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1 Lagrangeovy rovnice pro systém bez vazeb

Podle druhého Newtonova pohybového zakonu udéluje sila F' pusobici na

téleso o hmotnosti m tomuto télesu zrychleni a, pro které plati

ma = F.

Oznac¢ime-li polohu hmotného bodu z, je

mi = F,
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kde tecka znaci derivaci podle ¢asu t. Lze-li silu vyjadiit pomoci gradientu
potencidlu V' (z) jako
F=-VV,

mame
mi = —VV.
Kineticka energie je
1 1
T = —mv? = —ma?
2 2

a jeji derivace podle rychlosti je

* d
&ng = mz
Pro Lagrangeovu funkci
L=T-V
tedy
L(z,2) =T () — V(z)
plati
L,=-VV =F
L; =mzx
d
takze d
dt

Tento vztah se nazyva Lagrangeova rovnice.

2 Sférické kyvadlo

Uvazujme hmotny bod na konci tuhého nehmotného zavésu jednotkové délky,
jehoz druhy konec je upevnén kloubem otoénym bez tieni ve vSech smérech,
nejen v jedné roviné. Tento hmotny bod se tedy muze pohybovat pouze po



kulové plose s jednotkovym polomérem. Pro jeho kartézské souradnice tedy
plati
T+ a5+ 1i—1=0,
obecné
f(z1,22,73) = 0.

Tato vazba pusobi na hmotny bod silou kolmou k plose, tedy
F, vazby — )‘Vf .

Tim se ndm zvysi o jedni¢ku pocet rovnic (piibyde rovnice vazby) a také
pocet neznamych (pfibyde ).

Jiny zpusob feseni je zavedeni zobecnénych soufadnic (napf. dva dhly ze
sférickych soutadnic 6, ¢, obecné ¢, go), tak, aby vazba byla splnéna identic-
ky. Napft.

1 = sinfcosp
Ty = sinfsing
r3 = cosb,
obecné
7= s(q).

Pro jeden bod s jednou vazbou je ¢ € R? a 2 € R3. Pro N bodi s k
vazbami je ¢ € R3V% a x € R3N. Ukazme, ze Lagrangeovy rovnice maji
v zobecnénych souradnicich ¢ formalné stejny tvar

d

an'i - Lq. == 0
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To je vyhodné, protoze pak kazda vazba snizi pocet rovnic i pocet neznamych
o jednicku, misto aby jej zvySovala!

3 Lagrangeovy rovnice v zobecnénych sou-
radnicich
Uvazujme transformaci soufadnic
z = s(q),
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napft.

1 = sing;cosqgs
Ty = sing;singy
T3 = COSq.
Oznacme
Oz;  0s;
dq;  0Og;
a pro
x(t) = s(q(t))
oznacme

ia} . 9si(q) .
dt b 8qk T

(ptes index, ktery se vyskytuje dvakrat, se s¢itd). Oznacme

Pak

Déle z

plyne

Ale na druhé strané z

plyne také

takze

0i;  Ouilg,d)
04 o4;

8q'j N a(]] - a(]j N a(]j'

po= 8si .
T aqk gk
aj?i 828,'

dq;  Oqr0q; I

Ox;  0s4(q(t))

aq]' 8Qj
d a.Z'Z 623i .
1. = 4k,
dt 8qj 8qkan
aq]' - dt aq]' )



Ozna¢me T kinetickou energii v kartézskych soutadnicich

1
T(.’E) = §m:bkj:k

a T’ kinetickou energii v zobecnénych souiadnicich

T(q,q) = T(u(g,q))-

Potom N

a—qi N 8:1':k aqi B aj?k 8% - 8xk dt 8qi

T 0T du, _ OT 9y OT Omy
0  Oiy 0¢;  Oiy 0¢  Oiy Og;

Tento soucin zderivujeme podle ¢casu ¢

dor (i@T)(?xk_f_ or (iaxk>
dt 3qz - dt 8xk 8qz~ 8:ck dt aqi

a odecteme piechozi vysledek a dostaneme

dor _or _ (L 2T or,
dt aqz aqi N dt aj?k 8%‘ '

Na mechanicky systém s vazbami pusobi dveé sily: vnéjsi sila

F=-VV(x)
a vazbova sila
Fvazby = /\Vfa
takze
ma=F + AVf
a tedy
ma — F = AV f.

Vazbov3 sila je kolma na tecnou rovinu k plose

f(z)=0.



Vyraz
a.T,'

(9qj
je i-ta kartézska slozka j-tého vektoru béze te¢ného prostoru (te¢né roviny)
k plose

takze .
i
((ma); — Fz)a—qj =0.
Tento vztah upravime na tvar Lagrangeovych rovnic. Pouzijeme
d oT
(ma)s = 5 a3
Potencial vyjadiime jednak v kartézskych soutradnicich

V=V(z)

a jednak v zobecnénych souradnicich

V(g) = V(s(q)).

Potom N
OV _ OV om _ . om
8qj (%, 8qj ' 8qj '
Takze postupné dostavame
Or; doTox; oV doT oI oV

0= ((ma), ’)aqj 0t 97; 0q; ' 0q;  dtdq; g Og;

Oznacime-li Lagrangeovu funkci v zobecnénych soutadnicich

L=T-V
tedy 5 5 5
mame ~ ~ N B B
dob oL _dof of oV
dtdg; 0d¢; dtdg; 0q  Og;
takze _
doL OL
dtdg  0g



4 Energie
Lagrangeovy rovnice maji jeden dulezity integral, zvany zobecnéna energie
E=1L¢—L.
Totiz derivace funkce
E(t) = Lg (q(t), 4(1))di(t) — L(q(t), 4(t))
je
%Zdi% %LQi_LQi):()’

protoze zavorka je vlastné levd strana Lagrangeovy rovnice.
Je-li kineticka energie ve tvaru

Ly, + L4,Gi — Lg,¢i — Ly, Gi = di(

T(q, 4) = aij(9)4ig;,
je
L(g,4) = T(g,9) — V(@) = ai;(9)4:g; — V(q)
a zobecnéna energie
E = Lyg — L = 20i5¢igj — ai¢iq; +V =T +V

je rovna celkové mechanické energii.

5 Pouziti Lagrangeovych rovnic pro sférické
kyvadlo

Ve sférickych souradnicich vzhiru nohama

x1 = sinfcosp
Ty = sinfsing
r3 = —cosf

je kineticka energie (vlnku uz psit nebudeme)
1 1 .
T = 5m(a';f + i34 i3) = 5m(02 + sin® 0 ¢?)
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a potencidlni energie
V = mgh = —mg cos .

Potom Lagrangeova funkce je
1 .
L=T-V= §m(92 +sin® 6 ¢*) + mg cos 0.

Takze Lagrangeovy rovnice

d

qLi—Lo=0
d

daji
d .
a( ) — msinfcos® > + mgsinf =0

%(m sin?# @) = 0.

Druh4 z téchto rovnic ukazuje, ze moment hybnosti vuci ose x3 se zachovava.
Protoze se dédle zachovava celkova mechanickd energie

E=T+V,

lezi trajektorie systému v 2-dim varieté a tedy nemuze nastat deterministicky
chaos. Skoda :-(

6 Variac¢ni princip
Lagrangeovy rovnice
d
dt
lze odvodit také z podminky, aby funkcionél

Ldi _L(h' =0



zvany akce, nabyval extrémdlni hodnoty na mnoziné funkci z C?({t1,ts))
takovych, ze ¢(t1) a q(t2) jsou pevné dany. Ma-li totiz funkciondl S nabyvat
extrému pro funkci ¢, musi nabyvat extrému i funkce

@(h) = S(g+hQ) = [ Lla®) + hQ(®),d(t) + hQ(®))dt

pro libovolnou funkci @ € C?((t1,t2)) spliujici Q(t1) = Q(t2) = 0. Nutnou
podminkou je

to 123 to

0= 00 = [(L,@+ L@t = [ 1,0de+ 1,01 ~ [ (5:24)@at =
t1 t1 t1

d
= /(Lq = an)th

Ma-li byt tento integral roven nule pro libovolnou funkci (), musi byt zavorka
nulova, coz je pravé Lagrangeova rovnice. To zistava v platnosti i v piipadeé,
kdy ¢ je vektorova funkce.

7 Hamiltonian

Ozna¢me
pi = L(}i (qa Q)
zobecnénou hybnost. Z této rovnice lze vyjadiit ¢ jako funkci ¢ a p. Oznaéme
tuto zavislost r, tedy
g =r(g,p)-

Ozna¢me zobecnénou energii £ jako funkci soutadnic ¢ a p

H(q,p) = prgx — L = prri(q,p) — L(g,7(g, p))-

Tato funkce se nazyva Hamiltonova funkce ¢ili Hamiltonidn na pocest irského
matematika a fyzika Sira Williama Rowana Hamiltona (1805-1865), zndmého
téz jako objevitele kvaterniont.
Spoctéme jeji parcidlni derivace
OH 87‘k aTk d d

S S il N S L S
aqz Dk an i K 8(11 qi dt qi dtp D
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OH 8’f'k aTk .
_— =T s _— L - = q;.
Op; " (q p) + P Opi o Op; ¢

Tedy casovy vyvoj v novych soutadnicich g, p je dan rovnicemi

L

Qi—api
a

. O0H

pi__a%'

Tyto rovnice se nazyvaji Hamiltonovy kanonické rovnice.

Obecné, dynamicky systém ODR v tomto tvaru, kde H = H(q,p), se
nazyva Hamiltoniansky dynamicky systém.

Funkce H je integralem pohybu i v tomto obecném ptipadé, protoze

H= Heyqi + Hy,pi = Hy Hy, — Hy, Hy, = 0.

Hamiltonidansky dynamicky systém zachovava objem ve fizovém prostoru,
protoze divergence vektorového pole (stopa matice prvnich parcidlnich deri-
vaci pravé strany) je nulovd, jak se lze snadno ptesvédéit

¢ Opi  OPH O°H 0

Oq;  Opi  0gqiOp;  Op;0g; '

Hamiltonidanské dynamické systémy se pouzivaji pro modelovani systémi,
kde mizeme zanedbat ztrdtu mechanické energie (napf. tfenim). To lze
v piipadé nebeské mechaniky a pii popisu nékterych mikroskopickych systé-
mu. Hamiltoniv aparat teoretické mechaniky se stal odrazovym mustkem
pro kvantovou mechaniku.

8 Rovnice sférického kyvadla bez Lagrange-
ovych rovnic

Na hmotny bod o hmotnosti m = 1 pohybujici se po sféfe o poloméru [ =1
pusobi dvé sily: dostiediva a tiha. Urceme si slozky téchto dvou sil ve sméru
svislé osy. Gravitacni sila se rozlozi na dvé slozky: kolmd na sféru (ta se
vyrus§i pevnosti sféry) a teénd o velikosti

gsin 6.
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Jeji svisla slozka je
—gsin? 6.
Dostiediva sila je .
v? = 6? +sin? 9

a jeji svisld slozka je .

(6 +sin? @ *) cos h.
Soucet F, téchto dvou sil udéluje télesu zrychleni, jehoz slozku a, ve sméru
osy z urcime tak, ze dvakrat zderivujeme vztah

z = —cosf.
Tedy .

zZ=sinf 0
a . .

% =cosf 0% +sin @ 6.
Z
F,=ua,

dostaneme

—gsin?0 + (0% +sin?0 ¢?) cosf = cosh 6% +sinf 0

—gsin? @ + sin? 6 ¢? cosf = sin b g
6 = —gsinf +sin b % cos ),
tedy stejnou rovnici pro 0 jako pouzitim Lagrangeovych rovnic. Druhou
rovnici d
.92 .
—(m sin“ @ ¢) = 0.
plt )
dostaneme prostou uvahou, ze moment sil pusobicich na téleso vici ose z je
nulovy, tedy musi byt i nulova ¢asova zména momentu hybnosti vici této
ose.
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