0.1 Conversion to initial value problem

The methods we are going to describe in this section are called shooting meth-
ods. Let us remind the difference between an initial value problem and an
boundary value problem. In initial value problem the initial conditions speci-
fied in one value of the independent variable x contain enough information to
start the numerical integration. In the boundary value problem, however, this
information is divided into two (or more) pieces, each of them specified in dif-
ferent . The main idea of the shooting method is to choose the remaining
information in one z value so that we can start the integration (to shoot) and
to observe, how the boundary condition in the other z value is satisfied (how
the target is hit). Let us explain it more precisely. Consider the system of
differential equations

dy;
dz

with 2-point boundary conditions

Zfi($7y17"')yn)7 i:1727"'7n (1)
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The problem (1), (2) can be written in a vector form

%%=f@mx g(y(a),y(b)) = 0.

Assume f and g have continuous derivatives according to all the arguments. If
the appearance scheme of (2), (n equations in 2n unknowns) is in the form

a)x 0 0 0 0 0 0 0 0 0 respb)x x x x x 0 0 0
0 x 0 0 0 00 O0O0OTO X X X x x 0 00
0 0 x 0 0 00 0 O00O X X X x x 0 00
0 0 0 x 0 00 0 0O X X X x x 0 00
0 0 0 0 x 0 0O0O0O0 X X X x x 0 00

(here n = 5), then it is an initial value problem (a Cauchy problem) in z = a in
a standard form or a Cauchy problem where the initial condition can be found
by solving n equations (2) in n unknowns. After solving this system we again
have all the n conditions in z = a necessary to start the integration.

Now, suppose that the complete initial conditions cannot be found from (2).
Instead, consider some other initial condition

yi(a) =m,...,ynl(a) =y, 3)

and suppose the Cauchy problem (1) with this initial condition has a unique
solution for any n = (71,72, - - . , M) in some domain M C R™. Then the solution
of (1), (3) for any fixed z € [a, b] defines in this domain M a unique vector-valued
function depending on n variables - the components of the vector n:

y(z) = w(z,n) . (4)

For z = b we have y(b) = w(b,n). Substituting into boundary condition (2) we
have

g(n,w(db,n) =0, (5)
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. G(m)=0. (6)
Now (6) is a system of n nonlinear algebraic equations for n unknowns 71,72, - - ., 75
(of course it is not written by elementary functions if the system of differential
equations (1) cannot be solved analytically).

We have the following result: If for any 7 there exists a solution of the
Cauchy problem (1) with the initial condition (3) on the interval [a, b] then the
number of solutions of the boundary value problem is the same as the number
of solutions of the equation (6) in the corresponding domain. If the equation
(6) has no solution, then the boundary value problem (1), (2) has no solution
either.

The main task is to find n satisfying G(n) = 0. In other words we want to
find an initial condition for (1) in z = a satisfying the boundary condition (2).
This can be achieved by various methods for nonlinear algebraic equations.

Boundary conditions have been formulated in a rather general way, including
also so-called mixed boundary conditions, meaning values of y both in = a and
in x = b appear in the function g;. Many practical problems involve separated
boundary conditions, meaning values of y either in z = a or in z = b appear in
each function g;. Then in the appearance scheme for (2) in each row either the
first n entries are zeroes or the last n entries are zeroes which may (for n = 5)
look like this

X X X xXx x 0 0 0 0 0
x x 0 0 x 0 0 0 0 O
0 0 0 0 0 x x x %X X (7
0 0 0O 00O x 0 0 0 O
0 0 00O 0 0 x x 0

Let us introduce the term problem of order p in the point = a (or z = b resp.).
We say that a boundary value problem with separated boundary conditions is
of order pin = a (or in £ = b resp.) if p = n —r where r is the number
of functions g; in (2) depending on y(a) (or on y(b) resp.). E.g. the problem
described by the scheme (7) is of order 3 in z = a and it is of order 2 in z = b.
It is obvious that if a given problem with separated boundary conditions is of
order p in = a then it is of order (n — p) in z = b.

In simple words in a point where the problem is of order p we must choose p
initial conditions and to compute the remaining n — p ones from the boundary
conditions. The problem can be converted into an initial value problem either
inx =a or in x = b and it is convenient to choose x = a or £ = b according to
where the order is lower.

0.1.1 Problem of order 1

To start with consider the differential equation (??) written as a system of
differential equations of the first order

Y1 = Y2,
8
vy = [f(z,y1,12) ®

Boundary conditions (??), (??) are then

aoyi(a) + Boyz(a) Yo, 9)
ary(d) + Biya(d) = M.



The appearance scheme for (9) is for nonzero «;,3;, i = 0,1, in the form

x x 0 0
0 0 x x

Thus it is a problem with separated boundary conditions. As this is a problem
of order 1 in z = a (and also in z = b) we must choose one condition in z = a
(or in z = b). Assuming Sy # 0 we choose the initial condition

yi(a) =m (10)

and we compute
pa(a) =m = B2 (11)
0
from the first equation (9). When integrating (8) with the initial conditions
(10) and (11) we get y1(b) = y1(b,m1) and y2(b) = y2(b,71), dependent on the
choice of 7;. These values must satisfy the boundary conditions (9). The first
of them is automatically satisfied by the choice of (11), the second one can be
written as
a1y1(b,m) + ry2(b,m) — 71 = (m) =0. (12)

Now, after choosing 71, we can compute the value of (1) according to (12)
using some method for numerical integration of initial value problem. To solve
the equation ¢(11) = 0 we use some method from chapter ??. Efficient meth-
ods use derivatives, an example being the Newton’s method or the Richmond’s
method. The derivative can be found using some difference formula, but this is
not very precise, since the numerical integration itself introduces certain error.
A better choice is to consider variation

_ o _ o _ % _ Oy
dyi(a) Om’ *7 oyi(a)  Om

The equations for Q; and Q2 can be derived by differentiating (8) with respect
to 11 and interchanging the differentiation with respect to z and m;

M (13)

Q = Q,
. I of (14)
Q2 = oy O+ 2 Q;
with the initial conditions
o
Q@) =1, Qa)=-=" (15)
Bo
derived from (10) and (11). From (12) we have
d
ﬁ("l) = a1 (b) + B (D) . (16)
T
Then the Newton’s method can be written as
k _
= gk o) 4 B ary1(b) + Biy2(b) — (17)

omh) - T T ) + A0 (0)

where y1 (b), y2(b), Q1 (b), Q2(b) are evaluated for n; = nf.
The following example illustrates this method.



Example 0.1.1 Consider the equation describing non-isothermal inner diffu-
sion in a slab catalyst with the concentration y € [0, 1]

1-y)
"no_ @2 exp ( 7/8( ) ].8
y y T+ 8= y) (18)
with boundary conditions
y'(0)=0, y@)=1 (19)
Introducing y1 =y, y2 = y' the equation (18) can be written as
1—y1)
! = y ! = @2 ex (L) . 20
Y1 =192 Ya e\ T (20)
We choose
y1(0) =m (21)
and from (19) using y» = y' we have
Y2 (0) =0. (22)

The function ¢ is then defined by the expression
o(m) =y1(1) - 1. (23)
The variational equations corresponding to (20) are

Q = Q,

Q) = dexp (%) : (1 - O%—B’Yg—y—lyl))?> (24

and the initial conditions are
Q,(0)=1, 02,(0) =0. (25)

The numerical integration of the initial value problem (20), (24) with initial
conditions (21), (22) and (25) was done using the Merson modification of the
Runge-Kutta method. The results are shown in Table 1. The convergence is
very fast.

0.1.2 Problem of higher order

Boundary conditions (2) for the system of equations (1) are for the problem
with separated boundaries in the form of

gi(yl(a);---;yn(a)) = 07 i:1,2,...,1" (26)
B va®) = 0,  i=r+l..n. (27)

Problem (1), (26), (27) is thus of order n — r in £ = a and of order r in = = b.
After choosing n — r “missing” values of initial conditions in z = a

(1 (a) =M, y2((1) =12, ayn—T(a) =Mn—r (28)



Table 1: Newton method for Example 0.1.1 (y =20; 8 =0.1; ® = 1)

y(0)=m | y(1) y'(1) | () elm) | ¢'(m)
1.00000 | 1.45949 | 0.84223 | 0.53898 | 0.45949 | 0.53898
0.14747 | 0.58712 | 1.00124 | 2.68144 | —0.41288 | 2.68144
0.30145 | 0.89906 | 1.21398 | 1.53643 | —0.10094 | 1.53643
0.36715 | 0.99073 | 1.23051 | 1.26792 | —0.00927 | 1.26792
0.37446 | 0.99991 | 1.23081 | 1.24276 | —0.00009 | 1.24276
0.37453 | 1.00000 | 1.23081 | 1.24251 | 0.00000 | 1.24251
0.50000 | 1.13356 | 1.20276 | 0.91577 | 0.13356 | 0.91577
0.35416 | 0.97396 | 1.22931 | 1.31470 | —0.02604 | 1.31470
0.37396 | 0.99929 | 1.23080 | 1.24444 | —0.00071 | 1.24444
0.37453 | 1.00000 | 1.23081 | 1.24251 | 0.00000 | 1.24251
0.10000 | 0.44534 | 0.83312 | 3.32963 | —0.55466 | 3.32963
0.26658 | 0.84243 | 1.19239 | 1.71764 | —0.15757 | 1.71764
0.35832 | 0.97940 | 1.22979 | 1.29940 | —0.02060 | 1.29940
0.37417 | 0.99955 | 1.23080 | 1.24373 | —0.00045 | 1.24373
0.37453 | 1.00000 | 1.23081 | 1.24251 | 0.00000 | 1.24251

it is possible to solve r values

Yn—r+1 (a) = Mn—r+41,--- 7yn(a) = 1Tn (29)

from (26), possibly after a suitable rearrangement of (yi,...,yn). As a result
we have n conditions (28) and (29) in z = a, this presenting a Cauchy (initial
value) problem. After integrating this initial value problem in the interval [a, b]
we get the values y1(b),...,yn(b), dependent on the chosen initial conditions
(28). These values must also satisfy the conditions (27) (so far unused)

gi(yl(b,nl,...,nn_r),...,yn(b,nl,...,nn_r)) =0, i=r+1,...,n. (30)
The equations (30) can be written as
Gi(my- - yMn—r) =0, i=1,...,n—r. (31)

To solve this system we can use some method from chapter ??7. So we are
able to evaluate Gy, ...,G,_, for given ny,...,9,_,. Without the knowledge of
derivatives of G; Warner scheme can be applied (see section ??). To do this we
have to evaluate the functions G; for n —r +1 different values n¥,... n*__ k=
1,2,...,n—r+1, meaning we have to solve the initial value problem (1), (28),
(29) with (n — r + 1) different initial conditions (28) (thus (n — r + 1) times).
The system (31) can also be solved by some method from chapter ?? that
uses derivatives if the derivatives of the functions G; are known. Let us try
to derive the Newton’s method for system (31), thus for the boundary value
problem of order n — r in £ = a. To find the Jacobi matrix we must compute



gf]';",i,j =1,2,...,n—r. Considering (30) we have

the partial derivatives

i,j=1,2,...,n—1. (32)

After differentiating the system (1) with respect to 7; and denoting

_ Ouk

k.]_a,r}]7 IRy (O j:1,2,...,n—r, (33)

and changing the order of differentiation we get a system of variational differ-
ential equations

dQy; =~ Ofk .
=Y Ea,,;, =1,2,...,n, j=1,2....n—r. (34
v 2y, F n,o n—r. (34)

In view of the initial condition (28) the variational variables Q; satisfy the
initial conditions

0 pro k#j .
ij(a):{ 1 gro ki_‘; k,j=1,2,...,n—r. (35)

The remaining initial conditions can be found from the conditions (26) assuming

the system of r equations (26) is solvable in r variables y,—r11(a), yn—ry2(a), .- -
-.,yn(a), thus

yk(a):(I)k(yl(a):lh(a),---,yn_r(a)) , k=n—-r+1,....,n.  (36)

Then

0 o N ,
9yx(a) = Q;(a) = KT T), k=n—r+l,...,n,j=1,2,...,n—7.
on; o
(37)
Even in case the equations (36) cannot be solved explicitly, we still can get (37)
as a solution of some system of linear algebraic equations using the Implicit
function theorem. The relations (35) and (37) present a complete set of n(n—r)
initial conditions for n(n — r) functions Q; and n(n — r) differential equations
(34).
To conclude we integrate the system of equations (1) with initial conditions
(28) and

yk(a):(:[)k(nla,’hr":nn*T')7 kZ’I’L—’I"-{-].,...,TL, (38)

and the system of equations (34) with initial conditions (35) and (37) simulta-
neously, this is an initial value problem of n + n(n — r) differential equations
with the same number of initial conditions. For chosen 71,72, ..., N,—» we have

inx=2»
yl(b)a yQ(b)aayn(b)
Q11(b), Qi2(b), ..., Q1 pr(d)

hnl (b); QnZ (b)a RN Qn,nfr(b)-



We can evaluate G; from (31) and (30) and we can find the Jacobi matrix of
the functions G; from (32), where Oy, (b)/0n; is replaced by Q;(b). We have
all we need for the Newton’s method.

This shooting method for boundary value problems is a reliable algorithm.
The method is widely applicable if initial value problem can be integrated. In
some problems the numerical integration can be done from one side only or it
cannot be integrated from either side. For these problems the shooting method
must be modified (the multiple shooting method) or it cannot be applied at all.

The following example illustrates the use of variational equations once again.

Example 0.1.2 The stationary regime of a homogeneous exothermic reaction
of the first order in a tube non-isothermal non-adiabatic flow-through system
can be described by the equations ('= LL):

Lo ! 0 =
P 6" —0"—p0—6.)+BDa(1—y) exp<1+€0 = 0, (39)
L y" —y' + Da (1 —y) exp 6 =0 (40)
Pe 1+¢6
with boundary conditions
z=0: 0'=Peb; y =Pey (41)
z=1: 6'=0; y=0 . (42)

Here y is the dimensionless conversion, 0 is the dimensionless temperature,
Pe is the Peclet criterion, x is the dimensionless space coordinate, B is the
dimensionless adiabatic thermal increase, Da is the Damkdéhler criterion, € is
the dimensionless activation energy, [ is the dimensionless thermal throughput
coefficient, 0. is the dimensionless cooling medium temperature.

We convert the problem to the initial value problem in x = 1 (this is better
from the numerical point of view, for higher Pe it is not possible to convert it to
the initial value problem in x = 0 at all due to instability of the integration of
the corresponding initial value problem) and we use the Newton’s method. Thus
we choose

01) =m;  y()=mn (43)
and the conditions (42) give the remaining two initial values necessary for the
integration. Let us denote the variation variables

09 09 dy dy
Q=i Qo= o Qo= Qgy=—o. 44
11 87}1 12 8772 21 22 ( )

8771
For these functions we get the equations

1 0 1—y
P_eQIIII — Qlll - ,3011 + B Da exp (1 T 56) - (-le + mﬂll 0(45)

1
ﬁQIIIZ — 0}, — Q2 + B Da exp

= 0(47)

1

Po 05, — Q% + Da exp

0(48)

)
_Q”er%) = 0(46)

)

)

1
P—eQ'z’l — Q5 + Da exp (



The equations (45) and (47) come from differentiation of (39) and (40) with
respect to 11, the equations (46) and (48) come from differentiation with respect
to ny. We let the equations of the second order and we do not convert them into
a system of 1-st order equations for clear arrangement. The initial conditions

for (45) - (48) are
Q1(1) =1; Q12(1) =0; Q21(1) =05 Q2(1) =1; (49)
an(l) = Q112(1) = Q121(1) = Q122(1) =0. (50)
To satisfy the boundary conditions (41) we must solve

Gi(m,n2) = Pef(0)—6'(0)=0 (51)
Ga(n,m2) = Pey(0)—y'(0)=0. (52)

Partial derivatives for the Jacobi matrix are

6G1 6G1

=L = Pe 0;1(0) — Q,(0) = ZZL = Pe 01,(0) — 2,(0) =
o e 211(0) — 21, (0) = a1, o e 212(0) — Q21,(0) = a12,
oG oG

-2 = Pe Qzl (0) — 9121(0) = a1, =2 = Pe QQQ(O) — 9122(0) =asy .
8771 6172

(53)
For a given m = (n1,m2) we can integrate the equations (39), (40), (45)-(48)
with the initial conditions (42), (43), (49), (50) from x =1 to x = 0. In this
way we get the values of all the functions y, 8, Q;; along with their derivatives
in x = 0. Then we can evaluate G1 and Ga using (51), (51) and the Jacobi
matriz using (53). Table 2 gives the results of the Newton’s method for one
initial approxzimation n = (0;0) for the following parameter values

Pe=2; pf=2; 6.=0; B=12; Da=0.12; £=0. (54)

Table 3. shows the iterations for four other initial approximations m. These
two tables show that we have found five different solutions of the boundary value
problem (39), (42). The solutions 0(x) and y(z) are plotted in Fig. 1. The solu-
tion from Table 2 is denoted e, other solutions are denoted a, b, c,d in agreement
with Table 8. This example illustrates that a boundary value problem (especially
a nonlinear one) can have more than one solution. On the other hand, such a
problem can have no solution.

* * *

For further study the reader is invited to check the following literature [?], [?],

(73, 171, 120, 120, [7], [



Table 2: Newton method for Example 0.1.2

iteration
0 1 2 3 4 5
m 0.0000 | 0.7395 | 1.0299 | 1.0932 | 1.0963 | 1.0963
72 0.0000 | 0.1570 | 0.2206 | 0.2340 | 0.2346 | 0.2346
6(0) | —0.9236 | 0.1165| 0.4170| 0.4732| 0.4759 | 0.4759
6'(0) 1.6624 | 1.0066 | 0.9499 | 0.9516 | 0.9518 | 0.9518
y(0) | —0.0568 | 0.0496 | 0.0866 | 0.0936 | 0.0940 | 0.0940
y'(0) 0.0680 | 0.1416 | 0.1790 | 0.1857 | 0.1880 | 0.1880
Gi1 | —3.5150 | —0.7736 | —0.1160 | —0.0051 | 0.0000 | 0.0000
Gy | —0.1816 | —0.0424 | —0.0057 | —0.0002 | 0.0000 | 0.0000
Q:,(0) | 1.5021 | 0.8118 | 0.5151 | 0.4503 | 0.4471
Q7,(0) | —1.1431| 0.0906 | 0.5023 | 0.5789 | 0.5825
Q42(0) | 0.7947 | 1.5142 | 1.8810 | 1.9658 | 1.9700
Q15(0) | —1.2645 | —2.1345 | —2.4099 | —2.4557 | —2.4578
Q2:(0) | —0.0621 | —0.1043 | —0.1215 | —0.1251 | —0.1253
Q5,(0) | 0.0838 | 0.1339 | 0.1438 | 0.1447 | 0.1447
Q22(0) | 1.0473 | 1.0881 | 1.1075| 1.1118| 1.1120
Q4,(0) | —0.0424 | —0.0540 | —0.0434 | —0.0391 | —0.0389
ai 4.1474 | 1.5330 | 0.5279 | 0.3218 | 0.3118
a2 2.8539 | 5.1630 | 6.1718 | 6.3873 | 6.3977
az; | —0.2081 | —0.3425 | —0.3868 | —0.3950 | —0.3953
aso 2.1370 | 2.2303 | 2.2583 | 2.2627 | 2.2628
Ay 0.7395 | 0.2904 | 0.0633 | 0.0031 | 0.0000
An 0.1570 | 0.0636 | 0.0134 | 0.0006 | 0.0000




Table 3: Newton method for Example 0.1.2

a b c d
n 2 n 2 M 72 M 2
2.0000 | 0.0000 | 4.0000 | 0.7500 | 2.9000 | 0.9800 | 3.6000 | 0.9500
2.1644 | 0.4378 | 3.1441 | 0.6149 | 3.2155 | 0.9815 | 3.6781 | 0.9396
4.4148 | 0.8706 | 3.1447 | 0.6189 | 3.2114 | 0.9853 | 3.6919 | 0.9374
4.1768 | 0.8817 | 3.1448 | 0.6189 | 3.2132 | 0.9848 | 3.6926 | 0.9373
4.1098 | 0.8949 3.2133 | 0.9848 | 3.6926 | 0.9373
4.0792 | 0.8971
4.0775 | 0.8973
4.0774 | 0.8973
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Figure 1: Five different solutions of the boundary value problem from Example
0.1.2
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