Chapter 1

Numerical solution of
ordinary differential
equations - initial value
problem

Numerical integration of ordinary differential equations is a frequent task of
numerical analysis in chemical engineering problems. Numerical integration of
differential equations is used if the equations are nonlinear or if we have a large
system of linear equations with constant coefficients, where the analytical so-
lution can be found, but it is in the form of long and complicated expressions
containing exponential functions. Numerical integration of such systems is more
efficient both in human time and in computer time. Numerical integration of
linear equations with non-constant coefficients is also more efficient than the an-
alytical solution; in the case of inner diffusion in porous catalyst with a chemical
reaction of the 1. order the analytical solution contains Bessel functions, which
can be evaluated more conveniently when we use numerical integration of the
original equations than to evaluate Bessel functions.

Many problems in chemical engineering involve solution of ordinary differen-
tial equations. These are dynamical problems in isotropic media and stationary
problems with a single space variable. The former include batch reactor, differ-
ential distillation, non-stationary regime of a distillation column etc. The latter
include tube reactors and heat exchangers.

In some chemical engineering problems dynamic balance must be solved with
accumulation that terms differ by several orders of magnitude. This corresponds
to physical processes where some dependent variables relax very fast while others
approach the stationary state slowly. This type of problems is called “stiff”
and it is difficult to solve. Stiff problems often arise in reactor engineering
(radical reactions, complex reactions with one of them very fast) and in system
engineering (dynamic regime of a distillation column with a mixture containing
one volatile component or one component with trace concentration).

Problems in dynamics of counter-current separation devices or systems of
interacting devices lead to systems of hundreds of ordinary differential equations.



Solution of such problems often requires special algorithms.
We do not discuss differential-algebraic equations (DAE) that can be express
in the form
F(y',y) =0,

that cannot be solved in 4'. These equations appear in several chemical engi-
neering problems and they are difficult to solve. The reader is invited to check
the specialized literature [?], [?], [?].

1.1 Euler’s method and the method of Taylor’s
expansion

Consider a single differential equation

y' = f(z,y) (1.1)

with the initial condition
y(a) =c. (1.2)
We want to find the solution y(z) in discrete points (nodes) a = zo < 1 <
Ty < ... < zy = b ie. we want to find numbers yo = ¢, y1,-..,YN , APProx-
imating the values y(z¢),y(x1),...,y(xn) of the exact solution in the nodes
Zg,...,Zn . We often consider the equidistant grid, i.e. Tp41 —z, = h;n =

0,1,...,N — 1. The number h is called the step size. The approximation y,
of the exact solution y(z,) in z, is computed from the values of the approx-
imate solution evaluated in previous nodes. If y,41 is expressed by k values
YnsYn—1s- - -, Ynt1—k, the method is called a k-step method. If we replace the
derivative y' in = x,, by the difference formula using two points z,, and =41
(see formula 1 in table ??) we get the Euler’s method

Ynt1 = Yn + hf(Zn,yn), n=20,1,2,...,N —1, (1.3)

with
Yo=cC.

The computation using the Euler’s method is very easy. We can illustrate it by
the following example. Solve the equation y' = y; y(0) = 1 using the Euler’s
method. The recurrent relation (1.3) is

Ynt1 = (1+R)yn , Yo=1,

i.e.
yn = (1+h)".

For a given z we have n = %, and thus
Yn =1 +h)F =[(1+h).

For h — 04 the approximate solution y,, converges to the exact solution e”.
Denoting y(x) the exact solution, the difference

en =Yn — y(Tn) (1.4)



is called the global approximation error or the global discretization error and
Yn is called the theoretical approximation of the solution. Another type of error
comes from the fact that we cannot compute the value y,, exactly. Denoting 4,
the values that are computed instead of y,, the difference

Tn = Un — Yn (1.5)

is called the round-off error. Then the total error is given by the triangle in-
equality
|ﬂn - y(xn)| < |en| + |7'n| . (1.6)

The values 7, are called the numerical approximation. In what follows we
deal with the theoretical approximation only, though the round-off error is also
important, because they may be larger than the approximation error in some
cases. We also skip the derivation of the error estimates because it is out of the
scope of this text.

If the function f(z,y) satisfies the Lipschitz condition in y, i.e. if there is a
constant L > 0 such that

|f(2,y) — f2,y")| < Ly — 7| (1.7)

is true for z € [a,b] and any y and y* and if the exact solution y(z) of the
equation (1.1) is twice differentiable in the interval [a, b], and denoting

N@) = = max [s"()], (1.8)

2 tefa,z]

then the global approximation error of the Euler’s method can be estimated by

len| < AN (zy)EL(zn — a) . (1.9
Here
eLw -1 )
By(z) = r HL>0 (1.10)
T ifL=0

is the so called Lipschitz function.
Assuming the function f has the first partial derivative in Q@ = [a,b] x
(—00,00) continuous then we can estimate N(x) by

2N(z) <N = max |fo(z,y) + fy(z,9) f(z,y)] , (1.11)
(z,y)EQ

where the index x and y denotes the partial derivative with respect to 2 and y
resp.

The estimates (1.9) are usually very pessimistic, which can be illustrated by
the following example:

y=y, y0)=1.

The exact solution is y(x) = €*. Equation (1.7) gives L = 1. The estimate N (x)
can be done from the exact solution, i.e.

2N(z) =€" .



Table 1.1: Global approximation error e, and its theoretical estimate (1.12),
h=2"6

Tn 1 2 3 4 5

Yn 2.69735 | 7.27567 | 19.62499 | 52.93537 | 142.7850
en -0.02093 | -0.11339 | -0.46055 | -1.66278 | -5.6282
estimate (1.12) | 0.03649 | 0.36882 | 2.99487 | 22.86218 | 170.9223

According to (1.9) we have
1
len| < ihe‘”" (e —1). (1.12)

Table 1.1 compares this theoretical estimate with the real global approximation
error for h = 276,

The estimate (1.9) shows that the error of the Euler’s method for a given z
is proportional to the first power of the step size h, i.e. O(h) (see ?77). We say
the Euler’s method is of the first order. Thus the Richardson extrapolation can
be used for an a posteriori error estimate (see (?7)).

Fig. 1.1 illustrates the round-off error. The global approximation error is
proportional to h while the round-off error is proportional to 1/h (the smaller
the h the greater the number of arithmetic operations). As a result there is a
certain “optimal” step size hopt giving the least total error.

Figure 1.1: Global approximation error e, (1),
round-off error (2) and the total error (3) for
the Euler’s method.
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We do not want to use hopt as the step size, because then the round-off error
is of the same size as the approximation error and the Richardson’s extrapolation
cannot be used for the estimate of the total approximation error. The only way
how to estimate the round-off error is to repeat the computation with different
precision (different size of the floating numbers used by the computer).

Modern algorithms adjust the step size h automatically according to the local
approximation error to get the final approximation with the required accuracy
with a small number of operations (see 1.2, ??).

For special cases the method of Taylor’s expansion can be used. If the
function f in (1.1) has enough derivatives then we can write

n

Y tau@) = £ole) + Sy =



where the index z or y denotes the partial derivative with respect to x or y resp.
The third derivative is

Y" = foo +2f fay + fyuf* + fufy + £y (1.14)

etc. The change in y(x) can be found by the Taylor’s expansion

Y(@n +h) =ypy1 = (1.15)
2

" h» (p) p+1
—y (mn)+...+Fy () + O(RPT) .

=yn + hy'(z,) + 5

The method (1.15) is called the method of Taylor’s expansion of order p. Its
global error is of order p, i.e. O(hP).

Example 1.1.1 Use the method of Taylor’s expansion of the third order to solve
the initial value problem

4 Yy
y==-v"-=, y(1)=0. (1.16)

Solution:
According to (1.15) for n =10,1,2,... we have

w4 D) = Gsr = by ) + o) ) + OB,
Here
o =1, Y% =0,
V) = -
Vi) = =i =) - LI B Oy B gy
Ve = 20 )~ 2 (o) - LI 2 Z )
- Do T B g,

Table 1.2 shows the computed values of the solution in the point xn = 2 for
various N (and thus for various h = 1/N ).

It is obvious that this method is not suitable for general equation, because
analytical differentiation may be very laborious for higher orders. This method
can be used even for systems of differential equations, but the complexity of
the derivation increases. Richardson’s extrapolation can be used as well as
illustrated in Table 1.2.

1.2 Runge-Kutta methods

The analytical differentiation needed for the Taylor’s expansion as shown in
the previous section is a principal obstacle for most practical problems. We



Table 1.2: Solution of 1.16 using Taylor’s expansion of order 3.

z |1 1.2 1.4 1.6 1.8 2
h=0.2 01 0.576000 | 0.835950 | 0.920226 | 0.920287 | 0.884745
h=0.1 |y(z)|0]0.581645 | 0.838338 | 0.919251 | 0.918141 | 0.882631
h=0.05 0] 0.582110 | 0.838443 | 0.919062 | 0.917872 | 0.882386

Richardson’s extrapolation (see ??) inz =2:
p=3, h1 =0.1, hy =0.05,
y1(2) = 0.882631, y»(2) =0.882386 = y:12(2) =0.882351
2(z* - 1)

Exact solution: y(x) = TR y(2) = 0.882353

show a method with similar properties (order of approximation) as the Taylor’s
expansion method, but without the need of analytical differentiation. Let us
write the increment in the form

Ynt+1 = Yn + h@(.’l]n, Yn; h) (1'17)

where y,, ~ y(z,) . For the Euler’s method we had ®(z,y; h) = f(z,y). Assume
the increment function ® in the form

®(z,y;h) = a1 f(z,y) + azf(w +pih,y + p2hf(z, y)) (1.18)

where the constants a1, as,p; and py are to be found so that the method ap-
proximates the solution as good as possible. Put ® from (1.18) into (1.17) and
expand in powers of h (with z = z,,, ¥y = y,) :

Yn+1 = Yn+ h{ (a1 +a2) f(z,y) + has (plfz(w, y)+p2fy(z,y)f (=, y)) + 0(h2)} :
(1.19)
We want the expansion (1.19) to agree with the Taylor’s expansion

YCon + 1) = y(@) + 11 @ 9) + 50 (£ole,0) + £y (,) 1 2,0)) + O() (120

where y' was replaced by f and y"” was replaced by (1.13). Comparing the terms
linear in A in (1.19) and (1.20) we get

a1 +ay = 1. (1.21)

The agreement of the terms quadratic in h (for any f(z,y)) requires

1 1
mpr =5 5 G2p2 =3 (1.22)
It can be shown that the agreement of cubic terms in A cannot be achieved
for general f(z,y). We have three equations (1.21), (1.22) for four unknown
parameters aj,az,p1,p2. We can choose one of them, say as = «, then

1

a @ ay=a, pr=pr= oo (1.23)



where a # 0 is a free parameter. Then the equation (1.17) using (1.18) has the
form

Yntl =Yn + (1 - a)h’f(wnayn) + Oéhf (wn + h + i.)"("1"n7yn)) + O(hg) .

20’ T 24
(1.24)
The result (1.24) can be conveniently written in successive equations
ki = hf(zn,yn)
— h
k2 - hf(wn‘}'%:yn‘}'ikl)
Ynt1 = Yn+ (1 —a)ks +aks .

The cases a = % and a = 1 are well known and they are called improved Euler’s
method or Heun’s method :

k1 = hf(xmyn)
ko = hf(zn+ h,yn + k1) (1.25)
Yntl = Yn T+ %(kl + k2)

and modified Euler’s method

ky = hf(xmyn)
ko = hf(zn+ 2 yn+ 3k1) (1.26)
Ynt1 = Ynt+ka.

In some texts (1.25) is called modified Euler’s method. Both of these methods
have the local error O(h%), and the global error O(h?). They belong to the
family of Runge-Kutta methods as the simplest examples of them. More com-
plicated and more accurate methods can be derived by a similar approach. We
mention some representatives of them of order 3, 4, and 5. A general Runge-
Kutta method can be written in successive equations (with z = z,,, y = yn):

kl = hf(xay)

ko = hf(z+aih,y+ fi1k1)

ks = hf(z+ azh,y + a1k + Bazks)

_ (1.27)
kivi = hf(x+ajh,y+ Bk + Bjeks + - - -+ Bjjk;)

Ynt1 = Ynt+ ki +y2k2 4+ + i1k

The method (1.27) can be written in the form of Table 1.3. This table also
lists some Runge-Kutta methods and their order (global error).

If we want to get the order m with the Runge-Kutta method then for
m = 2,3,4 we need 2, 3,4 evaluations of the right hand side of the differen-
tial equation. For m = 5 we need at least 6 evaluations and for m > 4 we need
more than m evaluations. Thus the methods of order greater than 4 are seldom
used, because their advantages become important only when very high accuracy
is needed.

Sometimes the solution has a different character for different values of the
independent variable z, and a different step size h should be used to get the
desired accuracy. If we choose the step size to be the minimum of all the
required step sizes, the accuracy is achieved, but in some parts we integrate



Table 1.3: Overview of Runge-Kutta methods

Scheme of Runge-Kutta methods

(651 ,311
Q2 ,821 ,822
(6%} ﬂSl ,632 ,833
aj | Bin Bje Bii
noo7 Vi Yin
Euler
improved (1.24) O(h?) || modified (1.25) O(h?)
11 ik
i i 0 1
Heun O(h®) Kutta O(h®)
1] 1 1 1
g 3 2 2 2
210 2 1| -1 2
1 2 1
T 0 i 6 3 &
Runge-Kutta order 4
standard O(h*) || three eighth OHhY)
101 1 1
ila 1 31 %
3|0 3 3|73 1
110 0 1 1 1 -1 1
1 1 1 1 1 3 3 1
6 3 3 6 8 8 8 8
Butcher order 5 O(h®)
1 1
4 4
1 1 1
4 8 8
110 -1 1
ilis 0 0 g
3 2 12 12 8
Ll -% 7 % —% =
79 32 12 32 7
90 920 920 90 90




unnecessarily accurate. This is not an effective approach. Single step methods
(as Runge-Kutta e.g.) allow adaptive adjustment of the integration step size
according to the character of the solution. A whole class of methods have been
developed where the error in each step is estimated from the computed k;,
where the number of these k; must be more than the minimal number of them.
The first method of this kind was developed by Merson, others were found by
Fehlberg. The Merson’s method is of order 4 and it uses 5 evaluations of the
right hand side f(z,y). It can be written as follows:

k
ki = hf(zo,y0) yi = Yo+ 31
h ki+k
ky = hf($0+§;yl) Y2 = Yo+ 16 2
h
ks = hf(zo+3,42) ys = o+ 0.125k; + 0.375ks (1.28)
ks = hf(zo+0.5h,y3) ys = yo+ 0.5k — 1.5ks + 2k4
ki +4ks + K
ks = hf(zo+h,ys) ys = y0+1f45-
For small h assuming f(x,y) approximated by
f(z,y) = Az + By +C (1.29)
. . _pBy® . _pBy®)
Merson derived that the error or y4 is T and the error of ys is o)
Then we can estimate the error of y5 by
1
E=—(ys—ys) - (1.30)

5

If this estimate E is less than the desired error € then the current step size
is good. If not, we decrease the step size (by taking one half of it) and we
recompute the last step. If |[E| < 35 we can increase the step size (by taking
its double). Instead of taking one half or the double of the step size, we can
predict the optimal step size by

£ 0.2

hrew = 0.8 hotg (If) . (1.31)
The factor 0.8 is used to avoid the case when after prolongation we have to
shorten the step size.

Each Runge-Kutta method can be used not just for a single differential
equation but also for a system of differential equations of the first order. Then
y, f, k; become vectors. They can be used for equations of a higher order as well.
Such a system can be converted into a system of the first order as illustrated by
the following example. The equation

y" = f(z,9,9")
is equivalent to the system
y'=2  2'=flz,y,2).

There are special Runge-Kutta methods for equations of the 2. order. Their
advantages are weak so they are seldom used.



1.3 Multi step methods

When using single-step methods as described in the previous section, we do not
make use of the course of the solution found so far. After each step we forget
all the information and we start from scratch. This is not effective. Multi step
methods have been designed to utilize a few last points of the solution.

The solution is computed in an equidistant grid of points with the step size h.
We denote x; = xg + th,y; = y(x;), fi = f(z;,y;) . A general linear multi-step
method can be written as

QkYntk + Ak—1Yntk—1 + -+ + QoYn = h(ﬂkfnJrk + Be-1frtk-1+--- + ﬂofn)

(1.32)
assuming ay # 0, a3 + 82 > 0. This is called a k-step method. Let us denote
the polynomial

o€) = artf + -+ né +aq. (1.33)

A necessary condition for the convergence (i.e. for h — 0, we approach the
exact solution) of the linear multi-step method (1.32) is: all the roots of the
polynomial ¢(£) must be in absolute value less than 1, or equal to 1 but then
they must be of multiplicity 1. This is called the stability condition of the
method. Methods that fail this condition are useless.

Let us define the adjoint differential operator

Lly(z);h] = ary(z+kh) + ar1y(z + (k —1)h) + -+ + agy(z)—
—h(Bey (@ + kR) + Bioay' (@ + (k= Dh) + -+ + foy'(2)) .
(1.34)
Expanding y(z + mh) and y'(z + mh) by the Taylor’s polynomial around z we
get

1 1 ... .
y+mh) = y(@)+mhy'(z) + ;m* %" (@) + -+ m'hiy (@) + -

1 1 ... )
hy'(z) + mh?y" (@) + 5m*hPy" (z) + - + Em’h'“y(’“) () + -

hy'(z + mh)

Put these expansions into (1.34) and we have
Lly(x); h] = Coy(x) + Cihy'(z) + -+ + Cyhy D (@) + - -- (1.35)

where the coefficients C,; satisfy:

Ci = ap+a+---+ag
Ci = an+2a2+--+kar—(Bo+p1+---+Bk)
c, = %(al + 2% + -+ klag) — ﬁ(ﬂl +2071 8y 4 - KT B).
(1.36)
We say that the differential operator is of order p if
Co=Ci=--=Cp=0, Cpt1 #0. (1.37)
Thus
Lly(z); h] = O(R**) (1.38)

10



Table 1.4: Adams formulas
Adams-Bashforth

1 0 1 2 3 4 5
Boi 1
2B1i 3 -1
12825 23 —16 5
243; 55 -59 37 -9
720084; | 1901 | —2774 | 2616 | —1274 251
14408s; | 4227 | —=7673 | 9482 | —6798 | 2627 | —425

Adams-Moulton

) 0 1 2 3 4 b)
Boi 1
2p1; 1 1
1282 | 5 8| -1
248s; 9 19 -5 1

72084 | 251 646 | —264 106 | —19
14408s5; | 475 1427 | —798 482 | —173 27

and the local error is O(hPT!), the global error is O(h?) . The process of finding
the coefficients « and § so that (1.37) is satisfied is called the method of unknown
coefficients. A method of order p approximates exactly a solution which is a
polynomial of order not more than p. A necessary condition for getting the
exact solution as h — 04 is that the order of the adjoint differential operator is
at least 1, i.e. Co = 0 and C; = 0. For k odd, the order of a stable operator
cannot be greater than k + 1. For k even, the order of a stable operator cannot
be greater than k + 2. To get p = k + 2 all the roots of g(§) must be on the
unit circle (in absolute value equal to 1) and the formula is designed so that as
many as possible of the constants Cy, C1,Ca, ... vanish.

1.4 Adams formulas

We present some special multi-step methods. Adams formulas have only two
nonzero coefficients a; in (1.32), namely the coefficients with the highest index.
They split into two groups, explicit Adams-Bashforth formulas (with 8 = 0)
and implicit Adams-Moulton formulas (with 8y # 0). Adams-Bashforth formu-
las are often written

q
Ypr1 —Yp=hY_ Buifp—i- (1.39)
i=0
The coefficients (4; are listed in Table 1.4. For ¢ = 0 we have the Euler’s
method. For ¢ = 1 we have

(1.40)

3fp — foe
Ypir = yp + n B2~ Jo=1) 2fp o

11



It is important that the wanted value y,41 appears in (1.39) linearly and thus
can be expressed explicitly. This is different in Adams-Moulton methods which
are implicit

q
Yp = Yp-1 = hz ﬂqz’fpfi . (141)
i=0
Here the wanted value y, appears also in the nonlinear right hand side in f,. To
solve the nonlinear system of (algebraic) equations (1.41) with y and f being
vectors, we must use some iteration method. Often a simple iteration

new

Yp  —Yp-—1 = h/BQOf('Z.p7 ygld) +h Z 5qifp7i (142)

i=1

is used which converges for sufficiently small hA.
The coefficients for Adams-Moulton methods are given in Table 1.4. For
q = 0 we have

Yp = Yp—1 + hfp, (1.43)
which can be called the “implicit Euler’s method”. Pro ¢ = 1 we get
Yp = Yp-1 +h(fp+fp71)/2 ’ (1-44)

which is called the trapezoidal rule (note the similarity with the formula for
numerical evaluation of a definite integral with the same name).

The global error of the Adams-Bashforth formulas (1.39) is O(h9*!), for
Adams-Moulton formulas (1.41) we get also O(h?t!). However, the order of
the implicit methods is higher by one for the same number of the node points.
The disadvantage being the implicit character of the method and the need to
iterate. A combination of an explicit and an implicit method gives the “predictor
- corrector” method. The explicit method is used as a predictor to get the initial
value of y, to use in the iteration in the implicit method. When we combine
the Adams-Bashforth and the Adams-Moulton method of the 2.nd order we get
the final “predictor - corrector” method of the 2.nd order

T = Yp1+hBfpo1 — fr2)/2
Y = yz—1 + h(f(;p,gj) +pfp_1)/2 ) (1.45)

There are many predictor - corrector methods. Also besides Adams methods,
there are other methods, as Nystrom’s methods and Milne-Simpson methods to
name a few. More details can be found in the original literature.

All the multi-step methods have one big disadvantage: it is not possible
to start the computation just with knowledge of the initial condition. These
methods require the knowledge of the solution (and its derivatives) in a few
nodes, one of them being the point where the initial condition is given. To
get this information various means are used, we mention here the two simplest
ones: using the Taylor’s expansion when the function f is easy to differentiate
and the Runge-Kutta method otherwise. It is important to use a method with
the order not less than the order of the multi-step method used later. Using
a high order of the multi-step method has no sense if the first few points are
computed with a large error. Asymptotically (for A — 0) the resulting method
would have the order of the starting method, if it is lower than the order of

12



the multi-step method used later. Using multi-step methods for systems of
differential equations is formally the same, now y and f being vectors. The
advantage of multi-step methods as compared to single-step methods is that
the number of evaluations of the right hand side f is much lower for the same
order of the method. The disadvantage is the need of starting values. Also it
is difficult to adjust the step size h automatically so the effectiveness of these
methods is reduced especially for cases when the solution changes its character
considerably.

1.5 Numerical methods for stiff systems

Many physical problems lead to differential equations where the eigenvalues of
the linearized system differ by several orders of magnitude, or they also change
during integration. Such systems are called stiff. In what follows we try to define
stiff systems and we show their properties important for numerical integration.
To start with, consider a system of linear differential equations with constant
coefficients

y' =Ay, (1.46)
where y = (y1,y2,y3)T and the matrix A is
—-0.1 -49.9 0
A= 0 —50 0. (1.47)

0 70 —120

The reader is invited to write the general solution of (1.46). For initial condition

1100 =2 2(0) =1 ys(0)=2. (1.48)
we get
yi(z) = exp™ T +exp  yp(a) = exp™™T, y3(z) = expT*7 +exp 07
(1.49)

The eigenvalues of the matrix A are
A =-=120, A2 =-50, A3=-0.1. (1.50)

The solutions y;1,y2 and y3 have quickly decreasing terms corresponding to the
eigenvalues \; and )y, which are negligible after a short period of z. After
this short transient period, where the terms corresponding to A; and A, are
not negligible, we could continue with numerical integration with a step size h
determined by approximation of the term corresponding to A3. For a stable
numerical integration most methods require that |h)\;|, i = 1,2,... be bounded
by some small value roughly between 1 and 10 (here h is the integration step
size and \; are the eigenvalues of the right hand side). As \; is the largest in
absolute value of the eigenvalues of the matrix A, the stability of the method
is given by the value [120h|. E.g. for the Euler’s method we need [120h] < 2,
giving the largest possible step size being h = 1/60.

Let us derive this result for the system (1.46) with the matrix (1.47). The
Euler’s method is

y"t = y" + hAy" = (E + hA)y™ . (1.51)

13



As the eigenvalues of the matrix A are in the left complex half-plane then for
n — oo it should be that y™ — 0. This is given by the eigenvalues of the matrix

1-0.1h —49.9h 0
(E+hA) = 0 1-—50h 0. (1.52)
0 70n 1—120h

The eigenvalues of the matrix (E + hA) are Ay =1 —0.1h, Ay =1 —50h, A3 =
1 —120h. To get y™ — 0 it is necessary that all the eigenvalues of the matrix
(E + hA) lie inside the unit circle. This gives the condition h < &5.

Although the term corresponding to A; is negligible, the stability condition
requires a very small integration step size h. As a result the integration is slow,
often unnecessarily precise, without the possibility to integrate less precise. We
say a system of differential equations is stiff if it is stable i.e. its eigenvalues have
negative real parts and these differ by several orders of magnitude. If the system
y' = f(y) of ordinary differential equations is nonlinear, it is characterized by

the eigenvalues the Jacobi matrix {%5} of the right hand side. If in a linear

system the matrix A depends on the independent variable z, i.e. A = A(x),
then the eigenvalues may differ with z similarly as in the nonlinear system.
Dahlquist defined the so called A-stability (absolute stability) this way. Con-
sider the scalar equation
y' =Xy (1.53)

with Re A < 0. We say a numerical integration method generating the sequence
yn = y(z,) with the integration step size h is A-stable (absolutely stable) if in
the recurrent relation describing the method used to solve (1.53)

Ynt1 = P(hA)yn (1.54)
the quantity P (depending on h)) satisfies
|P(hA)| < 1 (1.55)
for arbitrarily large step size h, assuming Re A < 0. This definition means
lyn| = 0, n — 0o (1.56)

for any h > 0 assuming Re A < 0. There are modifications of this definition, e.g.
a method is called L-stable if

IP(hN) =0, h— . (1.57)

The problem of stiff systems has two sides: stability and accuracy. If we use a
method that is not absolutely stable, i.e. the region of A\ satisfying (1.55) does
not cover the entire left complex half plane, eigenvalues with large negative part
require a very small integration step size, so that the integration is not effective.
If an absolutely stable method is used there are no problems with stability,
but the term corresponding to the largest eigenvalues in absolute value may be
approximated not very precisely for some values of the step size h.
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Table 1.5: Coefficients of semi-implicit Runge-Kutta methods

Method | Rosenbrock | Rosenbrock Calahan
order 2. 3. 3.

a 1—+/2/2 | 1.40824829 | 0.788675134
as 1-+2/2 0.59175171 | 0.788675134
by (vV2-1)/2 | 0.17378667 | 0.788675134
1 0 0.17378667 | 0

wy 0 -0.41315432 | 0.75

Wo 1 1.41315432 | 0.25

1.6 Implicit single-step methods

It is easy to show that none of the explicit Runge-Kutta methods presented in
Table 1.3 is A-stable. E.g. consider the improved Euler’s method (1.25). For
the differential equation (1.53) and the step size h we get

Yng1 = [1 + hXA + %hQ)\z]yn =P(h\)yy . (1.58)
It is easy to show that for hA = —4 we have P(h)) = 5 and thus this method is
not A-stable. Most of the A-stable methods are implicit, with the disadvantage
to solve a system of nonlinear algebraic equations in each integration step using
some iteration method. The Newton’s method (or a similar iteration method)
can be used. The initial approximation is usually good enough to use 1 to 3
iterations in each step. We show an example of a semi-implicit Runge-Kutta
method without the need of iteration.
Consider an autonomous system of differential equations

¥ =f)
The method can be described by this algorithm:

-1
ko= h(E-had(,)) )
- (1.59)
ky = h(E — hasJ(y, + clkl)) Fly, +biki)
Ynt1 Y, + wiki +wako. (1.60)

Here J(y) = {0f/0y} is the Jacobi matrix of the right hand side. The co-
efficients ay,as,b1,c1,w; and we are shown in Table 1.5. All these methods
are A-stable as can be verified by applying them to the equation (1.53). Note
that to find k1 and ko the evaluation of the Jacobi matrix is needed (for the
Rosenbrock method of order 3 two evaluations are needed) and also solving a
system of linear algebraic equations (instead of computing the inverse matrix)
is necessary. No iteration method is needed unlike the implicit methods.

There are many semi-implicit Runge-Kutta methods, here we showed only
three of them. One of the first A-stable methods is the trapezoidal rule (1.44).
Substituting into (1.53) we get

_ 1+h)/2

P(h)) = VA

(1.61)
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For hA from the left complex half-plane we have |P(hA)| < 1 and thus the
method is A-stable. However for |hA| — oo we have |P(hA)| — 1, and thus this
method is not L-stable. Note that we have to use some iteration method to find
yp from (1.44) if the function f is nonlinear.

Another example of an A-stable method is the implicit Euler’s method as a
special case of Adams-Moulton methods for & = 0 (see Table 1.3). This method
is L-stable (verify it yourself) but its order in only 1 and thus it is not very
effective. For solution of stiff problems free software is available, let us mention
LSODE as an example.

* ok %

For further study see [?]a [?]a [?]7 [?]7 [?]: [?]’ [?]: [?]’ [?]7 [?]: [?]’ [?]: [?]
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