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Zde se seznámı́me s určitým a neurčitým integrálem funkce jedné reálné
proměnné.

1 Neurčitý integrál

Neurčitý integrál (také nazývaný primitivńı funkce) je vlastně antiderivace,
tedy opak derivace funkce. Např. v́ıme, že derivace funkce sinus je funkce
cosinus, takže neurčitý integrál funkce cosinus je funkce sinus. Také ř́ıkáme,
že primitivńı funkce k funkci cosinus je funkce sinus.

1.1 Definice

Definice: Ř́ıkáme, že funkce F (x) je primitivńı funkce k funkci f(x) na inter-
valu I, neboli že funkce F (x) je neurčitý integrál k funkci f(x), jestliže plat́ı
F ′(x) = f(x) pro všechna x ∈ I. To zapisujeme

F (x) =
∫
f(x) dx.

1.2 Úvodńı př́ıklady

Vı́me, že (x2)′ = 2x, proto neurčitý integrál k funkci 2x je funkce x2. To
ale neńı jediná funkce, jej́ıž derivace je rovna 2x. Když k funkci x2 přičteme
libovolnou konstantu, označme ji c, tak derivace funkce x2 + c bude také
rovna 2x. To zapisujeme ∫

2x dx = x2 + c.
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Vı́me, že (xn)′ = nxn−1, proto pro n 6= −1 plat́ı∫
xn dx =

xn+1

n+ 1
.

A jak to bude pro n = −1, tedy jaký bude neurčitý integrál pro funkci 1
x
?

Vı́me, že (ln |x|)′ = 1
x
, proto ∫ 1

x
dx = ln |x|+ c.

Pro pevné vybrané hodnoty n dostaneme tyto užitečné výsledky. Pro n = 2∫
x2 dx =

x3

3
+ c.

Pro n = 3 ∫
x3 dx =

x4

4
+ c.

Pro n = 1
2 ∫ √

x dx =
∫
x

1
2 dx =

x
1
2
+1

1
2

+ 1
+ c =

x
3
2

3
2

+ c =
2

3
x

3
2 + c.

Vı́me, že (ex)′ = ex, proto ∫
ex dx = ex + c.

Také v́ıme, že (ax)′ = ax ln a, proto∫
ax dx =

ax

ln a
+ c.

Jaké jsou zde podmı́nky na základ a? Vztah pro derivaci vyžaduje a > 0. Ve
vztahu pro integrál nav́ıc děĺıme výrazem ln a, proto je nutné, aby nav́ıc bylo
a 6= 1.

1.3 Per partes

Dále, v́ıme, že derivace součtu je součet derivaćı, proto i integrál součtu je
součet integrál̊u, např.∫

(x2 + cosx) dx =
1

3
x3 + sinx+ c.
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A jak to vypadá se součinem funkćı? Vı́me, že derivace součinu neńı součin
derivaćı. Proto nás nepřekvaṕı, že ani integrál součinu neńı součin integrál̊u.
Vı́me, že pro derivaci součinu dvou funkćı plat́ı

(uv)′ = u′v + uv′.

Odtud snadno odvod́ıme užitečné pravidlo, které se nazývá derivováńı per
partes, česky bychom mohli ř́ıci po částech, anglicky by parts. Integrováńım
obou stran dostaneme (pro stručnost zde vynecháme proměnnou x)

uv =
∫
u′v +

∫
uv′

a tedy ∫
u′v = uv −

∫
uv′

nebo ekvivalentně ∫
uv′ = uv −

∫
u′v.

Ukažme si, jak se toto pravidlo použ́ıvá. Pomoćı svislých čar si vytvoř́ıme pra-
covńı prostor, kam si do horńıho řádku zaṕı̌seme dva výrazy, na které jsme
rozložili integrovanou funkci. A do dolńıho řádku si naṕı̌seme odpov́ıdaj́ıćı
derivaci a primitivńı funkci. Zde vlastně muśıme již integrovat. A protože bu-
deme integrovat ještě jednou, nazývá se tato metoda integrováńı po částech.
Např.∫

x ex dx =

∣∣∣∣∣ u = x v′ = ex

u′ = 1 v = ex

∣∣∣∣∣ = x ex −
∫

1 ex dx = x ex − ex + c.

Snadno se lze přesvědčit, jestli je výsledek správně. Když zderivujeme primi-
tivńı funkci, měli bychom dostat p̊uvodńı integrovanou funkci

(x ex − ex + c)′ = ex + x ex − ex = x ex.

A co kdybychom použili metodu per partes obráceně? Zkusme to:∫
x ex dx =

∣∣∣∣∣ u′ = x v = ex

u = x2

2
v′ = ex

∣∣∣∣∣ =
x2

2
ex −

∫ x2

2
ex dx.

Tento výsledek je sice správný, ale neńı př́ılǐs užitečný. Původně jsme měli
za úkol zintegrovat součin mnohočlenu prvńıho stupně a exponenciály. A
převedli jsme to na úkol zintegrovat součin mnohočlenu druhého stupně a
exponenciály. T́ım se úkol zkomplikoval. A tak to je často při použit́ı metody
per partes. Jedna volba úkol zjednoduš́ı, druhá naopak zkomplikuje.
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1.4 Substituce

Substituce je velice užitečná metoda pro poč́ıtáńı integrál̊u. Ukažme si jej́ı
použit́ı na př́ıkladech. Opět si pomoćı svislých čar vytvoř́ıme pracovńı pro-
stor, kam si zaṕı̌seme, jakou část výrazu nahrad́ıme pomoćı substituce novou
proměnnou, např t. A také si připrav́ıme vztah mezi diferenciálem dx staré
proměnné x a diferenciálem dt nové proměnné t.∫

e2x dx =

∣∣∣∣∣ t = 2x
dt = 2dx

∣∣∣∣∣ =
∫

et
1

2
dt =

1

2

∫
et dt =

1

2
et + c =

1

2
e2x + c.

Nebo jiný př́ıklad∫ √
lnx

1

x
dx =

∣∣∣∣∣ t = ln x
dt = 1

x
dx

∣∣∣∣∣ =
∫ √

t dt =
2

3
t
3
2 + c =

2

3
ln

3
2 x+ c.

V těchto př́ıkladem jsme pomoćı nové integračńı proměnné označili část in-
tegrované funkce. Jindy naopak můžeme starou integračńı proměnnou x na-
hradit výrazem obsahuj́ıćı novou integračńı proměnnou t.∫ √

1− x2 dx =

∣∣∣∣∣ x = sin t
dx = cos t dt

∣∣∣∣∣ =
∫ √

1− sin2 t cos t dt =

=
∫

cos t cos t dt =
∫

cos2 t dt =
∫ 1 + cos 2t

2
dt =

1

2
(t+

sin 2t

2
) + c =

=
1

2
(t+ sin t cos t) + c =

1

2
(t+ sin t

√
1− sin2 t) + c =

=
1

2
(arcsinx+ x

√
1− x2) + c.

1.5 Výpočet neurčitého integrálu na poč́ıtači

Je dobré vědět, že moderńı matematické softwarové nástroje, jako např.
Mathematica umožňuj́ı snadný výpočet integrálu. Např. tento posledńı př́ıklad
lze vyřešit př́ıkazem

In[1]:= Integrate[Sqrt[1-x^2],x]

2

x Sqrt[1 - x ] + ArcSin[x]

Out[1]= --------------------------

2
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Tyto softwarové nástroje obsahuj́ı rozsáhlé databáze primitivńıch funkćı
a řadu pravidel, jak s nimi pracovat. Přesto ale pro mnoho funkćı nelze primi-
tivńı funkci zapsat pomoćı elementárńıch funkćı. Jak to poznáme? Když nám
systém Mathematica nevrát́ı primitivńı funkci, tak je velká pravděpodobnost,
že ji nelze zapsat. To lze vidět na tomto př́ıkladě.

In[1]:= Integrate [ x Exp[x ArcTan[x]] , x]

x ArcTan[x]

Out[1]= Integrate[E x, x]

Pokud nemáme k dispozici software Mathematica nebo neznáme syntax,
jak zadávat př́ıkazy, můžeme s výhodou použ́ıt www.wolframalpha.com

1.6 Rozklad na parciálńı zlomky

Vı́me, jak převádět zlomky na společného jmenovatele. Opačný postup se
nazývá rozklad na parciálńı zlomky. T́ım lze zlomek převézt na jednodušš́ı
zlomky, které snadno zintegrujeme. Ukažme si to na př́ıkladech.

1.6.1 Př́ıklad

Spočtěte

I =
∫ 2x+ 1

x2 − 3x+ 2
dx.

Nejdř́ıve zkontrolujeme, je-li stupeň mnohočlenu v čitateli (zde 1) menš́ı než
stupeň mnohočlenu ve jmenovateli (zde 2). Pokud by tomu tak nebylo, tak
děleńım mnohočlen̊u převedeme zlomek na součet mnohočlenu a zlomku,
který to již splňuje. Dále najdeme nulové body jmenovatele řešeńım rovnice

x2 − 3x+ 2 = 0

x1 = 1

x2 = 2.

Takže v́ıme, že
x2 − 3x+ 2 = (x− 1)(x− 2).
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Nyńı integrovanou funkci rozlož́ıme na parciálńı zlomky

2x+ 1

x2 − 3x+ 2
=

A

x− 1
+

B

x− 2
.

Neznámé koeficienty A,B najdeme z podmı́nky, aby toto platilo pro všechna
x (až na nulové body). Takže odstrańıme zlomky vynásobeńım jmenovatelem
a dostaneme

A(x− 2) +B(x− 1) = 2x+ 1

Ax− 2A+Bx−B = 2x+ 1.

Dva mnohočleny se rovnaj́ı, když se rovnaj́ı koeficienty u jednotlivých mocnin
proměnné x vlevo a vpravo, tedy

x0 : −2A−B = 1

x1 : A+B = 2.

To je soustava dvou lineárńıch algebraických rovnic pro dvě neznámé A,B.
Ty lze řešit např. Gaussovou eliminaćı. Zde postač́ı obě rovnice seč́ıst, t́ım
vypadne neznámá B a dostaneme

−A = 3

tedy
A = −3

a dosazeńım do druhé rovnice najdeme B = 5. Nyńı lze snadno spoč́ıtat
neurčitý integrál

I =
∫ 2x+ 1

x2 − 3x+ 2
dx =

∫ ( −3

x− 1
+

5

x− 2

)
dx = −3 ln |x−1|+5 ln |x−2|+c.

1.6.2 Vı́cenásobný kořen

Pokud by některý kořen jmenovatele měl vyšš́ı násobnost, muśıme použ́ıt
zlomky s mocninami až do této násobnosti. Ukažme si to na př́ıkladu.

I =
∫ 1

(x− 1)2(x− 2)
dx.

Použijeme rozklad

1

(x− 1)2(x− 2)
=

A

x− 1
+

B

(x− 1)2
+

C

x− 2
,
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odstrańıme zlomky

A(x− 1)(x− 2) +B(x− 2) + C(x− 1)2 = 1

a porovnáme koeficienty u jednotlivých mocnin proměnné x:

x0 : 2A− 2B + C = 1

x1 : −3A+B − 2C = 0

x2 : A+ C = 0.

To je soustava třech lineárńıch algebraických rovnic pro tři neznámé A,B,C.
Tu lze řešit např. Gaussovou eliminaćı.

Zde si ukážeme jednu fintu, jak nalézt řešeńı rychleji. Rovnice, kterou
jsme dostali po odstraněńı zlomk̊u má platit pro všechna reálná x, tedy i
pro x = 1. Pak bude závorka (x− 1) nulová a dostaneme vztah pro jedinou
neznámou B

−B = 1,

tedy
B = −1.

Podobně volbou x = 2 dostaneme C = 1. Zbylou neznámou A dostaneme
např. z třet́ı rovnice, tedy A = −C = −1. Takže máme

I =
∫ 1

(x− 1)2(x− 2)
dx =

∫ (
− 1

x− 1
− 1

(x− 1)2
+

1

x− 2

)
dx =

= − ln |x− 1|+ 1

x− 1
+ ln |x− 2|.

2 Určitý integrál

Zat́ımco neurčitý integrál je funkce, určitý integrál je č́ıslo. Pro a, b ∈ R je
určitý integrál funkce f(x) od a do b definován vztahem

b∫
a

f(x) dx = F (b)− F (a),
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kde F (x) je primitivńı funkce k funkci f(x). Při výpočtu použijeme hra-
naté závorky, do kterých zaṕı̌seme primitivńı funkci, a vpravo dole a nahoře
zaṕı̌seme dolńı mez a a horńı mez b. Např. takto

3∫
2

x2 dx =
[1
3
x3
]3
2

=
1

3
33 − 1

3
23 =

19

3
.

2.1 Úvodńı př́ıklady

Spočtěme pár př́ıklad̊u. Geometrický význam určitého integrálu kladné funkce
je plošný obsah rovinného útvaru ohraničeného shora grafem integrované
funkce a zdola osou x.

2.1.1 Př́ıklad 1

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1∫
0

x3 dx =
[x4

4

]1
0

=
14

4
− 04

4
=

1

4

Tento integrál lze spoč́ıtat pomoćı software Mathematica př́ıkazem

In[1]:= Integrate[x^3, {x, 0, 1}]

1

Out[1]= -

4

2.1.2 Př́ıklad 2

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

8



π∫
0

sinx dx =
[
− cosx

]π
0

= − cosπ − (− cos 0) = 1− (−1) = 2.

2.1.3 Př́ıklad 3

Plochu ohraničenou shora grafem funkce f(x) a zdola grafem funkce g(x)
spočteme jako určitý integrál rozd́ılu funkćı f(x) − g(x). Levý bok útvaru
může být zadán hodnotou dolńı meze a a pravý bok hodnotou horńı meze b.
Pokud meze nejsou zadány a máme určit plochu mezi dvěma pr̊useč́ıky graf̊u
funkćı f(x) a g(x), najdeme pr̊useč́ıky řešeńım rovnice

f(x) = g(x).

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Tak lze nalézt plochu jednoho útvaru mezi grafy funkćı sinus a cosinus.
Nejdř́ıve si vyřeš́ıme rovnici

sinx = cos

sinx

cosx
= 1

tgx = 1

x = arctg1 + kπ =
π

4
+ kπ, k ∈ Z.

Jak šlo také uhodnout nebo z grafu zjistit, nejmenš́ı kladná řešeńı jsou a = π
4

a b = 5π
4

. Pak plocha bude

P =

5π
4∫

π
4

(sinx− cosx) dx =
[
− cosx− sinx

] 5π
4

π
4

=

= − cos
5π

4
− sin

5π

4
− (− cos

π

4
− sin

π

4
) =

√
2

2
+

√
2

2
+

√
2

2
+

√
2

2
= 2
√

2.
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2.1.4 Př́ıklad 4

Poč́ıtáme-li určitý integrál metodou per partes, máme dvě možnosti. Bud’to
si nejdř́ıve najdeme metodou per partes primitivńı funkci a potom do ńı
dosad́ıme dolńı a horńı meze a odečteme. A nebo můžeme použ́ıt metodu per
partes př́ımo pro určitý integrál. Nesmı́me ale zapomenout napsat integračńı
meze také k prvńımu výrazu uv. Ukažme si tuto druhou možnost na př́ıkladu.

1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P4 =

2∫
1

x lnx dx =

∣∣∣∣∣ u′ = x v = ln x

u = x2

2
v′ = 1

x

∣∣∣∣∣ =
[x2

2
lnx

]2
1
−

2∫
1

x

2
dx =

= 2 ln 2− 0− 1

2

[x2
2

]2
1

= 2 ln 2− 22 − 12

4
= 2 ln 2− 3

4
.

2.1.5 Př́ıklad 5

Podobně, poč́ıtáme-li určitý integrál metodou substituce, máme dvě možnosti.
Bud’to si nejdř́ıve najdeme metodou substituce primitivńı funkci a potom do
ńı dosad́ıme dolńı a horńı meze a odečteme. A nebo můžeme použ́ıt metodu
substituce př́ımo pro určitý integrál. Ale nesmı́me zapomenout přepoč́ıtat
meze, mezi kterými prob́ıhá nová integračńı proměnná. Ukažme si tuto dru-
hou možnost na př́ıkladu.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
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P5 =

1∫
0

√
1− x2 dx =

∣∣∣∣∣ x = sin t
dx = cos t dt

∣∣∣∣∣ =

π
2∫

0

√
1− sin2 t cos t dt =

=

π
2∫

0

cos t cos t dt =

π
2∫

0

cos2 t dt =

π
2∫

0

1 + cos 2t

2
dt =

[1
2

(t+
sin 2t

2
)
]π

2

0
=

=
π

4
.

Jaké jsou výhody a nevýhody prvńı a druhé možnosti? Když poč́ıtáme nejdř́ıve
primitivńı funkci pomoćı substituce, muśıme se vracet od nové integračńı
proměnné, zde t, ke staré integračńı proměnné, zde x. Ale nemuśıme přepoč́ı-
távat meze. Když poč́ıtáme určitý integrál pomoćı substituce, tak je výhoda,
že se nemuśıme vracet od nové integračńı proměnné ke staré. Ale nevýhoda
je, že muśıme přepoč́ıtat meze. Zde prob́ıhala stará integračńı proměnná x
od x1 = 0 do x2 = 1 a nová integračńı proměnná t prob́ıhala od t1 = 0 do
t2 = π

2
.

Někdy lze určitý integrál spoč́ıtat pomoćı geometrické úvahy. Zde grafem
funkce f(x) =

√
1− x2 je horńı p̊ulkružnice o poloměru r = 1. Obsah kruhu

je P = πr2. Pro r = 1 máme P = π. Integrál má význam pravé poloviny
horńıho p̊ulkruhu, tedy čtvrtina kruhu. Proto je roven π

4
.

2.2 Finta s lichou a sudou funkćı

Je-li integračńı interval I = 〈a, b〉 souměrný, tj. b = −a, a je-li integrovaná
funkce lichá, tj. plat́ı f(−x) = −f(x) pro všechna x ∈ I, pak je určitý integrál
rovný nule, tedy

b∫
−b

f(x) dx = 0.

To je vidět z obrázku, protože graf liché funkce je souměrný podle počátku.
Tedy př́ıspěvek pro kladné argumenty je opačný než př́ıspěvek pro záporné
argumenty. Také to lze vysvětlit tak, že primitivńı funkce F (x) k liché funkci
je funkce sudá, tedy plat́ı F (−x) = F (x). Je-li a = −b, pak F (a) = F (b) a
rozd́ıl je nulový.
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2.2.1 Př́ıklad 6

To lze ilustrovat na př́ıkladu

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1∫
−1

x3 dx =
[x4

4

]1
−1

=
14 − (−1)4

4
= 0.

2.2.2 Př́ıklad 7

To, že integrál liché funkce přes souměrný interval je rovný nule, plat́ı i
v př́ıpadě, že nejsme schopni napsat primitivńı funkci F (x). To je velká
výhoda.

Tuto fintu můžeme použ́ıt i v př́ıpadě, že funkce neńı lichá, ale pouze jej́ı
část je lichá. Ukažme to na př́ıkladě.

-1.0 -0.5 0.5 1.0

-2

-1

1

2

3

4

5

I7 =

1∫
−1

(x ex arctg x + ex) dx.

Zde integrovaná funkce neńı lichá, ale jej́ı prvńı člen je lichý. Protože arctg x
je lichá. Tedy x arctg x je sudá. Tedy ex arctg x je sudá. Tedy x ex arctg x je lichá.
A jej́ı integrál přes souměrný interval je nulový, i když neumı́me napsat
primitivńı funkci. A tedy celý integrál je dán pouze př́ıspěvkem od druhého
sč́ıtance

I7 =

1∫
−1

(x ex arctg x + ex) dx =

1∫
−1

ex dx =
[
ex]1−1 = e− e−1.
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2.2.3 Př́ıklad 8

Je-li integrovaná funkce sudá, tj. f(−x) = f(x), a integračńı interval je
souměrný, můžeme výpočet mı́rně zjednodušit užit́ım vztahu

b∫
−b

f(x) dx = 2

b∫
0

f(x) dx.

Ukažme si to na př́ıkladě.

-2 -1 1 2

5

10

15

20

I8 =

2∫
−2

(x2 + x4) dx = 2

2∫
0

(x2 + x4) dx = 2
[x3

3
+
x5

5

]2
0

=

= 2
(23

3
+

25

5

)
= 2

40 + 96

15
=

272

15
.

2.3 Integrál funkce s absolutńı hodnotou

Když integrovaná funkce obsahuje absolutńı hodnotu, muśıme ji odstranit.
Pokud je výraz v absolutńı hodnotě nezáporný, lze absolutńı hodnotu odstra-
nit, přesněji, nahrad́ıme ji kulatou závorkou. Je-li výraz v absolutńı hodnotě
záporný, nahrad́ıme absolutńı hodnotu závorkou a před ńı naṕı̌seme mı́nus.
Proto muśıme integrál roztrhnout na v́ıce integrál̊u tak, aby výraz v absolutńı
hodnotě v každém integrálu neměnil znaménko. Ukážeme si to na př́ıkladu.
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I =

π∫
0

| cosx| dx.

Kdy výraz v absolutńı hodnotě měńı znaménko? K tomu si vyřeš́ıme rovnici

cosx = 0 0 ≤ x ≤ π.

Ta má jediné řešeńı

x =
π

2
.

Proto muśıme integrál roztrhnout na dva integrály, od 0 do π
2

a od π
2

do π.

π∫
0

| cosx| dx =

π
2∫

0

| cosx| dx+

π∫
π
2

| cosx| dx =

π
2∫

0

cosx dx+

π∫
π
2

− cosx dx =

=
[

sinx
]π

2

0
+
[
− sinx

]π
π
2

= sin
π

2
− sin 0− sin π + sin

π

2
= 2.
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