Pocitacovy algebraicky systém Maple
jako pomucka pri studiu predmétu
Matematika I a II

Pavel Pokorny
Praha, 11. prosince 2004

Soustavy nelinedrnich algebraickych rovnic

Obsah

1 Uvod

2 Grafickd metoda

3 Pouziti prikazu fsolve

4 Newtonova metoda bez specidlnich baliku
4.1 Odvozeni Newtonovy metody
4.2 Spusténi samostatného programu
4.3 Pouziti Newtonovy metody

5 Newtonova metoda s uzitim baliku linalg

6 Newtonova metoda s uzitim
baliku LinearAlgebra

7 Srovndani balika linalg a LinearAlgebra
8 Zavislost nalezeného reSeni na pocatecnim odhadu

9 Pouziti kontinuace

11

13

16

16

20

1 Uvod

Soustavy nelinedrnich algebraickych rovnic (ani samostatné rovnice) nelze
(az na vyjimky) fesit pfesné analyticky. Proto musime k jejich feseni pouzit
néjakou pribliznou numerickou metodu. Ukéazeme si Sest nezavislych zpi-
sobt, jak Tesit soustavu nelinedrnich algebraickych rovnic pomoci systému
Maple:

e graficky,
e pomoci pitkazu fsolve,

e Newtonovou metodou bez specidlnich baliki,

Newtonovou metodou s uzitim baliku 1linalg,

Newtonovou metodou s uzitim baliku LinearAlgebra,
e pomoci kontinuace.

Porovname vyhody a nevyhody jednotlivych zptsobu. Pritom porovname
baliky pro linedrni algebru linalg a LinearAlgebra. Ukdzeme si, jak lze
z pitkazii Maple sestavit program a jak lze tento program ulozeny v samo-
statném souboru spustit. Pii vySetfovani zavislosti feSeni na pocatecnim
odhadu si ukdzeme nékolik fraktala.

Vse budeme ukazovat na piikladé soustavy dvou rovnic

2+ 3zy+1y> =0 (1)
exp(z) — 2z + exp(y) —y — 3 = 0. (2)

Poznamka:

Kdyz hovoiime o soustavé nelinedrnich algebraickych rovnic, muze vyvstat
otazka, jestli popsané metody lze pouzit i pro jedinou rovnici, ¢i pro linedrni
rovnice. Ano, lze, ale tiloha se tim zjednodusi natolik, ze zde popsané metody
feSeni jsou zbytecné slozité. Nelinearni algebraické rovnice obvykle fesime
posloupnosti kroki, jejichz vysledky se pii spravném pouziti blizi (Fikdme,
ze konverguji) ke spravnému feSeni. Pro linedrni rovnice dostaneme spravné
feSeni jiz po prvnim kroku.

2 Graficka metoda

Resime-li soustavu dvou rovnic

flz,y) = 0 (3)
9(z,y) = 0, (4)

pak kazda z rovnic (v typickém piipadé) urcuje kiivku v roviné z-y.

Hledat TeSeni soustavy znamend hledat pruseciky téchto dvou kiivek. To
lze provést pomoci systému Maple nasledujicimi ptikazy:

Prikazem

> restart;

zru$ime ulozené definice z piredchozi prace se systémem Maple, aby nekoli-
dovaly s novymi, a také uvolnime ¢ast paméti. Tento piikaz je zbytecny tésné
po spusténi systému Maple.

Definujeme levé strany rovnic

> f := x"3 + 3%x*xy + y~3;

f=2>+3zy+9y°
> g := exp(x) - 2xx + exp(y) -y - 3;
g=e"—2zx+eY—-y—3

Protoze piikaz implicitplot, ktery budeme pouzivat, je v baliku plots,

mame dvé moznosti:

e volat jej plnym jménem plots[implicitplot]

e nebo pitkazem with(plots) zpiistupnit vSechny funkce z baliku plots
a poté jej volat zkrdcenym jménem implicitplot. Piikaz with(plots)
ukonéime dvojteckou, abychom potlaéili hldSeni (seznam funkei obsa-
zenych v baliku), kterd v této chvili nepotiebujeme.

> with(plots):

Definujeme rozsahy proménnych a pocet bodi pro vykresleni grafu

> rozsahy := x=-3..3, y=-3..3, numpoints=100000;

rozsahy := x = —3..3, y = —3..3, numpoints = 100000

Nakreslime kiivku danou prvni rovnici

> implicitplot(f,rozsahy);

—2

a kiivku danou druhou rovnici

> implicitplot(g,rozsahy);

a obé krivky najednou
> implicitplot({f,g},rozsahy);

W

Z grafu je vidét, ze dand soustava ma Ctyfi redlnd feseni (o komplexnich to

nefikd nic, ale ta nas nezajimaji) a lze je z grafu i p¥iblizné uréit. Chceme-li

feSeni urcit pfesnéji, zizime rozsahy proménnych x a y pro vykresleni grafu.
Shrnuti:

Vyhody grafické metody:

e je rychla,

e jednoduch4,

e nazorna,

e dava informaci o poc¢tu vsech feSeni v daném rozsahu proménnych z, y,

e je vhodnd pro prvni sezndmeni s danou soustavou rovnic.
Nevyhody grafické metody:
e je méalo presna,

e je tézko pouzitelnd pro vice nez dvé rovnice.

3 Pouziti prikazu fsolve

Pro pftiblizné numerické feSeni soustav nelinedrnich algebraickych rovnic lze
v systému Maple s vyhodou pouzit piikazu fsolve (anglické slovo ,solve“
znamena fesit, pismeno f na zacatku je z anglického ,floating point number“
a oznacuje praci s pfibliznymi ¢éisly s pohyblivou desetinnou ¢érkou).

Nejdiive si opét vycistime pamét

> restart;

a definujeme levé strany rovnic

> f := x"3 + 3%x*xy + y~3;

f=2+3zy+y?

> g := exp(x) - 2xx + exp(y) -y - 3;

g=e"—-2zx+eY—y—3

Piikaz fsolve zavolame s jednim argumentem, dvojici levych stran
danych rovnic (jsou-li pravé strany nulové, neni tfeba je psét)

> resenil := fsolve({f,g});

resenil := {x = 1.605448402, y = —0.7658300022}

Chceme-li jiné feSeni (z grafické metody jiz vime, Ze dand soustava ma
celkem ¢Ctyfi redlnd feseni), zavoldme piikaz fsolve se dvéma argumenty,
druhym argumentem je pocatec¢ni odhad feSeni. Ten zjistime grafickou
metodou nebo zkusmo nebo na zdkladé naSich dalsich znalosti o uloze.

> reseni2 := fsolve({f,g},{x=-0.5,y= 1.0});

reseni2 := {y = 0.9642204252, x = —0.3005240445}

Podobné najdeme i treti a ¢tvrté reseni

> reseni3 := fsolve({f,g},{x=-0.8,y=-0.2});

resenid = {x = —0.7565242968, y = —0.1939930663 }
> reseni4 := fsolve({f,g},{x=-0.6,y=-1.2});
reseni = {y = —1.132719887, x = —0.4554952073}

Vznika otazka, jak zavisi nalezené feSeni na pocateénim odhadu. Je-li
odhad blizky jednomu z pfesnych feseni, pak nalezené feseni je obvykle rovno
tomuto presnému feseni (aZ na chybu metody a zaokrouhlovaci chybu). Neni-
li odhad dostate¢né blizky zaddnému z piesnych feSeni, pak tato zavislost
miuze byt slozitd. Této otdzce se budeme podrobné vénovat v samostatné
kapitole.

Maéame-li nalezené teSeni, lze provést zkousku tak, ze nalezené feSeni
dosadime do levych stran danych rovnic. To provedeme piikazem eval
(z anglického ,evaluate“ — vyhodnotit), ktery zavoldme se dvéma ar-
gumenty: levou stranou zadané rovnice a nalezenym feSenim (ve tvaru
rovnice, kterou nam vratil piikaz fsolve)

> eval(f,resenil);

—0.181078

a dosazeni do levé strany druhé rovnice

> eval(g,resenil);

—0.11078

Vidime, ze levé strany nejsou rovny nule, ale malému ¢islu. Tato
chyba je ddna chybou metody a zaokrouhlovaci chybou. Tyto chyby lze
v systému Maple ovlivnit pomoci proménné Digits, kterd urcuje, na kolik
desetinnych mist se provadi numerické vypocty. Lze zjistit jeji nastaveni
prikazem

> Digits;

10

Vidime, ze vypocty se provadi na 10 desetinnych mist. Pozadujeme-
li vetsi presnost, napf. 16 desetinnych mist (tato hodnota je vyhodna,
protoze tuto piesnost poskytuje hardware vétsiny pocitaci; 1ze pozadovat
i vetsi presnost, ale pak rychle roste doba vypoctu), lze jeji hodnotu
zménit takto

> Digits:=16;

Digits := 16
Zavolame-li nyni piikaz fsolve, d4 presnéjsi feSeni
> presnejsiresenil := fsolve({f,g});

presnejsiresenil = {z = 1.605448402044969, y = —0.7658800021965751}
o cemz se presvédcime dosazenim do levych stran danych rovnic, které
uzavieme do hranatych zavorek
> eval([f,g],presnejsiresenil);
[—0.510715, 0.]
Vidime, Ze chyba je opravdu mensi.
Shrnuti:
Vyhody piikazu fsolve:

e snadné pouziti,

e pouzitelny i pro velky pocet rovnic,

e vysokd presnost, kterou lze navic nastavit.
Nevyhody ptikazu fsolve:

e neda celkovy obraz o poctu a rozmisténi vSech reSeni.

4 Newtonova metoda bez specialnich baliku

4.1 Odvozeni Newtonovy metody

Pouzijeme-li Tayloruv rozvoj prvniho fddu pro vektorovou funkci F' v okoli
bodu zy € R", dostaneme

F(.’L‘):F(l'o)—f—J(iL'())($—$0)+R,

kde J(zo) je matice parcidlnich derivaci funkce F' v bodé zy a R je zbytek.
Zanedbame zbytek R a hleddme bod z = z1, kde je funkce F' nulov4,

0= F(xo) + J(z0) - (x1 — z0).
Je-li matice J(zy) reguldrni, lze nalézt Feseni takto
J(20) + (21 — m0) = —F (o)
1 — Xy = —Jil(.fo) . F(Io)
T =Ty — J71($0) . F(.I())
Pti vypoctu je vyhodnéjsi fesSit soustavu linedrnich rovnic
J(xg) - Az = F(x0)

a potom dopocitat
1 = T — Ax.

4.2 SpusSténi samostatného programu

Chceme-li zadat vice piikazii, mame dvé moznosti:
e mizeme psat jednotlivé fadky klavesnici pfimo v prostiedi Maple,

e anebo si je muzeme predem napsat (pomoci libovolného editoru, napf.
vi) do souboru, ktery nazveme napf. mujprogrami. Piikazy obsazené
v tomto programu lze spustit v Maple piikazem

read mujprogrami;

4.3 Pouziti Newtonovy metody

Pro pouziti Newtonovy metody muze tento program vypadat takto:

restart:

Digits := 16:

f = x"3 + 3*x*y + y~3:

g = exp(x) - 2%x + exp(y) -y - 3:
fx := diff(f,x):

fy := diff(f,y):

gx := diff(g,x):

gy := diff(g,y):

mujnewtonl := proc (x0,y0)
local £0,g0,detj,detx,dety,dx,dy,x1,yl:
f0 := eval(f,{x=x0,y=y0}):
g0 := eval(g,{x=x0,y=y0}):

detj := eval(fx * gy - fy * gx, {x=x0,y=y0}):
detx := eval(f0 * gy - fy * g0, {x=x0,y=y0}):
dety := eval(fx * g0 - f0 * gx, {x=x0,y=y0}):

dx := detx / detj:
dy := dety / detj:
x1 := x0 - dx:
yl := yO - dy:

odhadO :
odhadl1

odhad?2 :
odhad3 :
odhad4 :

1.6, -0.8;

mujnewtonl (odhado) ;
mujnewtonl (odhadl) ;
mujnewtonl (odhad?) ;
mujnewtonl (odhad3) ;

levestrany := eval([f,g],{x=odhad4[1],y=odhad4[2]});

Vysvétleni:

e nejdiive si vyCistime paméf piikazem restart;

e zaddme pravé strany f a g,

e piipravime si jejich parcidlni derivace fx, fy, gx, gy,

e napiSeme proceduru mujnewtonl, kterd ma dva vstupni parametry x0,
y0 a pocitad jednu iteraci Newtonovy metody takto:

nejdiive napiSeme seznam lokdlnich proménnych, které budeme
pouzivat,

vycislime levé strany £0, go0,

vycCislime determinant detj matice parcialnich derivaci a determi-
nanty detx, dety matic, které dostaneme ndhradou jednotlivych
sloupct sloupcem pravych stran linearni soustavy,

Cramerovym pravidlem najdeme feSeni dx,dy linedrni soustavy,

od vstupniho odhadu feSeni x0, y0 odecteme korekci dx, dy a
dostaneme upfesnéné feSeni x1, yi.

Poslednim vyrazem v procedufe je dvojice x1, y1 a ta bude vy-
sledkem procedury.

Pouziti je jednoduché: zvolime nulty odhad odhadO, coz je dvojice cisel
oddélenych carkou, a zavoldme naSi proceduru mujnewtonl a do zavorky
ji dame tento odhad. Vysledek ulozime do proménné odhadl. Tak muzeme
pokracovat, az se aproximace prestanou ménit. Zkousku provedeme vyhod-
nocenim levych stran napt. pro ¢tvrty odhad.

Vysledky piikazu read mujprograml pak vypadaji takto:

> read mujprogrami;

10

odhad0 := 1.6, —0.8
odhad1 := 1.605498579860371, —0.7662250746521963
odhad2 := 1.605448404509504, —0.7658800518916949
odhad3 := 1.605448402044969, —0.7658800021965758
odhad4 = 1.605448402044969, —0.7658800021965752

levestrany == [—0.710715, 0.]
Shrnuti:
Vyhody Newtonovy metody bez pouziti specialnich baliki:

e vime piesné, co a jak pocitame,
e rychly vypocet.
Nevyhody Newtonovy metody bez pouziti specalnich baliku:

e pomérné dlouhy program, zejména pro vice rovnic, tedy mnoho pro-
gramatorské prace.

5 Newtonova metoda s uzitim baliku linalg

Pti pouziti Newtonovy metody pro feSeni soustavy nelinedrnich algebraickych
rovnic musime v kazdém kroku vyresSit soustavu linedrnich algebraickych
rovnic. P¥i FeSeni linedrni soustavy je vyhodné (zejména pro vice rovnic) pra-
covat s vektory a maticemi. Pro préaci s vektory a maticemi jsou v systému
Maple k dispozici dva ruzné baliky: linalg a LinearAlgebra. Ukazeme
si nejprve pouziti starSiho baliku linalg, potom novéjsiho baliku Linear
Algebra a poté je porovname.

Pro pouziti Newtonovy metody s uzitim baliku linalg miize program
(nazveme jej napf. mujprogram2) vypadat takto:

restart:
Digits:=16:
with(linalg):

f :=x"3 + 3xxxy + y~3:

g := exp(x) - 2xx + exp(y) -y - 3:
fx := diff(f,x):

fy := diff(f,y):

11

gx := diff(g,x):

gy := diff(g,y):

F := vector([f,gl):

J := matrix([[fx,fy]l, [gx,gyll):

mujnewton2 := proc (vO::vector)

local F0,JO,vi:

FO := eval (eval(F),{x=v0[1],y=v0[2]1}):

JO := eval (eval(J),{x=v0[1],y=vO[2]}):

vl := evalm(v0 - linsolve(eval(J0),eval(F0))):
end:

odhad0 := vector([1.6, -0.8]);

odhadl := mujnewton2(eval(odhad0));

odhad2 := mujnewton2(eval(odhadl));

odhad3 := mujnewton2(eval(odhad2));

odhad4 := mujnewton2(eval(odhad3));

levestrany := eval (eval(F),{x=odhad4[1],y=odhad4[2]});

Vysvétleni:

e Piikazem with(linalg): nacteme balik 1inalg, abychom mohli volat

piikazy v ném definované kratkym jménem.
Zadame levé strany £, g a jejich parcialni derivace fx, fy, gx, gy.

Piikazem F := vector([f,gl); vytvoiime vektor levych stran a po-
jmenujeme si jej F, abychom se na néj mohli odvolavat.

Podobné piikazem J := matrix([[fx,fyl, [gx,gyll); vytvoiime ma-
tici parcidlnich derivaci a pojmenujeme si ji J.

Procedura mujnewton2 je vyrazné kratsi nez v piipadé bez pouziti
baliku linalg, zejména diky pouziti pritkazu linsove pro feseni sous-
tavy linearnich algebraickych rovnic. Volame jej se dvéma parame-
try, matici soustavy JO a vektorem pravych stran FO. Pfii odkazu na
matici nebo na vektor musime pfi pouziti baliku 1inalg volat funkci
eval. Kdybychom napi. misto eval(F) napsali jen F, dostali bychom
samotny symbol F misto slozek vektoru F. To muze byt nékdy vyhoda,
v naSem piipadé je to ale spiSe nevyhoda, ktera ¢ini program zbytecné
dlouhym a méné prehlednym.

12

e Pro odcitani vektort pii pouziti baliku linalg nestaci napsat pouze
- , ale musime rozdil vyhodnotit piikazem evalm, jinak se rozdil ne-
provede. Tyto potize jsou v baliku LinearAlgebra vyfeSeny lépe.

e Nakonec muzeme opét provést zkousku.

Pouziti programu mujprogram2 a vysledky pak jsou:
> read mujprogram2;

Warning, the protected names norm and trace have been redefined
and unprotected

odhad0 = [1.6, —0.8]
odhad1 := [1.605498579860371, —0.7662250746521963]
odhad2 = [1.605448404509504, —0.7658300518916949]
odhad3 := [1.605448402044969, —0.7658800021965758]
odhadj = [1.605448402044969, —0.7658300021965752]

levestrany := [—0.7107'°, 0.]
Shrnuti:
Vyhody pouziti Newtonovy metody s uzitim baliku 1inalg:

e program je kratsi a prehlednéjsi nez bez pouziti baliku.
Nevyhody pouziti Newtonovy metody s uzitim baliku linalg:
e pomalejsi vypocet nez bez pouziti baliku,

e program je delsi a méné prehledny nez pti pouziti baliku
LinearAlgebra.

6 Newtonova metoda s uzitim
baliku LinearAlgebra

Pti pouziti Newtonovy metody s vyuzitim baliku LinearAlgebra bude pro-
gram (nazveme jej mujprogram3) vypadat takto:

restart:
Digits:=16:
with(LinearAlgebra) :

13

f := x"3 + 3%x*xy + y~3:
g := exp(x) - 2*x + exp(y) - y - 3:

fx := diff(f,x):
fy := diff(f,y):
gx := diff(g,x):
gy := diff(g,y):
JF = <<fx,gx>|<fy,gy>|<f,g>>:
mujnewton3 := proc (v0::Vector)

local JFO,vi:

JFO:= eval (JF,{x=v0[1],y=v0[2]1}):
vl := vO - LinearSolve(JFO0):
end:

odhad0 := <1.6, -0.8>;

odhadl := mujnewton3(odhad0);

odhad2 := mujnewton3(odhadl);

odhad3 := mujnewton3(odhad?2) ;

odhad4 := mujnewton3(odhad3) ;

levestrany := eval (Column(JF,3),{x=odhad4[1],y=odhad4[2]});

Vysvétleni:

e vycisténi paméti, nacteni baliku LinearAlgebra, zadani levych stran
a jejich parcidlnich derivaci je obdobné jako v piedchozich piipadech,

e pro feSeni soustavy linedrnich algebraickych rovnic se pti pouziti baliku
LinearAlgebra pouzivad piikaz LinearSolve. Tento piikaz vyzaduje
jediny argument — rozsitenou matici soustavy, tedy matici koeficientu
u neznamych doplnénou sloupcem pravych stran. Proto nebudeme
vytvatet zvlast matici parcialnich derivaci a zv1ast vektor pravych stran
soustavy linearnich rovnic, ale pfipravime si rozsifenou matici najed-
nou. Pro piipravu matic (i vektoru) se pfi praci s balikem Linear-
Algebra pouzivaji ,ihlové“ zavorky, tedy mensitko < a vétsitko >;
v jedné drovni pro piipravu vektoru, ve dvou do sebe vnoienych trovnich
pro piipravu matice. Takze rozsifenou matici dostaneme piikazem
JF = <<fx,gx>|<fy,gy>|<f,g>>; pojmenujeme siji JF. Na rozdil od
baliku 1linalg se pfi praci s balikem LinearAlgebra matice zaddvaji

14

ne po iadcich, ale po sloupcich. Jednotlivé sloupce se oddéluji svislou
carou |.

e Pro zkousku potiebujeme vyéislit pravy (zde tieti) sloupec rozsitené
matice. Tteti sloupec matice JF dostaneme piikazem Column, tedy
Column(JF,3).

Takze pouziti programu mujprogram3 a jeho vysledky jsou
> read mujprogram3;

1.6
odhad0 = [08]

dhadi — [1.605498579860371

oEaAtT = —0.7662250746521963 |
[1.605448404509504

odhad? = | —0.7658800518916949 |
[1.605448402044969

odhad3 = | —0.7658800021965758 |
[1.605448402044969

odhadd = | _0.7658800021965752 |
l —0.710°1]

levestrany = 0

Shrnuti:
Vyhody pouziti Newtonovy metody s uzitim baliku LinearAlgebra:

e program je jeSté kratsi a jesté pfehlednéjsi nez pii pouziti baliku 1inalg.
Pokud je nasim cilem napsat opravdu kratky program, pak proceduru
mujnewton3, kterd mé pét fadku, lze napsat v jesté kratsi podobé, na
jediném tadku (nazveme ji napt. kn jako , kratky Newton)

kn:=proc(v::Vector) v-LinearSolve(eval (JF,{x=v[1],y=v[2]})); end;

Nevyhody pouziti Newtonovy metody s uzitim baliku LinearAlgebra:

e pomalejsi vypocet nez bez pouziti baliku.

15

7 Srovnani balikti 1inalg a LinearAlgebra

Oba baliky jsou urceny pro usnadnéni prace s vektory a maticemi, tedy
obecné pro feSeni uloh linedrni algebry v systému Maple.

Balik 1inalg je starsi; balik LinearAlgebra se objevil az v roce 2000 ve
verzi Maple 6 a od té doby je upravovan pouze balik LinearAlgebra, zatimco
balik 1inalg je ponechavan v systému Maple jiz bez uprav pouze z divodi
slucitelnosti, tedy aby starsi programy pracovaly i s novymi verzemi systému
Maple.

Balik 1inalg pouziva pro jména piikazu zkratky psané malymi pismeny,
balik LinearAlgebra pouziva pro jména piikazu celd anglickd slova psana
s velkymi pocatecnimi pismeny.

Rozdily v pouzivani piikazu z obou baliku snad nemohou byt vétsi.
Jmenujme jen nékolik z nich. Matice se v baliku 1inalg zaddvaji po fadcich,
v baliku LinearAlgebra po sloupcich. Funkce linsolve pro feSeni soustavy
linedrnich rovnic v baliku 1inalg vyzaduje zvlast matici a vektor pravych
stran; funkce LinearSolve v baliku LinearAlgebra vyzaduje rozsifenou
matici soustavy. Vektory a matice pii praci s balikem linalg musime vy-
hodnocovat funkci eval, jinak dostaneme pouze jejich jména, a ne jejich
obsah. Aritmetické operace, jako soucet a rozdil, musime v baliku linalg
vyhodnocovat funkci evalm.

Zaver:
pro psani novych programu lze doporucit balik LinearAlgebra, protoze je
novéjsi, obsahuje vice funkei a pro slozité problémy (napt. pro velky pocet
rovnic) jsou jeho funkce efektivnéjsi. Naopak pro ilohy, kde je tfeba provadét
jednoduchy vypocet mnohokrat, je casto dobré si napsat vlastni program

v/

v nasledujici kapitole.

8 Zavislost nalezeného reSeni na pocatecnim
odhadu

Zvolime-li pocatecni odhad blizko spravného feSeni, bude nalezené piiblizné
feSeni (aZ na chybu metody a zaokrouhlovaci chybu) rovno tomuto spravnému
teSeni. Nebude-li pocatecni odhad blizky spravnému reSeni, mohou se vysledky
jednotlivych iteraci Newtonovy metody vyvijet i velmi slozitym zpusobem.
V lepsim pripadé dokonverguji k jednomu ze spravnych feSeni, ale mohou i

16

divergovat, ¢i neustdle se ménit. Nékdy se zertem tika, ze Newtonova metoda
je dobra az tehdy, zname-li feSeni. Tomu je tfeba rozumnét tak, ze je dobra,
zname-li odhad s dostatecnou piesnosti. Proto se Newtonova metoda casto
pouziva v numerickych metodach typu prediktor—korektor jako druhd cést
vypoctu, tedy korektor, pro upfesnéni vyslekdu, ktery nejdiive odhadneme
(pfedpovime) prediktorem.

Zavislost na pocateénim odhadu lze dobie znazornit graficky timto po-
stupem: Ve zvoleném rozsahu nezndmych, napt. = € (=3, 3) a y € (-3, 3)
si vybereme napt. 100 ekvidistantnich hodnot x a napt. 100 ekvidistantnich
hodnot y. Tim dostaneme 10000 bodu v obdélnikové siti. Pro kazdy z téchto
10000 bodt zvoli pocatecni odhad roven tomuto bodu a provedeme nékolik
iteraci Newtonovy metody. Jestlize je vysledek blizky prvnimu spravnému
feseni, obarvime obdélni¢ek kolem bodu jednou barvou (napf. Cervenou),
jestlize je vysledek blizky druhému spravnému reseni, obarvime obdélnicek
kolem bodu druhou barvou (napf. modrou), a podobné pro tieti a ¢tvrté
spravné feSeni obarvime obdélnicek néjakou treti ¢i ¢tvrtou barvou.

To lze provést v systému Maple napi. timto programem.

restart;

Digits:=16;

f = x73 + 3%xxy + y~3;

g :=exp(x) - 2xx + exp(y) -y - 3;
fx := diff(f,x);

fy := diff(f,y);
gx := diff(g,x);
gy := diff(g,y);

korenl := eval([x,y],fsolve({f,g},{x= 1.6,y=-0.8}));
koren2 := eval([x,yl,fsolve({f,g},{x=-0.3,y= 1.0}));
koren3 := eval([x,yl,fsolve({f,g},{x=-0.8,y=-0.2}));
koren4 := eval([x,yl,fsolve({f,g},{x=-0.5,y=-1.1}));
koreny := array([korenl,koren2,koren3,koren4]);

#de := fx * gy - fy * gx;
#plots[implicitplot] (de, x=-3..3,y=-3..3, numpoints=100000);

mujnewtonl := proc (x0,y0)
local f0,g0,detj,detx,dety,dx,dy;

17

f0 := eval(f,{x=x0,y=y0});
g0 := eval(g,{x=x0,y=y0});

detj := eval(fx * gy - fy * gx, {x=x0,y=y0});
detx := eval(f0 * gy - fy * g0, {x=x0,y=y0});
dety := eval(fx * g0 - f0 * gx, {x=x0,y=y0});

dx := detx / detj;
dy := dety / detj;
x0 - dx, yO - dy;

end;

xa := -3; xb := 3.001; ya := -3; yb := 3.002; nx := 100; nn := 10;
b := array(l..nx,1..nx); # barvy

v := array(l..4); # vzdalenosti od korenu

for i from 1 to nx do

for j from 1 to nx do
xy := xa + (xb-xa)*i/nx, ya + (yb-ya)*j/nx; # nastrel
for k from 1 to nn do xy := mujnewtonl(xy); end do;

for k from 1 to 4 do v[k]:=(xy[1]-korenyl[k,1]) 2+
(xy[2]-koreny[k,2])"2; end do;

if v[1]<=v[2] and v[1]<=v[3] and v[1]<=v[4] then b[i,j]l:=1;
elif v[2]<=v[1] and v[2]<=v[3] and v[2]<=v[4] then b[i,j]:=2;
elif v[3]<=v[1] and v[3]<=v[2] and v[3]<=v[4] then b[i,j]:=3;
elif v[4]<=v[1] and v[4]<=v[2] and v[4]<=v[3] then bl[i,jl:=4;
else print("tak ted nevim jakou barvu mu mam lidicky dat?");
end if;

end do;

end do;

with(plots):

1istdensityplot(b,colorstyle=HUE,range=1..5);

Vysvétleni:

e vycisténi paméti, nastaveni pfesnosti, zadani levych stran a jejich derivaci
je stejné jako v predchozich ptikladech,

e pitkazem fsolve si pfipravime Ctyii spravna fesSend,

e budeme pouzivat proceduru mujnewtonl, kterou jiz také zndme,

18

e zvolime rozsahy proménnych x a y, pocet hodnot nx a pocet iteraci
Newtonovy metody nn,

e piipravime si pole b barev a pole v vzdalenosti nalezeného feSeni od
Ctyrech spravnych feSeni,

e dvojitou for smyckou nastavime pocatecni odhad na jednotlivé body
obdélnikové sité a pro kazdy takto nastaveny bod provedeme nn iteraci
Newtonovy metody,

e spocitame si vzdalenosti nalezeného reSeni od ¢tyfech spravnych feseni,

e podle toho, kterd z téchto ¢tyfech vzdalenosti je nejmensi, ulozime do
pole b ¢islo 1, 2, 3 nebo 4,

e piikazem listdensityplot vykreslime pole b.

Toto lze sice spocitat pomoci systému Maple, ale vysledek trva (na poéitaci
s procesorem Pentium IIT 1 GHz) 94 s, pouzijeme-li Newtonovu metodu bez
specidlnich baliki. Pouzijeme-li balik 1inalg, trva tentyz vypocet 647 s.
Pouzijeme-li balik LinearAlgebra, trva tentyz vypocet dokonce 863 s. Po-
uzijeme-li k teSeni piikaz fsolve, trva vypocet 200 s. Jestlize naprogramu-
jeme vypocet v jazyce C, trva vypocet nékolik sekund.

7 tohoto pftikladu jsou dobie vidét prednosti a nevyhody pocitacovych
algebraickych systému jako jsou Maple, Mathematica a dalsi:

e vyhody PAS: pohodlnd préce, kratky program,

e nevyhody: vypocet trva mnohem déle a spotiebuje mnohem vice paméti
nez program napsany v ,nizkém“ programovacim jazyce jako napi. C,
Fortran nebo Pascal.

Takze tyto ,,vysoké“ programovaci nastroje, jako je Maple apod. pouzijeme
s vyhodou pro vyzkouSeni a odladéni nového algoritmu nebo postupu. Jestlize
poté potiebujeme provést vypocet, ktery by trval piilis dlouho, naprogramu-
jeme si jej podruhé v jazyce, ve kterém pirelozeny program pobézi rychleji.
Tak jsme postupovali i v pfipadé vySetiovani zavislosti nalezeného feSeni
Newtonovou metodou na pocdtetnim odhadu. VyzkouSeli jsme si navrzeny
algoritmus v systému Maple na mfizce 100 x 100 bodu. Poté jsme zvolili
miizku 1000 x 1000 a napsali program v jazyce C, ktery vypoctend data zap-
sal do vystupniho textového souboru. Pro vykresleni téchto dat jsme pouzili

19

systém Mathematica, protoze dava vétsi moznosti nastavit pozadované pa-
rametry obrazku. Nésledujici grafy ukazuji, jak to dopadlo. Obrazky maji
tzv. fraktalni strukturu, to znamena, ze vykreslime-li si detail pro uzsi rozsah
proménnych, objevi se podobné struktury jako na vétsim méfitku.

9 Pouziti kontinuace

Pro velice obtizné ulohy, tj. ulohy, kde levé strany algebraickych rovnic rychle
meéni svuj prubéh jiz v malém okoli spravného feseni, mohou metody reseni
zalozené na Newtonové metodé selhat, jestlize nezname pocatecni odhad
feSeni dostatecné presné. V takovych pripadech lze s tispéchem pouzit kon-
tinuacni metody.

Princip spociva v tom, ze vedle feSené rovnice

jejiz kofen x € R™ zndme, napi. G(z) = x — 1z, kde z¢ si zvolime. Z téchto
dvou rovnic vytvoiime treti rovnici

aG(z) + (1 — a)F(z) = 0,

kde o € (0;1) je parametr. ReSeni 2 = z(a) této rovnice zdvisf na parametru
« a ptedstavuje kiivku v R". Pro o = 0 jeji feSeni x = z¢ (potateéni bod
této kiivky) zndme. Tuto kiivku lze spocitat metodou kontinuace a tak
dostaneme koncovy bod x = xp, tedy feSeni plivodni rovnice.

Protoze ale moderni pocitacové systémy jako Maple ¢i Mathematica ob-
sahuji ¢im dal tim kvalitnéjsi néstroje pro feSeni soustav nelinedrnich alge-
braickych rovnic, které jsou uzivateli k dispozici jedinym piikazem (napf.
pitkaz fsolve v systému Maple), ustupuje dilezitost metod zalozenych na
kontinuaci ¢i vlastnich metod zalozenych na Newtonové metodé.

20

