\begin{maplegroup} \begin{mapleinput} \mapleinline{active}{1d}{read mujprogram2;}{% } \end{mapleinput} \mapleresult \begin{maplelatex} \mapleinline{inert}{2d}{restart;}{% \[ \mathit{restart} \] % } \end{maplelatex} \begin{maplelatex} \mapleinline{inert}{2d}{Digits := 16;}{% \[ \mathit{Digits} := 16 \] % } \end{maplelatex} \begin{maplettyout} Warning, the protected names norm and trace have been redefined and unprotected \end{maplettyout} \begin{maplelatex} \mapleinline{inert}{2d}{f := x^3+3*x*y+y^3;}{% \[ f := x^{3} + 3\,x\,y + y^{3} \] % } \end{maplelatex} \begin{maplelatex} \mapleinline{inert}{2d}{g := exp(x)-2*x+exp(y)-y-3;}{% \[ g := e^{x} - 2\,x + e^{y} - y - 3 \] % } \end{maplelatex} \begin{maplelatex} \mapleinline{inert}{2d}{fx := 3*x^2+3*y;}{% \[ \mathit{fx} := 3\,x^{2} + 3\,y \] % } \end{maplelatex} \begin{maplelatex} \mapleinline{inert}{2d}{fy := 3*x+3*y^2;}{% \[ \mathit{fy} := 3\,x + 3\,y^{2} \] % } \end{maplelatex} \begin{maplelatex} \mapleinline{inert}{2d}{gx := exp(x)-2;}{% \[ \mathit{gx} := e^{x} - 2 \] % } \end{maplelatex} \begin{maplelatex} \mapleinline{inert}{2d}{gy := exp(y)-1;}{% \[ \mathit{gy} := e^{y} - 1 \] % } \end{maplelatex} \begin{maplelatex} \mapleinline{inert}{2d}{F := vector([x^3+3*x*y+y^3, exp(x)-2*x+exp(y)-y-3]);}{% \[ F := [x^{3} + 3\,x\,y + y^{3}, \,e^{x} - 2\,x + e^{y} - y - 3] \] % } \end{maplelatex} \begin{maplelatex} \mapleinline{inert}{2d}{J := matrix([[3*x^2+3*y, 3*x+3*y^2], [exp(x)-2, exp(y)-1]]);}{% \[ J := \left[ {\begin{array}{cc} 3\,x^{2} + 3\,y & 3\,x + 3\,y^{2} \\ e^{x} - 2 & e^{y} - 1 \end{array}} \right] \] % } \end{maplelatex} \begin{maplelatex} \mapleinline{inert}{2d}{mujnewton2 := proc (v0::vector) local F0, J0, v1; F0 := eval(eval(F),\{x = v0[1], y = v0[2]\}); J0 := eval(eval(J),\{x = v0[1], y = v0[2]\}); v1 := evalm(v0-linsolve(eval(J0),eval(F0))) end proc;}{% \maplemultiline{ \mathit{mujnewton2} := \textbf{proc} (\mathit{v0}\hbox{::} \mathit{vector}) \\ \textbf{local} \,\mathit{F0}, \,\mathit{J0}, \,\mathit{v1}; \\ \mapleIndent{1} \mathit{F0} := \mathrm{eval}(\mathrm{eval}(F), \, \{x={\mathit{v0}_{1}}, \,y={\mathit{v0}_{2}}\})\,; \\ \mapleIndent{1} \mathit{J0} := \mathrm{eval}(\mathrm{eval}(J), \, \{x={\mathit{v0}_{1}}, \,y={\mathit{v0}_{2}}\})\,; \\ \mapleIndent{1} \mathit{v1} := \mathrm{evalm}(\mathit{v0} - \mathrm{linsolve}(\mathrm{eval}(\mathit{J0}), \,\mathrm{eval}( \mathit{F0}))) \\ \textbf{end proc} } % } \end{maplelatex} \begin{maplelatex} \mapleinline{inert}{2d}{odhad0 := vector([1.6, -.8]);}{% \[ \mathit{odhad0} := [1.6, \,-0.8] \] % } \end{maplelatex} \begin{maplelatex} \mapleinline{inert}{2d}{odhad1 := vector([1.605498579860371, -.7662250746521963]);}{% \[ \mathit{odhad1} := [1.605498579860371, \,-0.7662250746521963] \] % } \end{maplelatex} \begin{maplelatex} \mapleinline{inert}{2d}{odhad2 := vector([1.605448404509504, -.7658800518916949]);}{% \[ \mathit{odhad2} := [1.605448404509504, \,-0.7658800518916949] \] % } \end{maplelatex} \begin{maplelatex} \mapleinline{inert}{2d}{odhad3 := vector([1.605448402044969, -.7658800021965758]);}{% \[ \mathit{odhad3} := [1.605448402044969, \,-0.7658800021965758] \] % } \end{maplelatex} \begin{maplelatex} \mapleinline{inert}{2d}{odhad4 := vector([1.605448402044969, -.7658800021965752]);}{% \[ \mathit{odhad4} := [1.605448402044969, \,-0.7658800021965752] \] % } \end{maplelatex} \begin{maplelatex} \mapleinline{inert}{2d}{levestrany := vector([-.7e-15, 0.]);}{% \[ \mathit{levestrany} := [-0.7\,10^{-15}, \,0.] \] % } \end{maplelatex} \end{maplegroup}