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1 Matematické priklady

1.1 Uvod

Program Maple umoznuje hledat feSeni diferencidlnich rovnic pomoci piikazu
dsolve. Ukéazeme si jeho pouziti na jednoduchych piikladech pro linearni i
nelinearni rovnice, pro hledani obecného i partikularniho fesSeni, pro jednu
rovnici i pro soustavu rovnic, pro symbolické i pro numerické feSeni. Na
zavér se podivame na aplikace diferencidlnich rovnic pfi studiu mechanic-
kych, elektrickych a chemickych dynamickych systému.

1.2 Obecné reSeni homogenni linearni diferencialni rov-
nice

Piiklad 1.
Naleznéte obecné feseni homogenni linedrni diferencialni rovnice

y = —3y.

Postup:
Ptikaz dsolve zavolame se dvéma argumenty uzavienymi v kulatych za-
vorkdch a oddélenych ¢drkou. Prvni argument je diferencidlni rovnice,
kterou chceme fe§it, druhy argument je nezndmd funkce. Diferencidlni
rovnice obsahuje derivaci nezndmé funkce, kterou zaddme piikazem diff.
Ukonc¢ime-li piikaz stirednikem, potom se vypiSe vysledek na display. Ukon-
¢ime-li jej dvojteckou, potom se vysledek nevypisuje.

> dsolve( diff(y(x),x) = -3 * y(x), y(x));

y(z) = _C1 732
Toto obecné feSeni obsahuje jednu integra¢ni konstantu, zde oznacenou
jako _C1.

1.3 Partikuldrni feSeni homogenni linearni diferencialni
rovnice

Priklad 2.

Naleznéte partikularni feSeni homogenni linearni diferencialni rovnice



spliujici pocateéni podminku
y(0) = 27.

Postup:

Obé rovnice, tedy diferencidlni rovnici a pocatecni podminku, uzavieme do
slozenych nebo do hranatych zavorek a oddélime ¢arkou. Hranaté zavorky
se pouzivaji pro oznaceni seznamu prvku (ang. list), tedy uspofddané n-tice
prvku; slozené zdvorky se pouzivaji pro oznaceni mnoziny (ang. set), tedy
skupiny prvki, kde nezdlezi na pofadi. V nasem ptipadé lze pouzit kterykoliv
z téchto dvou zpusobi.

> dsolve({diff (y(x),x)=-3*y(x),y(0)=27},y(x));

y(z) = 27 e(32)
Budeme-li s feSenim dale pracovat, ulozime si je do proménné, kterou si
pojmenujeme napi.reseni.
> reseni:=dsolve({diff(y(x),x)=-3*y(x),y(0)=27},y(x));
reseni = y(z) = 27 (3%
Vidime, ze feSeni je vlastné ve tvaru rovnice
y(z) = 27e .
Pravou stranu (ang.right-hand-side) této rovnice, tedy samotné fesenti,
lze ziskat piikazem rhs
> rhs(reseni);
27 e(=32)
Chceme-li vyhodnotit (ang. evaluate) hodnotu feseni napf. pro z = 3
pouzijeme piikaz
> eval(rhs(reseni) ,x=3);
27 e(=9)
Zajima-li nas piiblizna hodnota v desetinném tvaru, zaddme misto

presné hodnoty = = 3 pfibliznou hodnotu z = 3.0 (nulu na konci lze
vynechat, ale desetinnou tecku nikoliv)

> eval(rhs(reseni) ,x=3.);
0.003332064711

A nakonec si ukdzeme, jak 1ze nakreslit graf feSeni diferencidlni rovnice
pro zadany interval hodnot nezavisle proménné

> plot(rhs(reseni),x=0..1);
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Existuje jesté druhy zpusob, jak pracovat s feSenim diferencidlni rovnice,
nez pouziti piikazu rhs. Muzeme piitadit (ang. assign) pravou stranu rovnice
levé strané rovnice pifkazem assign. Tedy té rovnice, kterou ndm vrati
piikaz dsolve, nikoliv rovnice, kterou chceme vytesit. Cely vypocet potom
muze vypadat takto

> reseni:=dsolve({diff(y(x),x)=-3*y(x),y(0)=27},y(x));
reseni := y(x) = 27 e(=32)

> assign(reseni);
> y(x);

27 e(=32)
> eval(y(x),x=3);

27 e(=9)
> eval(y(x),x=3.);

0.003332064711



1.4 Obecné feSeni nehomogenni linearni diferencialni
rovnice

Priklad 3.
Naleznéte obecné feseni nehomogenni linearni diferencidlni rovnice

Yy =-3y+z

Postup:

> dsolve(diff (y(x),x)==-3*y(x)+x, y(x));
z 1
r)=—— — +_01 6(7358)
y(z)=3-35
1.5 Partikularni feSeni nehomogenni linearni diferen-
cidlni rovnice
Priklad 4.
Naleznéte partikularni feSeni nehomogenni linearni diferencidlni rovnice

Y =-3y+z
vyhovujici poc¢ateéni podmince
y(1) =2

Postup:

> dsolve({diff (y(x),x)=-3*y(x)+x,y(1)=2},y(x));
r 1 1632
YW =359 ww
Tento vysledek 1ze zjednodusit (ang. simplify)
> simplify(%);
z 1 16

=559

(znak procenta znamend posledni vysledek).

(—3z+3)



1.6 Obecné reSeni autonomni nelinearni diferencialni

rovnice
Piiklad 5.
Naleznéte obecné feSeni autonomni nelinedrni diferenciilni rovnice
' 2
y=y

Postup:

> dsolve(diff(y(x),x)=y(x)"2, y(x));

1.7 Partikularni feSeni autonomni nelinearni diferen-
cialni rovnice

Priklad 6.

Naleznéte partikuldrni feSeni autonomni nelinedrni diferencialni rovnice

vyhovujici poc¢atecni podmince

Postup:

> dsolve({diff(y(x),x)=y(x)"2, y(2)=1}, yx));
1
z—3

y(@) = -

1.8 Obecné reSeni linearni diferencialni rovnice 2. fadu

Priklad 7.

Naleznéte obecné feSeni linearni diferencidlni rovnice 2.fadu

y" + 11y + 30y = 0.



Postup:
Pro zadani druhé derivace nezndmé funkce pouzijeme prikaz diff (y(x) ,x$2)

> dsolve(diff(y(x),x$2)+11*diff (y(x),x)+30xy(x), y(x));
y(z) = _C1el76) + _(C2¢(52)

1.9 Partikularni reSeni linearni diferencialni rovnice
2.7adu s pocateénimi podminkami
Piiklad 8.

Naleznéte partikuldrni feSeni linedarni diferencidlni rovnice 2. fadu
y" + 11y + 30y =0

vyhovujici po¢atecnim podminkam

Postup:

Pro zadéani derivace neznamé funkce v pocatecni podmince pouzijeme
vyraz D(y) (0). Je-li rovnic vice, muzeme je zadavat postupné, ukladat
do proménnych (zde rovnice a pocpodm) a v piikazu dsolve se na né
odkazat jménem proménné, do které jsme si je ulozili.

> rovnice:=diff (y(x),x$2)+11xdiff (y(x),x)+30*y(x);
rovnice 1= (% y(z)) +11 (L y(x)) + 30 y(x)
> pocpodm:=y(0)=2,D(y) (0)=4;
pocpodm :=y(0) =2, D(y)(0) =4
> dsolve({rovnice,pocpodm}, y(x));
y(z) = —14€(762) 4 16€(—52)

1.10 Partikularni reSeni linearni diferencidlni rovnice
2.7adu s okrajovymi podminkami

Priklad 9.

Naleznéte partikularni feSeni linearni diferencidlni rovnice z predchoziho pii-
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kladu vyhovujici okrajovym podminkam

Postup:

> okrpodm:=y(0)=2,y(1)=7;
okrpodm :=y(0) =2,y(1) =7
> dsolve({rovnice,okrpodm}, y(x));

(=74 2e69) el (2€(75) — 7) e(-62)
B S e Rty S o

1.11 Obecné feSeni soustavy linearnich diferencialnich
rovnic

Priklad 10.
Naleznéte obecné feseni soustavy diferencidlnich rovnic

¥ =z+ 3y

y' = —4x — 6.
Postup:

> rovnicel:=diff(x(t),t)=x(t) + 3 * y(t);

rovnicel := 4 x(t) = x(t) + 3y(¢)

> rovnice2:=diff(y(t),t)= -4 * x(t) - 6 * y(t);
rovnice2 := 4 y(t) = —4x(t) — 6y(t)
> dsolve({rovnicel,rovnice2},{x(t),y(t)});

4
{y(t) = —_C1 €20 - 3 _C2e3Y x(t) = _C1e2D + _C2e(31}



1.12 Partikularni feSeni soustavy linearnich diferen-
cidlnich rovnic
Priklad 11.

Naleznéte partikularni feSeni soustavy diferencialnich rovnic z pfredchoziho
ptikladu vyhovujici pocatecnim podminkam

Postup:

> pocpodml:=x(0)=2;
pocpodml :=x(0) = 2
> pocpodm2:=y(0)=3;
pocpodm?2 = y(0) = 3
> dsolve({rovnicel,rovnice2,pocpodml,pocpodm2}, {x(t),y(t)});
{y(t) = =17e=28 4 20e(=31 x(t) = 17728 — 15¢(-3D}

1.13 Numerické teSeni a feSeni ve tvaru rady

Nékteré diferencidlni rovnice (chce se mi fici vét§ina) maji Feseni obsahujici
specidlni matematické funkce (nap¥. gamma funkci I', Besselovu funkci apod.)
nebo dokonce teSeni, které nelze zapsat vyrazem konecéné délky. Takové
rovnice lze fe§it pomoci mocninnych tad nebo pfiblizné numericky.

Piiklad 12.
Naleznéte partikuldrni feseni diferencidlni rovnice

y':$2+y2

vyhovujici poc¢ateéni podmince

Postup:



> orisek:={diff(y(x),x)=x"2+y(x)"2,y(0)=3};

orisek := {y(0) = 3, % y(z) = 22 + y(2)?}
> dsolve(orisek,y(x));

3.y -3 z?
(I'(=)? — 37) BesselJ(—, —) 3 42
z [-—4 3 4 2 + BesselY(—, —)
, 472
r()
(T'(=)? — 37) BesselJ (=, —) 1 22
—— 3 427 BesselY (-, —)
) 42
r)

Piiklad 13.
Naleznéte feSeni z predchoziho piikladu pomoci mocninné fady.
Postup:

> dsolve(orisek,y(x),series);

244 4 4
y(z) =3+9x+27x2+?x3+£x4+%f—l—O(xﬁ)

Piiklad 14. ’
Naleznéte ptriblizné numerické feseni predchoziho ptikladu pro x = 0.2 a
nakreslete graf fesenf pro = € (0,0.3).
Postup:

> numerickereseni:=dsolve(orisek,y(x) ,numeric);
numerickereseni := proc(z_rkf45) ... end proc
> numerickereseni(0.2);
[z = 0.2, y(z) = 7.50526519376205314]
> plots[odeplot] (numerickereseni,0..0.3);
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2 Technické aplikace

Diferencidlni rovnice patii mezi nejuzitecnéjsi nastroje, které dava matemati-
ka pfirodnim a technickym védam pro popis dynamickych systému. Ukdzeme
si tii priklady, a to jeden mechanicky, jeden elektricky a jeden chemicky.

2.1 Priklad mechanicky

Urcete dobu T, za kterou dopadne na zem c¢lovék, kterého budeme povazovat
za hmotny bod o hmotnosti m, stojici uprostied zebiiku délky L = 40 m.
Zebiik stoji na vodorovné hladké podlaze a je opfen o svislou hladkou sténu
pod uhlem 45°. V case t = 0 se zebiik uvede do pohybu tak, ze jeho dolni
konec klouze po hladké podlaze a jeho horni konec klouze po hladké sténé
(viz. obrazek). Hmotnost Zebiiku zanedbejte a uvazujte tihové zrychleni g
=10 m s™2.
Resent:
7 obrazku urcime soutadnice osoby stojici uprostied zebiiku

L

T = —sinwo
2
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Obr. 1: Zebfik stojici na hladké podlaze opieny o hladkou sténu

L

= — COS .
¥y=73

To je vlastné parametricky zadana kiivka v roviné x — y s parametrem c,
ktery zavisi na case t.

Protoze I I I
22 +y* = (S sina)® + (Zcosa)? = (=),
2 2 2
ma stied zebfiku konstantni vzdalenost od pocatku — rohu mezi podlahou a

sténou, tedy padajici osoba se pohybuje po kruznici, jako by klouzala napft.
po hladké kouli.

Obé slozky rychlosti pohybu jsou

Vg = v _ £cosa da

Codt 2 dt
dy L i do
Vy = — = ——Ssina ——

Yo dt 2 dt

Rychlost pohybu osoby je potom

L da

— 2 2 277

v Vg + Uy 5

Ze zékona zachovani energie
L
Emv + mgy = mgyo

12



sestavime diferencialni rovnici popisujici ¢asovy vyvoj uhlu o

da 2 2 2 L 4q
=V L\/ 9(Yo — v) L\/ 93 (cos g — cos ) \/L (cos g — cos )
A pro zadané hodnoty

do _ C0S = — cos

at V1 “

My ovSem tuto rovnici feSit nebudeme. Pouze najdeme

do

,/cos% — COS &

a integraci uréime dobu 7', za kterou nesfastnik dopadne na zem

T . d
T:/ dt:/2 @ .
0 a ,/cos%—cosa

To lze spocitat v systému Maple nasledujicimi piikazy
> int(1/sqrt(cos(Pi/4)-cos(a)),a=Pi/4..Pi/2);

. Vs
9(3/4) /o 9 4sin(=)2 — 242 /o 5
V2 EllipticF( e \f) — V2 EllipticF 8 —, V2
V2 + /2 2 \/2+\/§sin(§) 2

> simplify(%);

dt =

2(3/4) 9 9
/2 EllipticF( V22

2+2 2

)

> evalf(%);
2.007220538

Zavér: osoba dopadne na zem priblizné za T = 2 s.

2.2 Priklad elektricky

Kondenzétor o kapacité C' = 10 uF a nabity na napéti Uy = 30 V se vybiji
pres odpor R =5 MS). Urcete napéti kondenzatoru za jednu minutu.
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Obr. 2: Schema elektrického obvodu s kondenzatorem a odporem

Postup:

Casova zména napéti kondenzatoru je imérna proudu
dUu
— =—1.
dt

Zaporné znaménko odpovidéd skutecnosti, ze vytékajici proud kondenzator
vybiji. Proud I je z Ohmova zdkona roven poméru napéti U a odporu R
takze

U
dt R’
coz dava linearni autonomni diferencialni rovnici prvniho fadu
aw__U
dt ~ RC’

Tu lze Tesit separaci proménnych, pomoci charakteristické rovnice nebo
na pocitaci pomoci systému Maple piikazem
> dsolve({diff (u(t),t)=—u(t)/(R*C),u(0)=ul0},u(t));

u(t) = ul e~ we)

> rhs(%);
ul e~ 7e)
> eval(%, [R=5e6,C=10e-6,u0=30,t=60]) ;
9.035826357

Zaveér: napéti kondenzatoru za jednu minutu klesne z 30 V na pftiblizné
9V.
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2.3 Priklad chemicky

Urcete koncentraci NOy v case t = 0.8 s, jestlize vznika reakci
2 NO + 02 — 2 N02

a pocatecni koncentrace NO v ¢ase t = 0 je cyo(0) = 2 mol/m?, pocdtecni
koncentrace O, je co,(0) = 3 mol/m? a pocatecni koncentrace NOy je nulova.
Rychlostni konstanta této reakce pii teploté 30°C je k = 0.01325 m®mol—2s71.
Uvazujte, ze reakce probihd (a) pii konstantnim objemu, (b) pfi konstantnim
tlaku.

Postup:

Z chemické rovnice vidime, ze rychlost r této reakce (definovand jako ¢asové
zména latkového mnozstvi — tj. poc¢tu moli — v jednotce objemu délend
stechiometrickym koeficientem) je imérna druhé mocniné koncentrace NO a
prvni mocniné koncentrace Oy s konstantou imérnosti k, tedy

r=k o Co,-

Protoze s kazdym vzniklym molem NO, ubude jeden mol NO a také pil molu
O,, je okamzité latkové mnozstvi NO v ¢ase t rovno

nyo(t) = nyo(0) — nyo,(t)

a okamzité latkové mnozstvi Oy v Case t je rovno

1

10, (t) = 10,(0) = 51x0, ().

2.3.1 Reakce za konstantniho objemu

Je-li plyn uzavien v neprody$né nadobé o konstantnim objemu V', budou

koncentrace n

C= —>

Vv

umeérné ldtkovym mnozstvim n a rychlost reakce bude

1

r =k (eno(0) — eno,(t))? (co,(0) — 9 ENO: ())-

Rust koncentrace NOy lze popsat diferencidlni rovnici

deno,(t) 2 1
— = 2 k (eno(0) — eno,(t))” (co,(0) — 9CNO: (1))-
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Oznaé¢ime-li si, pro zkraceni zapisu, a = cyo(0), b = c0,(0), a y = cno,(t),
dostaneme
y' = k(a—y)*(2b—y).
Nynf jiz mizeme pouzit systém Maple pro urceni y(0.8)
> k :=0.013256: a :=2: b := 3:
> rovnice:=diff (y(t),t)=kx(a-y(t)) 2% (2xb-y(t)):
> dsolve({rovnice,y(0)=0},y(t) ,numeric) (0.8);

[t =0.8, y(t) = 0.221814327883515211]

Zavér: pri reakci za konstantniho objemu bude v ¢ase ¢t = 0.8 s koncen-
trace NO, piiblizné rovna 0.22 mol/m3.

Reakei se méni latkové mnozstvi (poCet moli plynu), protoze dva moly
NO a jeden mol Oy daji vzniknout dvéma molim NO,. Takze pii kon-
stantnim objemu klesa tlak. Tento pokles tlaku by bylo mozné vyrovnavat
tak, ze bychom pfipoustéli do objemu inertni plyn, napi.Ny. Potom by
ale castecné unikaly i plyny tcastnici se reakce. Zanedbame-li tinik plynu,
zustava vyse uvedeny vypocet v platnosti.

2.3.2 Reakce za konstantniho tlaku

Probiha-li reakce za konstantniho tlaku p, bude se objem V v dusledku
klesajiciho latkového mnozstvi zmensovat. V tomto piipadé je vyhodnéjsi
uvazovat latkové mnozstvi n misto koncentrace ¢

dnno,(t) nyo(0) — nyo,(t) 5 ,10,(0) — 3nn0, (1)
—a VO RCTT ey )

Okamzity objem V(t) je
1
V(t) =V(0) — 5 Vinno,(t),

kde V; = % = 0.0246 m?3/mol je objem jednoho molu plynu pii daném
tlaku p a teploté 7.

Potom diferencialni rovnice popisujici casovy vyvoj latkového mnozstvi
N02 je

dnwo,(t) _ o (nx0(0) = nno,(t)” (n0,(0) = 3780, (1))
dt (V(0) = 5 Vinno,(t))? '
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Poté, co vyresime, napt. numericky, tuto diferencidlni rovnici, muzeme urcit
koncentraci NO, v Case t

nyo,(t) _ nyo,(t)
V(t) V(0) — % Vinno,(t)

cNo,(t) =

Pro piepocet poc¢atecnich koncentraci na pocatecni latkova mnozstvi mizeme
uvazovat libovolny, napi. jednotkovy, pocdteéni objem V(0) = 1 m?.

Oznaéime-li si, pro zkraceni zapisu, a = nyo(0) = cno(0)V(0), b =
n0o,(0) = ¢co,(0) V(0), y = nno,(t) a zvolime-li V(0) = 1, dostaneme

(a —y)*(2b —y)

!
=k
Y (1-Viy/2)?
& Yy
evo(t) = T3

Nyni jiz muzeme pouzit systém Maple pro uréeni cyo,(0.8)

> k:=0.01325: a:=2: b:=3: v1:=0.0246:

> rovnice2:=diff (y(t),t)=k*x(a-y(t)) 2% (2xb-y(t))/(1-vixy(t)/2)"2;
0.01325 (2 — y(t))% (6 — y(1))

(1 —0.01230000000y(t))?
> reseni:=dsolve({rovnice2,y(0)=0},y(t) ,numeric) (0.8);
reseni := [t = 0.8, y(t) = 0.222369027775583428]
> nNO02:=rhs(reseni[2]);
nNO2 := 0.222369027775583428
> ¢NO02:=nN02/(1-v1*nN02/2) ;
cNO2 :=0.2229789061

Zavér: pii reakci za konstantniho tlaku bude v ¢ase t = 0.8 s koncentrace
NO, pfiblizné rovna 0.22298 mol /m3, tedy piiblizné o 0.5 % vice neZ pii reakci
za konstantniho objemu. Tento rozdil je maly, protoze pocatecni koncentrace
reagujicich plynu jsou nizké. Presnéji

rovnice2 = L y(t) =

1 1
0 0 = = = 41 mol/m3

takze vétsina objemu je zaplnéna jinymi plyny, jejichz reakce neuvazujeme.
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