢astic. Na stinitku za stérbinou po-
zorujeme stopu vétsi nez je sitka stérbiny. Cim je $térbina uzsi, tedy pfesné
urceni polohy (malé o), tim je stopa Sirsi, tedy nepfesné urceni hybnosti
(velké 0,) a obracené. (Zde prostorova soufadnice x mifi kolmo na proud
castic.)
Zaver:
Odvodili jsme relace neurcitosti

1
O0t0w 2 .

2

uvedli jsme piiklad funkce, pro kterou plati ostra nerovnost, a priklad funkce
(Gaussova funkce)
exp(—7t?)

pro kterou plati rovnost. Ukdazali jsme si, ze je to jedind funkce (az na
nasobek, zménu méritka a translaci v ¢ase a ve frekvenci), pro kterou nastava

8



minimum. Uvedli jsme si dvé fyzikalni interpretace relace neurcitosti. Jednu
z klasické fyziky, kdy pfesnost vysky ténu je nepfimo timeérna dobé trvani
tonu. Druhé z kvantové mechaniky

A:L’Ap?%

kdy soucin neurcitosti polohy a hybnosti je omezen zdola. To jsme si ilus-
trovali pokusem na 1izké stérbiné, kdy proud ¢astic zanecha na stinitku stopu,
jejiz sirka (mira neurcitosti hybnosti) je nepiimo imérn4 sitce Stérbiny (mira
neurcitosti polohy).

Pokud Vas tento text zaujal,

kladné nebo zaporné,

budu rad, kdyz mi date védét na adresu
Pavel.Pokorny@vscht.cz

V Praze, 2. ledna 2014

Pavel Pokorny

Ustav matematiky

Vysoka skola chemicko-technologicka v Praze



