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Zde se seznamime s ur¢itym a neurcitym integralem funkce jedné realné
promeénneé.

1 Neurcity integral

Neurcity integral (také nazyvany primitivni funkce) je vlastné antiderivace,
tedy opak derivace funkce. Napt. vime, Zze derivace funkce sinus je funkce
cosinus, takze neurcity integral funkce cosinus je funkce sinus. Také tikame,
ze primitivni funkce k funkci cosinus je funkce sinus.

1.1 Definice

Definice: Rikdme, ze funkce F(z) je primitivni funkce k funkci f(z) na inter-
valu I, neboli ze funkce F'(x) je neurcity integral k funkci f(z), jestlize plati
F'(z) = f(x) pro vSechna x € I. To zapisujeme

F(z) = /f(x) dz.

1.2 Uvodni priklady

Vime, Ze (%) = 2z, proto neurcity integrdl k funkci 2z je funkce x2. To
ale nenf jedind funkce, jejiz derivace je rovna 2z. Kdyz k funkci 22 pifi¢teme
libovolnou konstantu, oznaéme ji ¢, tak derivace funkce 22 + ¢ bude také
rovna 2x. To zapisujeme

/2:Bd:)3=$2+c.



Vime, Ze (z")" = nz""!, proto pro n # —1 plati
InJrl
/ 2" dx = :

A jak to bude pro n = —1, tedy jaky bude neurcity integral pro funkci %?

Vime, ze (In|z]) = %, proto

1
/—dx:ln|w|+c.
T

Pro pevné vybrané hodnoty n dostaneme tyto uzitecné vysledky. Pro n = 2

3

/x%lxz%—l—c.

Pron=3
Sd 33'4

/x m—z—i—c.

Pron:%
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1 T2 T2 2 3
xdmz/xidxzi—i-c:——i-c:—x? +c.
/‘/_ 5+1 3 3

Vime, ze (e”) = e”, proto

/exdx:ex—i—c.

Také vime, ze (a”)" = a” Ina, proto

/azdx: a4 + c.

Ina

Jaké jsou zde podminky na zaklad a? Vztah pro derivaci vyzaduje a > 0. Ve
vztahu pro integral navic délime vyrazem In a, proto je nutné, aby navic bylo

a# 1.

1.3 Per partes

Déle, vime, ze derivace souctu je soucet derivaci, proto i integral souctu je
soucet integralu, napft.

1
/(x2+cosx) dx = §x3+sinx+c.
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A jak to vypada se sou¢inem funkci? Vime, Ze derivace sou¢inu neni souc¢in
derivaci. Proto nas neprekvapi, ze ani integral souc¢inu neni soucin integrali.
Vime, ze pro derivaci soucinu dvou funkei plati

(uwv) = u'v +uv'.

Odtud snadno odvodime uzitecné pravidlo, které se nazyva derivovani per
partes, cesky bychom mohli fici po ¢astech, anglicky by parts. Integrovanim
obou stran dostaneme (pro stru¢nost zde vynechdme proménnou x)

uvz/u/v—l—/uv/
/ /
/uv:uv—/uv
/ /
/uv :uv—/uv.

Ukazme si, jak se toto pravidlo pouziva. Pomoci svislych car si vytvotime pra-
covni prostor, kam si do horniho fadku zapiSeme dva vyrazy, na které jsme
rozlozili integrovanou funkci. A do dolniho fadku si napiseme odpovidajici
derivaci a primitivni funkci. Zde vlastné musime jiz integrovat. A protoze bu-
deme integrovat jesté jednou, nazyva se tato metoda integrovani po ¢astech.
Napr.

/xexdx:

Snadno se lze presvédcit, jestli je vysledek spravné. Kdyz zderivujeme primi-
tivni funkci, méli bychom dostat puvodni integrovanou funkci

a tedy

nebo ekvivalentné

u = x vo= e”

v =1 v = €&

:xex—/lexdx:xez—egc—i—c.

(xe® —e" +c¢) =e" +xe” —e" =1xe”.

A co kdybychom pouzili metodu per partes obracené? Zkusme to:

! x
T— v o= e
/xe%ix:
u =

2 2
x x

, . | = =" — [ —e’du.
= e 2 2

NI

Tento vysledek je sice spravny, ale neni prilis uziteény. Puvodné jsme méli
za ukol zintegrovat souc¢in mmnohoc¢lenu prvniho stupné a exponencidly. A
prevedli jsme to na tkol zintegrovat soucin mnohoc¢lenu druhého stupné a
exponencialy. Tim se kol zkomplikoval. A tak to je ¢asto pri pouziti metody
per partes. Jedna volba tkol zjednodusi, druha naopak zkomplikuje.



1.4 Substituce

Substituce je velice uzitetna metoda pro pocitani integrali. Ukazme si jeji
pouziti na piikladech. Opét si pomoci svislych ¢ar vytvoiime pracovni pro-
stor, kam si zapiSeme, jakou ¢ast vyrazu nahradime pomoci substituce novou
proménnou, napt t. A také si pripravime vztah mezi diferencidlem dx staré
proménné x a diferencidlem dt nové proménné t.

— 1 1 1 1
/ehda::’ t 2z etidt:i/etdtziet—l—c:?e%—l—c.

dt = 2dx

Nebo jiny piiklad

1 —
/vlnxd:p:’ t lna:
x

2 3
B /\/_dt 7t2+0—§12 T+ c.

V téchto prikladem jsme pomoci nové integracni proménné oznacili ¢ast in-
tegrované funkce. Jindy naopak muzeme starou integracni proménnou x na-
hradit vyrazem obsahujici novou integra¢ni proménnou ¢.

— 5. _| T = sint :/ 2 _
/\/1 2 dx ‘da: _ Costdt’ 1 —sin“tcostdt

1 2t 1 in 2¢
:/costcostdt:/cos%dt:/—i_;osdtzz(lH—SH; )+c=

1 1
= 5(75 +sintcost) + ¢ = §(t+sint\/1 —sint) + ¢ =
1
= i(arcsinx +av1—22)+c.

1.5 Vypocet neurcitého integralu na pocitaci

Je dobré védét, ze moderni matematické softwarové nastroje, jako napi.
Mathematica umoznuji snadny vypocet integralu. Napft. tento posledni piiklad
lze vyftesit piikazem

In[1]:= Integrate[Sqrt[1-x"2],x]

2
x Sqrt[l - x ] + ArcSin[x]



Tyto softwarové néstroje obsahuji rozsdhlé databaze primitivnich funkci
a fadu pravidel, jak s nimi pracovat. Pfesto ale pro mnoho funkeci nelze primi-
tivni funkci zapsat pomoci elementarnich funkci. Jak to pozndme? Kdyz nam
systém Mathematica nevrati primitivni funkei, tak je velka pravdépodobnost,
Ze ji nelze zapsat. To lze vidét na tomto prikladé.

In[1]:= Integrate [ x Explx ArcTan[x]] , x]

x ArcTan([x]
Out[1]= IntegratelE x, xJ

Pokud nemame k dispozici software Mathematica nebo nezname syntax,
jak zadavat ptikazy, muzeme s vyhodou pouzit www.wolframalpha.com

1.6 Rozklad na parcialni zlomky

Vime, jak prevadét zlomky na spole¢ného jmenovatele. Opacny postup se
nazyva rozklad na parcialni zlomky. Tim lze zlomek pfevézt na jednodussi
zlomky, které snadno zintegrujeme. Ukazme si to na ptikladech.

1.6.1 Priklad

Spoctéte
20 +1
= / dz.
x? — 3z +2
Nejdiive zkontrolujeme, je-li stupen mnohoclenu v ¢itateli (zde 1) mensi nez
stupen mnohoc¢lenu ve jmenovateli (zde 2). Pokud by tomu tak nebylo, tak

délenim mnohoclenu prevedeme zlomek na soucet mnohoclenu a zlomku,
ktery to jiz spliuje. Dale najdeme nulové body jmenovatele feSenim rovnice

22 —3r+2=0
$1:1
$2:2.

Takze vime, ze
2 =3 +2=(z—1)(z—2).



Nyni integrovanou funkci rozlozime na parcidlni zlomky

24l _ A B
2-3r+2 -1 -2

Neznamé koeficienty A, B najdeme z podminky, aby toto platilo pro vsechna
x (az na nulové body). Takze odstranime zlomky vynasobenim jmenovatelem
a dostaneme

Alx —2)+ Bz —1)=2x+1

Arx —2A+ Bx — B =2z + 1.

Dva mnohocleny se rovnaji, kdyz se rovnaji koeficienty u jednotlivych mocnin
proménné x vlevo a vpravo, tedy

20 —2A—-B=1
b A+ B =2.

To je soustava dvou linearnich algebraickych rovnic pro dvé neznamé A, B.
Ty lze tesit napt. Gaussovou eliminaci. Zde postaci obé rovnice secist, tim
vypadne neznama B a dostaneme

—A=3

tedy
A=-3

a dosazenim do druhé rovnice najdeme B = 5. Nyni lze snadno spocitat

neurcity integral

2z +1 -3 5
[:/J[Mmdx:/(x_l+x_2)dq::—31n\x—1\—|—5ln|x—2|—|—c.

1.6.2 Vicenasobny koren

Pokud by néktery kofen jmenovatele mél vyssi nasobnost, musime pouzit
zlomky s mocninami az do této nésobnosti. Ukazme si to na piikladu.

1
I:/kx—n%w—md”

Pouzijeme rozklad

1 A n B n C
(r—12(x—-2) z—-1 (x—12 z-2




odstranime zlomky
Alx—1)(z-2)+Blxz—-2)+Cx—-1)*=1

a porovname koeficienty u jednotlivych mocnin proménné z:

20 2A—2B+C =1
b —3A+B-2C=0
2 A+C =0.

To je soustava tfech linearnich algebraickych rovnic pro tii neznamé A, B, C.
Tu lze tesit napr. Gaussovou eliminaci.

Zde si ukadzeme jednu fintu, jak nalézt TeSeni rychleji. Rovnice, kterou
jsme dostali po odstranéni zlomku ma platit pro vsechna redlna z, tedy i
pro z = 1. Pak bude zdvorka (z — 1) nulova a dostaneme vztah pro jedinou
neznamou B

—B=1,

tedy
B=-1.

Podobné volbou z = 2 dostaneme C' = 1. Zbylou neznamou A dostaneme
napf. z tfeti rovnice, tedy A = —C = —1. Takze mame

1 1 1 1
]:/kx—D%x—%dx:/<_x—l_(x—D2+x—2%m:

1
=—Ilnlr -1+ ——+1In|z —2|.
r—1

2 Urcity integral
Zatimco neurcity integral je funkce, urcity integral je ¢islo. Pro a,b € R je
urcity integral funkce f(z) od a do b definovan vztahem

b

| f@)dz = Fb) - Fa),

a



kde F(z) je primitivni funkce k funkci f(z). Pfi vypoctu pouzijeme hra-
naté zavorky, do kterych zapiSeme primitivni funkci, a vpravo dole a nahote
zapiseme dolni mez a a horni mez b. Napt. takto

3
/mQ dr = {lx?’}z = ;33 = ;23 = 139
2.1  Uvodni priklady

Spoctéme par prikladu. Geometricky vyznam urcitého integralu kladné funkce
je plosny obsah rovinného utvaru ohraniceného shora grafem integrované
funkce a zdola osou .

2.1.1 Priklad 1

Jram-t g

Tento integral lze spocitat pomoci software Mathematica prikazem
In[1]:= Integrate[x~3, {x, 0, 1}]
1

Out[1]= -
4

2.1.2 Priklad 2




™

/sinxdx = [—cosx}o =—cosm—(—cos0) =1—(—1)=2.
0

2.1.3 Priklad 3

Plochu ohrani¢enou shora grafem funkce f(z) a zdola grafem funkce g(x)
spocteme jako ur¢ity integrél rozdilu funkei f(z) — g(x). Levy bok utvaru
muze byt zadan hodnotou dolni meze a a pravy bok hodnotou horni meze b.
Pokud meze nejsou zadany a mame urcit plochu mezi dvéma pruseciky grafu
funkei f(x) a g(z), najdeme pruseciky fesenim rovnice

f(x) = g().

10
0s
1 4 5 6
05
-10

Tak lze nalézt plochu jednoho utvaru mezi grafy funkci sinus a cosinus.
Nejdfrive si vyfesime rovnici

sin £ = cos
sin x
=1
CcosS X
tgr =1

x:arctgl—l—km:%qumr, keZ.

Jak slo také uhodnout nebo z grafu zjistit, nejmensi kladna feseni jsou a =

1
ab= %’T. Pak plocha bude

57
4
P = /(sinx —cosx)dr = [—cosx —sinx]

4

5% Y T T V2 V2 V2 \25:2\/5'

:_COSZ_SIHZ_(_COSZ_SH]Z) = — +



2.1.4 Priklad 4

Pocitdme-li urcity integral metodou per partes, mame dvé moznosti. Bud'to
si nejdrive najdeme metodou per partes primitivni funkci a potom do ni
dosadime dolni a horni meze a ode¢teme. A nebo muzeme pouzit metodu per
partes piimo pro urcity integral. Nesmime ale zapomenout napsat integracni
meze také k prvnimu vyrazu uv. Ukazme si tuto druhou moznost na prikladu.

’ o’ x Inx x? s x
P4:/xlnxd:c: 2 , L= {—lnx] —/fda;:
u 7 z LoJ 2
1 1
1 2 22_12
:21n2—0—§[x—]2:21n2— —oIm2—°

2.1.5 Priklad 5

Podobné, pocitame-li urcity integral metodou substituce, mame dvé moznosti.
Bud'to si nejdifve najdeme metodou substituce primitivni funkeci a potom do
ni dosadime dolni a horni meze a odecteme. A nebo muzeme pouzit metodu
substituce pfimo pro urcity integral. Ale nesmime zapomenout prepocitat
meze, mezi kterymi probihd nova integraéni proménna. Ukazme si tuto dru-
hou moznost na prikladu.
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dr = costdt

1 : i
P5:/‘/1—x2d$=‘ v = st ‘:/mcostdtz
0 0

jus jus
2

7 / 1+ cos 2t 1 sin2tqzx
_ _ 2 _ [ Ltrceosat 1t 2
_/costcostdt—/cos tdt—/ 5 dt = [2(t+ 5 )}0 =
0 0 0
_r
4

Jaké jsou vyhody a nevyhody prvni a druhé moznosti? Kdyz pocitdme nejdiive
primitivni funkci pomoci substituce, musime se vracet od nové integracni
proménné, zde t, ke staré integra¢ni proménné, zde x. Ale nemusime prepoci-
tavat meze. Kdyz pocitame urcity integral pomoci substituce, tak je vyhoda,
ze se nemusime vracet od nové integracni proménné ke staré. Ale nevyhoda
je, ze musime prepocitat meze. Zde probihala stard integracni proménnd x
od 1 = 0 do x5 = 1 a nova integracni proménnd ¢ probihala od t; = 0 do
ty = 3.

Nékdy 1ze urcity integral spocitat pomoci geometrické ivahy. Zde grafem
funkce f(z) = /1 — 22 je horni pulkruznice o poloméru r = 1. Obsah kruhu
je P = 7r?. Pror = 1 mame P = 7. Integrdl ma vyznam pravé poloviny

horniho pilkruhu, tedy ¢tvrtina kruhu. Proto je roven 7.

2.2 Finta s lichou a sudou funkci

Je-1i integra¢ni interval I = (a,b) soumérny, tj. b = —a, a je-li integrovana
funkce lichd, tj. plati f(—x) = — f(x) pro vSechna x € I, pak je urcity integral
rovny nule, tedy

/ f(z)dx =0.

b
To je vidét z obrazku, protoze graf liché funkce je soumérny podle pocatku.
Tedy prispévek pro kladné argumenty je opacny nez prispévek pro zaporné
argumenty. Také to lze vysvétlit tak, ze primitivni funkce F'(z) k liché funkci
je funkce suda, tedy plati F(—z) = F(z). Je-li a = —b, pak F(a) = F(b) a
rozdil je nulovy.
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2.2.1 Priklad 6

To 1ze ilustrovat na ptikladu

2.2.2 Priklad 7

To, ze integral liché funkce pfes soumérny interval je rovny nule, plati i
v piipadé, Ze nejsme schopni napsat primitivni funkci F(z). To je velkd
vyhoda.

Tuto fintu muzeme pouzit i v pripadé, ze funkce neni licha, ale pouze jeji
¢ast je licha. Ukazme to na prikladé.

1
I = /(g; o ACIET 4 o) .

-1

Zde integrovana funkce nenfi lich4, ale jeji prvni ¢len je lichy. Protoze arctg x
je lich4. Tedy x arctg z je sudd. Tedy e*#°%8% je sudd. Tedy z e*?'“*€% je lich4.
A jeji integral pfes soumeérny interval je nulovy, i kdyz neumime napsat
primitivni funkci. A tedy cely integral je dan pouze prispévkem od druhého
sCitance

1 1
I; = /(a:e”mgx +e")dr = /e”‘“ dx = {e"’:]l,1 —e—ec .
—1 —1
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2.2.3 Priklad 8

Je-li integrovand funkce suda, tj. f(—z) = f(z), a integra¢ni interval je
soumeérny, muzeme vypocet mirné zjednodusit uzitim vztahu

b b

Ukazme si to na prikladé.

; ; 3 b2
18:/(x2+a:4)dx:2/(x2—|—x4)dx:2[34—*] =
0

—2

3 5
PYCAE BPC R i}
35 15 15

2.3 Integral funkce s absolutni hodnotou

Kdyz integrovand funkce obsahuje absolutni hodnotu, musime ji odstranit.
Pokud je vyraz v absolutni hodnoté nezaporny, lze absolutni hodnotu odstra-
nit, presnéji, nahradime ji kulatou zavorkou. Je-li vyraz v absolutni hodnoté
zaporny, nahradime absolutni hodnotu zavorkou a pred ni napiSeme minus.
Proto musime integral roztrhnout na vice integralu tak, aby vyraz v absolutni
hodnoté v kazdém integralu neménil znaménko. Ukazeme si to na piikladu.
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I:/]cosx|da:.
0

Kdy vyraz v absolutni hodnoté méni znaménko? K tomu si vyfesime rovnici

cosx =0 0<z<m.

Ta m4é jediné feseni
T
r=—.
2
Proto musime integral roztrhnout na dva integraly, od 0 do 7 a od § do 7.

™

™ % ™ s
/|cosx|d$:/|cosx|dm+/\cos:v|da::/cos:vdx+/—cosa:d:v:
0 0 z 0 z

M

= T

= {sinx}s + [—Sinx} = sing —sin0 —sin7r+sing = 2.

(VB
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