Chapter 1

Parabolic partial differential
equations

Parabolic PDE (partial differential equations) belong to problems often en-
countered in chemical engineering. Non-stationary heat conduction or mass
transport by diffusion lead to parabolic equations. Many problems are de-
scribed by linear parabolic equations (simple problems in diffusion and heat
conduction) which can be solved by classical analysis. The solution is in the
form of an infinite series of special functions (e.g. Bessel and Hankel func-
tions) and these functions must be evaluated which may be expensive. Thus
even linear equations are often solved numerically. Many problems involve
nonlinear parabolic equations (heat and mass exchange with exothermic re-
action, adsorption, non-stationary heat exchange with radiation etc.). Non-
linear parabolic equations must always be solved numerically. The aim of
this chapter is to give introduction to numerical analysis used in parabolic
equations - the implicit and explicit difference schemes.

1.1 Canonical form of second order equations
with two independent variables

Consider a quasilinear equation of the second order with two independent
variables # and y in a given domain D C R?:
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where the coefficients A, B and C' are functions of x and y and have contin-
uous derivatives up to order at least 2. Suppose that at least one of them is
always nonzero. Corresponding to equation (1.1) we can write the quadratic
form

At + 2Btit, + Ct2. (1.2)

Depending on the values of A, B and C we distinguish three types of equation
(1.1), see Tab.1.1.

Table 1.1: Types of equations

Type Condition

hyperbolic B2 - AC >0
parabolic B2 - AC =0
elliptic B2 - AC <0

We can introduce two new independent variables (X, Y") instead of (z,y) by
the functions

X =X(z,y), Y =Y(z,y), (1.3)
which are assumed to be twice continuously differentiable and to have nonzero
Jacobian
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in the domain D considered.
Putting (1.3) into (1.1), equation (1.1) changes to

-~ 0%u 0%u _0%u ou Ou

AW+2BaX8Y+CaY2+F(X’Y’“’3—X’3_Y):0’ (1.5)
where
AXY) = A(%)2+2B%—§%—j+0<%—§>2,
C(X,Y) = A(%)Q—FQB(;—};%—};jLC(g—};)Q, (1.6)
B(X,Y) = A%—fg—};+3<%—f%—};+%—jg—};> C%—)y(g—ly/.
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It is easy to show that

2
— < = oX oYy o0X 8Y> (1.7)
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thus transformation (1.3) does not change the type of equation (1.1). Trans-
formation (1.3) can be chosen so that exactly one of the following three
conditions holds

A=0 A C=0, (1.8a)
A=0 A B=0or B=0 A C=0, (1.8b)
A=C AN B= (1.8c¢)

In each of these three cases (which differ in the sign of the expression (B? —
AC)) equation (1.5) can be written in simple (canonical) form:

1. (B> — AC) >0  hyperbolic equation
The canonical form is

0?u ou Ou
=X, Yu,—,—|. 1.
dX0Y 1< ot ax’ay) (1.9)
Often another form is used as the canonical one, namely
0*u  O%u Ou Ou
— —— =F —,— |; 1.10
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this equation can be derived from (1.9) by the transformation
X=¢+n, Y=¢-1.

These types of equations appear seldom in chemical engineering so we
will not consider them in this text.

2. (B*— AC)=0 parabolic equation
The canonical form is

82
7Y _ R (X, Y, u,

ou Ou
. ) . (1.11)
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3. (B> - AC) <0 elliptic equation
The canonical form is
%y 0%u

X2 +8Y2 :F4<X,Y,’U,

Ou a“) . (1.12)
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Numerical solution of elliptic equations are discussed in chapter 77, hyper-
bolic equations of order one are discussed in chapter ??. The current chapter
deals with numerical solution of parabolic equations.

1.2 Numerical solution of parabolic equations
with two independent variables

Numerical solution of parabolic equations in two dimensions (or in one spatial
coordinate x and one time coordinate t) is thoroughly treated in literature
(as opposed to higher dimensional cases). As chemical engineering problems
often lead to equations in time and one spatial coordinate, one section is
devoted to this problem. Let us start with the linear equation. Later we will
see that almost all the conclusion for the linear equation can be used for the
nonlinear one as well.

1.2.1 Grid methods for linear problems

Let us start with the linear parabolic equation with constant coefficients

ou  0%u

— = 1.13

ot 0x? (1.13)
A more general equation (describing heat conduction or mass diffusion)

ou 0%u

— =0—— 1.14

or aaxQ ( )

can be converted to (1.13) by the substitution ¢t = o7 .
The solution of equation (1.13) is often searched for on a rectangle D =
[0,1] x [0,7] shown in Fig. 1.1.
The solution u(z,t) must satisfy the initial condition (the function ¢(x) is
given)
u(z,0) = o), 0<z <1, (1.15)
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T
Figure 1.1: The rectangle D where the so-
u :\9 D |Y7 0 lution of the parabolic equation (1.13) is
defined.
K
rd
0 —=2z 1
and a boundary condition, e.g.
u(0,t) =u(l,t) =0. (1.16)
Other problems may contain other boundary conditions, e.g.
0u(0,t)
=0: =0, 1.17
x e (1.17)
z=1: wult)=1 (1.18)

or other.

1.2.1.1 Simple explicit formula

The most common approach to equation (1.13) is the difference method also
called the grid method. There is a wide range of difference methods, let
us start with the simplest one. Let us divide the interval [0,1] in z into n
subintervals by equidistant grid points

ro=0,21=h,29=2h, ..., 2,1 =1—h, 2, =1,

where h = 1/n and z; = ih, i = 0,1,...,n. Similarly the interval [0,7] in ¢
is divided into r equal parts by the grid points

to=0,t,=k, ..., t, =T,

where the time step is k¥ = T'/r and t; = jk,j = 0,1,...,7. The set of
nodes - the intersections of the lines x = ¢h, ¢« = 0,1,...,n, and the lines
t=jk,j=0,1,...,r, forms a rectangular grid denoted by D® (see Fig.1.2).
On this grid we can approximate the derivatives of the function u by the

difference formulas (see chapter ??) fori=1,...,n—1, j=0,...,r—1:

o gL _ g

& B %L o®k) . (1.19)
ot| . k
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where we denote u(ih, jk) = u(z;, t;) = ul.

tq

ts 1k Figure 1.2: The grid D®, n = 5 and the
t2 approximation (1.21) for i = 2,5 =2

t1

to=0=xzoT1 T2 T3 1l=x3

Consider the equation (1.13) in one node (z;,t;) € D™ and the approxi-
mation using (1.19) and (1.20):
Wl ! 11— 2ul + u’:+1
: L= - 4+ O(k+h?). 1.21
; U Ok + ) (1.21)
This is illustrated in Fig.1.2. Neglecting O(k + h?) = O(k) + O(h?), which
is called the approximation error and using the initial condition (1.15) and

the boundary conditions (1.16) we get the following difference problem:

+1 ) &y )
’U,z = ﬁ(ug_l +’Ulg_|_1) + <]. — ﬁ>uf, . [, 1’ o 1 ,(122)

u) = (ih), i=1,2....,n—1, (1.23)
wy=0, uw =0, j=0,1,...,r. (1.24)

If u(z;, ;) is the solution of (1.13) with the initial condition (1.15) and the
boundary condition (1.16), then the error of the solution computed by (1.22),
(1.23) and (1.24) is

(1.25)

Similarly as for ordinary differential equations (ODE) we require that making
the grid finer, i.e. h — 0, k — 0, results in &/ — 0 in D®_ If this is the
case we say that the solution of (1.22), (1.23) and (1.24) converges to the
exact solution of (1.13), (1.15) and (1.16). It is obvious that if the numerical
solution does not converge to the exact solution then the difference method
is useless. The difference approximation (1.22) is called the explicit three
point difference scheme. This name tells that the value ult! is computed
explicitly from the values u]_,, u}, u, . The relations (1.22), (1.23) and (1.24)
are iterated. The vector w/ = (u),w),...,ul) is called the j-th profile. In
(1.22) the j-th profile is called the old (the known) profile, and the j + 1-st
profile is called the new profile. To sum up, the new profile is computed
point-wise from the old profile.

el = u(zit;) —ul .



1.2.1.2 Stability of the difference scheme

We denote by u the exact solution of the difference problem (1.22), (1.23)
and (1.24) and we denote by @ the numerically computed solution. These
differ due to round-off errors introduced in each arithmetical operation done
on a digital computer. We want this round-off error not to grow too much
in the course of computation. We want the errors

to go to zero or at least to stay bounded for increasing j. This requirement
presents the stability condition of the difference scheme. The total error of
the numerical solution can be estimated by

€7 + 1}l (1.27)

where |g!| is small and negligible compared to the error of the method |¢?
for stable schemes. Unstable schemes are useless for practical computation
because we can never compute with infinite number of decimal digits.

Let us explain the problem of stability for the scheme (1.22) in more
detail. It is easy to rewrite (1.22), (1.23) and (1.24) using profiles as

wtt = A,
T 1.28
W = 0,00 e@h), . e(-vpo,
where the matrix A is three-diagonal
0 0
a (1-2a) o
« (1-2a) « 0
A, = . , (1.29)
0 a (1-2a) «
a (1-20) «
0 0
where
k
o= (1.30)
After denoting @/ = (ul,ul, ..., u!_,), and using uj) = u} = 0, we can rewrite
(1.28) as
W= Aw, @ = [ph),eh), . e(-Dn]", (131)
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where the matrix A is of type (n — 1) x (n — 1) :

(1-2a) o
« (1-2a) « 0
A= _ (1.32)
0 a (1-2a) o
o (1—-2a)

Consider now a small deviation of the initial condition (introduced by the

round-off error) °:

o' =u’—u". (1.33)

Here the prime does not mean derivative, it just denotes another profile.
Equation (1.31) with the initial condition u’® becomes

a"tt'=Aw?, @’=a’-2". (1.34)
The error p/ = w/ — 4" evolves as
ot = AP, (1.35)
giving _ _
o =A'p". (1.36)
The norm of the effect of the initial deviation g° can be estimated by

12’1l < [IAll1e’ll (1.37)

where the norms can be defined (see ?77?)

|v]| = max |vi], (1.38)
n—1
IA]l = max > ;- (1.39)
s=1
The estimate (1.37) gives:
It
Al <1, (1.40)

then the deviation @° of initial condition does not grow in the course of
computation.



Similarly, a deviation g in the j-th profile (instead of in the first one) can
be treated by considering this j-th profile as the initial condition and the
conclusions are the same. In a real computation round-off errors appear in
each profile. Thanks to the linearity of (1.31) the total error stays bounded
if (1.40) remains valid.

It is easy to see that if the elements in the main diagonal of the matrix
A are non-negative i.e. if .
2 )
then due to (1.39) we have ||A|| = 1. Thus (1.41) is a sufficient condition for
the stability of method (1.22).

Let us see whether this condition is also necessary. The necessary condi-
tion requires that for the least norm of the matrix A the non-equality (1.40)
holds. As for any matrix norm it holds p(A) = max |);| < ||A||, where )\; are
the eigenvalues of the matrix A, the necessary and sufficient condition is

a< (1.41)

Nl <1 i=1,2,...,n—1. (1.42)
The matrix (1.32) has eigenvalues

N=1-4dasin? ™ i=1,...n-1,
2n
then the condition (1.42) is equivalent to the condition (1.41).

If the original equation (1.13) has non-constant coefficients (as functions
of ) then the rows of the matrix A differ. Then the eigenvalues cannot
be expressed analytically, they must be found numerically (see chapter ?7?),
which is expensive for large n. Then it is better to use the sufficient stability
condition (1.40) where ||A|| is defined according to (1.39).

Sometimes the stability is estimated by the Fourier (von Neumann) method.
We describe this method briefly for the explicit differential scheme (1.22).
This method ignores boundary conditions which is no problem in our case,
since the boundary conditions specify zero values of u at the boundaries. In
cases where the boundary conditions influence the stability this method has
a limited validity. On the other hand the method using the spectral radius
of the matrix is still valid, although sometimes difficult to apply.

~ Assume that the solution of the differential equations can be written as
u] = z;y;, and let us choose one harmonics % from its Fourier representa-
tion. Here i is the imaginary unit; to avoid confusion we denote the imaginary



unit by i written in ordinary font while we denote the index by ¢ written in
mathematical font. The solution of the difference equation is assumed in the
form e“*e’* and we want to find conditions for the expression in ¢ not to
grow (w may be complex).
We put
ul = e“Ikelfih (1.43)

into (1.22), a = k/h*:

DR GIBR — (1 _ 90 wikibih | o(ewikiB—Dh 4 ik iB(i+1h)
After simplification we get
1
ek =1- 4asin2(§,3h) ,

and the condition |e**| < 1 gives a < 1.

Table 1.2: Difference scheme (1.22), error propagation for o = 1

2
11,7 7
ul " = 5(ul_y +uly)

j=4 | /16 0 e/4 0 3¢/8 0 e/4 0 e/16
j=3] 0 ¢/8 0 3¢/8 0 3/8 0 ¢/8 0

j=2 0 0 e/4 0 /2 0 e/4 0 0
j=11] 0 0 0 £2 0 &2 0 0 0
7=0 0 0 0 0 € 0 0 0 0

The error propagation is illustrated in Tables 1.2 and 1.3. The initial
1

error in a single node is denoted by €. The first case is for & = ; and the
deviation is damped. In the other case @ = 10 and the error grows quickly.
Note that for the stability of the difference scheme it is necessary that the

original differential equations are stable in a certain sense, i.e. a small change
in the initial condition results in a small deviation in the exact solution. To
show an example where this is not the case, consider the diffusion equation
in backward time

ou  Ju

ot 0x?
which we get from (1.13) by changing ¢ to —t. Now the method (1.22) is
unstable for any a > 0 and a similar result holds for further methods.
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Table 1.3: Difference scheme (1. 22) error propagation for a = 10,

wl™h = —19u! +10(ul | +ul,,)
j=3 | 1000e —=5700e 13830s —18259¢ 13830 —5700¢  1000e
j= 0 100e —380¢ o61le —380¢ 100e 0
j=1 0 0 10e —19¢ 10e 0 0
j=20 0 0 0 € 0 0 0

Table 1.4: Exact solution of (1.13),(1.15),(1.16) and (1.44)

t x=0.3 x=0.5 x=0.7
0.005 0.5966 0.8404 0.5966
0.01 0.5799 0.7743 0.5799
0.02 0.5334 0.6809 0.5334
0.10 0.2444 0.3021 0.2444

As an illustration we give an example of a stable and of an unstable
scheme for equation (1.13) with boundary conditions (1.16) and with the
initial condition (1.15) where

,_\[\3|,_.

20 for 2 (1.44)
2

wlz) = { 2(1—z) for

Analytic solution can be found in the form

_ 8 Z ! (sm —)(sinmr:v)e("zwzt) (1.45)

I/\ I/\
I/\ I/\

and the values of this solution are given in Table 1.4. We use the difference
scheme (1.22) for A = 0.1 and « equal to 0.1 and 0.5. The results are
summarized in Table 1.5. Compare the achieved accuracy. Note that for
x = 0.5 the agreement is worse because the initial condition (1.44) has at
this point non-continuous derivative. The solution is symmetric in x around
z = 0.5.

Figs. 1.3 and 1.4 show the agreement of numerical (A = 0.1) and of the
analytic solution for o < 0.5 and for o > 0.5, i.e. for stable and for unstable
scheme.
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Table 1.5: Solution of (1.13),(1.15), (1.16) and (1.44) by explicit method for

h=0.1
\x:0.3 r =05 r =07
a=0.1 t=001 (j=10) 0.5822 0.7867 0.5822
k = 0.001 t=002 (j=20) 0.5373 0.6891 0.5373
a=05 t=001 (j=2) 0.6000 0.8000 0.6000
k = 0.005 t=10.02 (j=4) 0.5500 0.7000 0.5500
t=01 (j=20) 0.2484 0.3071 0.2484
1 —
— j=0(t=0)
uT =10 (t=0.052)
- \ j=20
. =40
0

Figure 1.3: Numerical (o) and exact (—) Figure 1.4: Numerical (— e —) and exact
(—) solution for oo = 0.52, h = 0.1

solution for o = 0.48, h = 0.1
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1.2.1.3 Simple implicit formula

Let us discuss a more complicated form of the difference formula with a
parameter w

j+1 j j+1 +1 j+1 j j j
up — U wuf,1 — 2uiT iy +(1—w) Uiy — 2ui + Ui,

k h? h? '
It is easy to see that for w = 0 this equation simplifies to (1.21) and this
special case represents the above discussed simple explicit scheme. For w =1

we have the opposite case - a simple implicit difference scheme

(1.46)

—aul™! + (14 20)ul™ — aulf] = ul. (1.47)

For w = % we get an “averaged” scheme called Crank-Nicolson:

—Sult] St (148)

Biographical note: Phyllis Nicolson (21 September 1917 - 6 October 1968)
was a British mathematician most known for her work on the Crank-Nicolson
scheme together with John Crank. John Crank (6 February 1916 - 3 October
2006) was a British mathematical physicist, best known for his work on the
numerical solution of partial differential equations.

Similarly as for the explicit scheme it can be shown that approximation
error is O(k + h?) for (1.47) thus method (1.47) is of similar accuracy as
the explicit formula. For the Crank-Nicolson scheme (1.48) it can be shown
that the error is O(k? + h?), this method is more precise than the methods
(1.22) and (1.47). This can be explained by the fact that the time derivative is
approximated in the point (¢,41+t;)/2 corresponding to a central three-point
difference formula (see Tab. ??) with the error O((£)?). The Crank-Nicolson
scheme (1.48) is stable for any o = k/h2. The formula (1.46) is stable for any
o if w e [3,1]. If w < 7 then this method is stable if

1
< ——.
=90 2uw)

+ (1 +a)ult — §ufill = §u571 + (1 —a)ul +

(1.49)

For w = 0 this gives again condition (1.41).

Unlike the explicit method, where each value of the new profile w/*!
was computed explicitly one after another from the old profile u/, the equa-
tion (1.46) for w # 0 represents a system of linear equations for unknowns
u{“,i =1,2,...,n— 1, which must be solved simultaneously.
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The matrix of this system is three-diagonal for a general w (for w = 0 the
matrix is diagonal and the method is explicit). The system may be solved by
factorization (see chapter ??) when computing a new profile from the old one.
Let us compare the Crank-Nicolson method with the explicit method using
the equations (1.13), (1.15), (1.16) and (1.44) for h = 0.1. The results are
given in Table 1.6. It is easy to see that the error of the results of the explicit
method for o = 0.1 are similar to those of the Crank-Nicolson method with
the step £ = 0.01 (where o = 1). The explicit method requires to compute

Explicit method (1.22) | Crank-Nicolson Analytic
method solution (1.45)
o=%  a=1
kE=0.001 £k=0.005 k=0.01
t =0.01 0.7867 0.8000 0.7691 0.7743
t =0.02 0.6891 0.7000 0.6921 0.6809
t =0.10 0.3056 0.3071 0.3069 0.3021

Table 1.6: Comparison of the explicit and the Crank-Nicolson methods. Val-
ues in the point z = 0.5 are shown (h = 0.1)

ten times more profiles, although the computation was easier because it was
not necessary to solve a system of linear equations with a three-diagonal
matrix. When we compare the number of arithmetic operations then the
Crank-Nicolson method is more efficient.

1.2.1.4 Multi-step methods

So far, we have considered two-profile methods that contain «/ and w’*! only.
We have noted that the discretization in ¢ has the greatest contribution to
the error, namely O(k), or O(k?) in special methods. This means we must
use a small time step k& and this requires a long computation time. Another
possibility is (similarly to Adams formulas, see chapter ?7), to approximate
the derivative % using more than two points. To start such a computation
we must know more than just one profile (given by the initial condition). To
prepare these profiles another method must be used. One disadvantage of
multi-step methods is that it is not easy to adapt the step size k according to
how complicated the solution is. Another disadvantage, namely the need of

more computer memory to store extra profiles becomes less important with
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modern hardware. One important advantage of multi-step methods is that
we can use a greater step size k£ because the approximation of 3—;‘ is more
precise. We show a few multi-step methods for the equation (1.13), using the
approximation from table 7?7 and ?77.

A non-central approximation of . gives a three-profile implicit formula

ot wird _dtioadedl g,
2k h? ' '

This can be rewritten to
—20ul™! + (3 +4da)ul™ — 20ul] = dul —ul7". (1.51)
Similarly a four-profile implicit formula is
—6aull] + (11 4+ 120)ul ™" — 6aull) = 18u! — 9ul ™" +2ul™>  (1.52)
and finally a five-profile implicit formula is
—120u ] +(25+240)ul T 1200l = 48ul —36ul " +16ul T —3ul . (1.53)

Formulas (1.51), (1.52) and (1.53) have the error O(k? + h?), O(k*+ h?) and
O(k* 4+ h?) resp. From the computational point of view these formulas are
not much more difficult than a simple implicit formula (1.47); the right-hand-
side of the system of linear algebraic equations with a three-diagonal matrix
contain a few more terms. To start we must prepare three initial profiles
(besides the initial condition) using another method with a sufficiently small
error.

There exist another multi-step formulas where the approximation of %
is computed from more profiles with appropriate weights with total sum
being one. On the other hand, explicit multi-step methods are seldom used,
because the stability condition requires a small step size in ¢, so that the high
accuracy of the approximation in ¢ cannot be used (by taking a large step
size).

1.2.1.5 Boundary conditions

We have considered boundary conditions of the first kind, i.e. boundary
conditions specifying the value of the solution, e.g. for equation (1.13) the
boundary condition was (1.16). Often the boundary conditions specify the
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derivative of the unknown function (for example the boundary between a heat
conducting medium and an insulator is described by g—z = 0 where n means
the normal i.e. perpendicular direction). This type of boundary condition
is called the boundary condition of the second kind. The most often case,
however, is a linear combination of the function value and its derivative at the
boundary. i.e. Ciu + C’zg—z = (5. This type of boundary condition is called
the boundary condition of the third kind. Nonlinear boundary condition are
discussed below.
Consider a general linear boundary condition

0
Clu + 028_5 = 03 (154)

for the equation (1.13) in z = 0. Assume Cy # 0, i.e. (1.54) is not a condition

of the first kind. The simplest approximation of (1.54) is to replace the
derivative % by a suitable difference formula (see chapter ??, boundary
value problem for ordinary differential equation). Replacing

w] =t
=0 - h
t=(j+1)k

ou

= +O(h), (1.55)

and putting into (1.54) we get a linear equation for u}™ and wJ*' (upper
indexes can be chosen arbitrarily because (1.54) holds for all ¢)

(01 — %)uﬁ“ + %u{“ =Cj. (1.56)

Using (1.56) for the explicit formula (1.22) is simple: u)™ is evaluated

by (1.56) based on u™" (computed from ), ), u} ). Put together we get
J+L Csh Cy j+1
Uy = - Uy
Clh — 02 C1h - CQ

=0+ ’Yo“% + ’Ylu{ + 72“% ; (1.57)

where

G
Cih—Cy

Csh aCy

0= ——~> = - -z
Clh_CZ: Yo VY2 Clh_czﬂ

The first row of the “transformation” matrix A; (see (1.29)) changes to

(,}/0) 71; ’72, 0, .. .).
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It is easy to see that

1Yol + ] + el =

T
Cih — Cy

for &« = k/h* < 4 (which must be satisfied for stability reasons). From

h = \/k/«a it follows that for constant a we have |y| + |n| + |12 = 1 +

O(V'k), which is a sufficient stability condition. Thus the method (1.22)
with the boundary condition (1.56) is stable for o < . This is a non-trivial
result. Replacement of boundary condition can change the stability. When
investigating stability it is always necessary to consider the replacement of
boundary conditions as well.

The replacement (1.55) has one big disadvantage both for explicit and
for implicit scheme. The error is by one order worse than the error of the
equation, thus it is better to use a more precise replacement for 2%. There

. .y . aw
are two possibilities:
1. To use a non-central three-point difference

8_u
oz

_3 j+1 4 j+1 _ j+1
L, = i 2";1 L Lomy, (1.58)
t=(j+1)k

This is no complication for explicit formula. For the implicit formula
the resulting system must be converted to a three-diagonal one.

2. To use a central three-point difference

%
o0x

Jj+1 j+1
U — Uy 2
L, =gt (1.59)
t=(j+1)k

by introducing a fictitious node with index —1. This increases the num-
ber of unknowns and we must find one equation for this new unknown.
This can be done by approximating equation (1.13) by the implicit for-
mula (1.47) for i = 0. The unknown u’%' can be expressed from this
equation as a function of u%, ugﬂ and u{“ and we put the result into
the approximation (1.59). For the implicit method (1.47) we get again
a system of linear equations with a three-diagonal matrix. This second
approach is better because the replacement (1.59) has a smaller error
than the replacement (1.58), although they are of the same order (see
chapter 77?).
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For the implicit or the explicit method the replacement of the boundary
condition is easy. For more complex methods it is usually not obvious how
to approximate the boundary condition to get the highest accuracy of the
resulting replacement. The implicit replacement of the boundary condition
usually gives good results.

In some problems the boundary conditions depend on time, e.g.

u(0,t) = sinwt

is periodic in time ¢. This type of boundary conditions presents no big com-
plication. We can use the same methods as for time independent boundary
conditions. The resulting formula contains time dependent term.

Sometimes we have a linear parabolic equation with a nonlinear boundary
condition, e.g. equation (1.13) with boundary conditions

Yo <u(0,t), w,g =0, (0 (u(l,t), w,a =0 (1.60)

instead of (1.16).

This is the case of heat conduction with radiation, or diffusion with surface
chemical reaction etc. Let us illustrate this by an example. Consider heat
conduction in an insulated bar described by equation (1.13). One end of the
bar is kept at a constant temperature and the other end of the bar receives
heat by radiation from a source of constant temperature and looses heat by
its own radiation. The boundary conditions are

z=0: u=U, z=1: 8(1—u4)—8—u:0, (1.61)
ox
and the initial condition is: for ¢ = 0 and z € [0, 1] u = Uy . Here the temper-
ature is related to the thermodynamic temperature of the radiation source.
The dimensionless parameter s contains the fourth power of the source tem-
perature, the Stephan-Boltzmann constant, heat conductivity, the length of
the bar and the configuration factor. The partial differential equation can
be discretized by the Crank-Nicolson method and the boundary condition
(1.61) can be replaced by the implicit method by introducing a fictitious

profile n + 1 :
_ ST gt
s(1- (") - % =0. (1.62)
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We have again a system of n equations for n unknowns ™, ... ui*! with a
three-diagonal appearance. The first n — 1 equations are linear and the last

equation is nonlinear in the form
aud T+ bl = ¢ — d(ult)t . (1.63)

The last equation comes from putting (1.62) into the Crank-Nicolson replace-
ment for 4 = n, the constant ¢ contains v, , u?. The right-hand-side of the
last “linear” equation of the system with a three-diagonal matrix depends on
the “parameter” /™.

The first phase of the factorization and vanishing the bottom diagonal

gives the last equation in the form
Vult™ = ¢ — d'(ulth)t. (1.64)

This is an algebraic equation for one unknown u/™. This equation can be
solved by some method in chapter ?? (we have a good initial approxima-
tion u/). Only after solving the equation (1.64) the second phase of the
factorization is done.

Exercise: How can we solve the same PDE with the non-linear boundary
condition (1.61) on both ends of the bar?

1.2.1.6 Methods with higher accuracy

This section is devoted to algorithms that increase the order of the difference
approximation and that allow higher step sizes h and k for the same accuracy.
This can be achieved by two ways. The first way is to tune certain parameters
in the difference formula so that the order is higher. This way has a big
disadvantage that the difference formula is prepared to fit the given PDE
and cannot be used for other equations. We do not discuss this type of
methods here. The other way uses more nodes for the approximations of
derivatives.

Exercise: Find the minimal number of nodes to approximate
Pu du du du (@ 82u) t
9227 9z’ 0t° 0zdt’ » €te.

ot ~ 9x2
To avoid problems with having more unknowns than equations we use

non-symmetric difference formulas near boundaries. This is illustrated in
Fig. 1.5 where the second derivative in the nodes 2, 3, 4 is approximated by
a symmetric formula with 5 nodes and in the nodes 1, 5 by a non-symmetric
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formula again with 5 nodes. We consider a difference approximation of equa-
tion (1.13) where the derivative % is approximated using 5 points. The case
with more nodes is similar. The explicit approximation can be
wth =l —ud_, +16ul_, — 30u! 4+ 160, — !
i p i i—2 i—1 12h21 i+1 1+2 + O(k + h4) ) (165)

A necessary and sufficient stability condition is now more restrictive in the
time step k, namely a < g. On the other hand the spatial step size h can
be larger so the restriction in k is not necessarily worse than in the classical
explicit method (1.22).

—eo—o——X—o
X Figure 1.5: Non-symmetric approxima-
—eo—>¢—e—o .
——eo—K—o—0 tions
—eo—K—o—o

The reader is invited to write the implicit formula of type (1.65), similarly
as the non-symmetric approximation for one node near the boundary (use
chapter ?77).

Formula (1.65) and similar ones have one disadvantage - the approxi-
mation in the t direction is much worse than in the z direction. One way
to remove this disadvantage is to use the Crank-Nicolson approximation,
namely

u{“ — uf _ 1 —ufl}l + 16uﬁ11 - 30u§url + 16u{111 — ufizl n (1.66)
k 2 12h? ’
+—u£,2 + 16u?_, —é(;;;f + 16w, — uerQ) O+ 1Y)

The implicit approximation means that we must solve a system of linear
equations with a five-diagonal matrix, this can be solved by an algorithm
similar to factorization of a three-diagonal matrix.

The other way how to increase the accuracy in the ¢ direction is to use
more than two profiles, i.e. to use a multi-step method, see chapter 1.2.1.4.
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1.2.2 Grid methods for nonlinear problems

A nonlinear problem can be formulated in general as

ou 0%u Ou
F(t,ﬂ?,u,%,@,a> =0. (167)

In chemical engineering we usually solve problems linear both in ‘?9—1; and in

%. These problems are called quasi-linear, e.g.

ou ouy 0%u Ouy Ou ou

En a_x)@ +b<t,m,u, a_x)a_x +c(t,x,u, a_x) (1.68)
(the last two terms could be written as a single term, but b and ¢ are often
independent of %, so this form is more convenient).

Some authors use the term quasi-linear for systems with coefficients that
do not depend on first derivatives; the terminology is not uniform. It is
appropriate to say that unlike linear equations, there is no general approach
to nonlinear parabolic equations. Each nonlinear equation (or a system of
them) is usually a unique problem for numerical solution. Thus we discuss
algorithms that often work in engineering applications, they are not however
reliable recipes for all problems.

= a(t,x,u,

1.2.2.1 Simple explicit method

If we replace all spatial derivatives and nonlinear coefficients in the old profile
in equation (1.68) we get the approximation

Wt — ol = alt e ul g — g\ Ul — 2u] +ul, N
k T h?
J J J J
cul g —ulg \uly — ol
+b<tJaxZau"Z’ : 2h : ) : o2h : + (169)

R R
+c<tj,xi,ug,%hl—l , i=1,2,...,n—1,

which is from the computational point of view similar to the explicit method

(1.22). From the known values of u},u],... u it is possible to compute

the right hand side of the approximation (1.69) and then we can get easily
uf“ for : =1,2,...,n — 1. The problem of approximation of the boundary
condition is equivalent to that for linear equation.
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Similarly as in the linear case, the steps h and & in the approximation
(1.69) cannot be chosen arbitrarily because for some combinations of h and &
the replacement (1.69) is unstable. Unlike the linear case it is not possible to
get simple analytic condition of stability. The stability of nonlinear problems
must be tested experimentally. This is done by computing a few steps for
various values of the step k, the instability can be seen clearly. Also, the
condition of stability may vary with time ¢. For equation (1.69) the necessary
condition of stability (as the lower order terms have no significant influence
on stability) is o

k a(tj, Ti, Uga 7u§+12—hu§_1) 1

2 <3 (1.70)

In (1.70) the boundary conditions of the first kind are considered; the bound-

ary conditions with derivatives may change the condition substantially. The

estimate (1.70) shows that the acceptable step size £ may indeed vary with
time ¢ and this must be taken into account.

Next, we use the explicit method (1.69) for a problem with a known
analytic solution. Consider the partial differential equation

ou 0%u  udu 9 o2t 5 m
Le_rr 20 —e 27 i —sin 2 1.71
% = D22 + 5 92 +cu”—e (csm T + 4 Sin 7rx) (1.71)
with the boundary condition
u(0,t) = u(l,t) =0 (1.72)
and the initial condition
u(z,0) =sinmz. (1.73)

It is easy to check that the analytic solution (for any c) is
u(z,t) =e " tsinmz . (1.74)

Table 1.7 shows results computed by the explicit method (for ¢ = 1).

1.2.2.2 Method of simple linearization

The explicit method is easy to use, but it has a strong stability restriction
which is here a greater disadvantage than for linear equations, because the
evaluation of nonlinear functions is usually expensive. We often split nonlin-
ear terms into two parts: a linear part, considered on the new profile and a
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Table 1.7: Results for explicit method (1.69) and equation (1.71), values

u(0.5; 1)
for various values of h and k
h=0.1 h =0.05 Exact solution
t k=0.005 k=0.002 k=0.001|%=0.001 k=0.0005| (equation (1.74))
0.01 | 0.9045 0.9059 0.9063 0.9058 0.9060 0.9060
0.05 | 0.6053 0.6100 0.6115 0.6096 0.6104 0.6105
0.2 0.1341 0.1384 0.1399 0.1381 0.1388 0.1389
0.4 0.0180 0.0192 0.0196 0.0191 0.0193 0.0193

nonlinear part (or a remaining part), considered on the old profile. E.g. u?

can be split into u/*'u? , similarly u® can be split into u/*!(u?)?, or (3%)? can
be split into (4%)71(4%)7 etc. Here superscript 2 or 3 means power, while su-

perscript 7 or j+1 denotes discretized time. This trick is called linearization.
Thus equation (1.68) can be approximated by

Jj+1 J J J Jj+1 Jj+1 j+1
o A S PO o S O 7 —2u; " Ui i
k 3o T Ui Ty 02
J J Jj+1 Jj+1
cul g —ul  \uly —
+1 1—1 1+1 1—1
+b(t;, xi,ul, = + 1.75
77 P 2h 2h ( )

J J
J i+1 1—1
+c<tj,xi,ui,72h ) .
d%u

The coefficients a, b, ¢ are evaluated in the old profile j and the derivatives 53
and g—g are approximated in the new profile j+1. The difference scheme (1.75)
is actually an implicit scheme and it gives a system of linear equations for
unknowns u%“, u{“, ...,ul™! (including boundary condition replacement).
This is a three-diagonal system and it can be solved by factorization. Ap-
proximation (1.75) is implicit for spatial derivatives. Alternatively % and %
could be approximated by the average of the values in the old and in the new
profile similarly to the Crank-Nicolson method. Each equation can usually

be linearized by various ways, the experience and intuition is important.
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1.2.2.3 Extrapolation techniques

Let us try to replace equation (1.68) in pure implicit way, i.e.
j+1 j +1 i+1 +1 i+1 +1
ul =]l =20 Ul 4ot ully — ull g
k = a; h2 A 2h (] ’
i=1,2,...n—1. (1.76)

The coefficients a, b, ¢ are functions of the unknowns u/*!, e.g.

uj-l-l uj—l—l
j+1 _ j+1 Wipr — Ui
a; = a(tﬂl,xi,ui ’T) ) (1.77)

System (1.76) can be solved as a set of nonlinear equations, which will be
discussed later. Here we try to predict the values of al™", /", ¢/ ™ based on
the knowledge of a few last profiles. Assuming u(z,t),a,b, c are sufficiently

smooth functions we can extrapolate the values of o™, 5*!, ¢*" linearly for
small time step & from the known profiles j and (j — 1) according to

al™ ~ 2] —al™! (1.78)

(and similarly for b and ¢). We can extrapolate from more than just two
profiles, e.g. quadratic extrapolation gives

al™t =al"* = 3a]" + 3a]. (1.79)
Approximation (1.76) is implicit, thus the stability restriction is not so severe
(if any) as for explicit one. The error introduced by extrapolation is much
smaller than the error of linearization as discussed in the previous section.
So what is the disadvantage of this approach? It is a multi-step method,
meaning the first one or two steps must be computed by another method,
e.g. by actual solving the nonlinear equations (1.76).

1.2.2.4 Predictor - corrector technique

In the last section we discussed the prediction of the coefficients a, b, ¢ in the
profile (j +1). There is another way: to predict the values of @/*! using the
explicit method (1.69), where v ™" = #/*' i =1,2,...,n—1. This predicted

. i
@!*' can be substituted into the coefficients a, b, ¢ in equation (1.76), e.g.

it _ it
_j+1 _ —j+1 %41 T YW1
a; = a(tj+1,x,-,ui ’T) . (1.80)
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Then (1.76) becomes

j+1 j j+1 j+1 j+1 j+1 j+1
ug%— _aJ J+ _2ug+ +u]+ J+ J+

Ui _ _jr1¥ia 41 gt Y — W1 g
I L A S
i=1,2,..,n—1, (1.81)

which is a system in linear equations (including boundary conditions) with
a three diagonal matrix; the solution being similar as in the linear case.
What advantages and disadvantages has this method as compared to
extrapolation methods (which can be regarded as a special case of predictor
- corrector methods)? It is not necessary to start with a different method i.e.
the computation can start with the knowledge of the initial condition alone.
Sometimes the memory requirements are weaker. As opposed to the linear
extrapolation this prediction is usually better (even though they both are of
order O(k)). On the other hand the computation time can grow. Using a
large step size k (from the point of view of stability of the explicit method)
is no problem because the implicit method (1.81) eliminates this influence.
It is clear that when using the Crank-Nicolson method instead of (1.81)
we must evaluate dgH/Z,Bi'H/Q,égH/Q, which can be done using an explicit
method with the step size ¥’ = k/2. When using this predictor - corrector
method we can compare E{H and uf 1 (predicted and computed values) in
each profile. We want these values to be close. If they differ much we can
substitute u/™' for @™ and repeat the computation according to (1.81).
This means we repeat the corrector step, similarly as for ordinary differential
equations (see 7?). It would be too difficult to prove the convergence of this
method for general a, b, c and arbitrary boundary conditions. The experience

tells us that this approach usually converges for sufficiently small k.

1.2.2.5 Newton’s method

Consider the system (1.76) including the boundary value replacement as a
system of nonlinear equations

1 S S| RS R S| JEE
jH1lio — 2U + Ui pitt Uit —Yicy g Ui Yi _ o (1.8
% n? *o o G w0 (182)
thus . . .
fit Tl =0,  i=1,2,...,n—1, (1.83)

25



and possible boundary conditions

it =uitt =0, (1.84)
J+1
0

that allow to eliminate u}"" and uw/™ from equation (1.82). After choosing
J+1,0 j+1,0 J+1,0

the initial approximation wi" " ,uy" ", ..., u, 7, the next approximation
can be computed by the iteration

F(uj-l—l,s)Auj‘f‘l,S — _f‘(u]"f'l;s) , (185)
LSl — i ths L Agiths (1.86)
where
8f1 8f1 afl Jj+1
auj+1 6U,j+1 T auﬂ-l u1-+1 fl
T
afn,1 6]0”71 afnfl 1
oui™t audtt T ault! e o

From (1.83) we can see that the Jacobi matrix I' is three diagonal. The
Newton’s method converges almost always in a few iterations because we have
a very good initial approximation u?, i = 1,2,...,n—1. The disadvantage is
the need to evaluate the Jacobi matrix.

Up to now we considered one nonlinear partial differential equation. In
most cases we have a system of partial differential equations and then the
Jacobi matrix for the Newton’s method is no longer three diagonal, it still
has a band structure. We are going to show how appropriate linearization
(sometimes called quasi-linearization) can be used to take the advantage of
a three diagonal matrix.

Consider a system of two equations

ou,, O0%u,y,
W - o0zx? +fm(u1,u2), m=1,2.

Using the Crank-Nicolson method we get for m =1, 2

Jj+1 J Jj+1 Jj+1 J+1 J J J .
um,i - um,i _ l(um,ifl - 2um,i + um,i+1 + um,ifl - 2um,i + um,i+1) + fj+%
k 2 h? h? e

(1.87)
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If we replace the nonlinear term by the Taylor expansion

+1 .0 Nt —wl, 0 I it —
f7]n+z2 - fm(ug) + fm(uz) 1,8 1,3 + fm('urz) 2,4 2,i . om= 1’2’
’ 8u1 2 8?1,2 2

we get actually the Newton’s method (written in a different way) and the
Jacobi matrix will have a band structure with five diagonals (with appro-
priate ordering of the unknowns and the equations). Doing only a partial
linearization

i+ : 0 u{ U,ﬁz—l—uji
M e )+ 2D e 20
1
o (1.88)
ji+1 0 ud — ud,
2]’!‘2 - f2(u]) f2( ) 2, 2,i :
o ! Ous 2

the system of equations (1.87) splits into two independent subsystems, each
one Wlth a three diagonal matrix. The algorithm can be further improved by
using ul " for the computation of f”l /2 and to alternate the order of (1.88).

1.2.3 Method of lines

The method of lines is sometimes called the differential difference method.
This name reflects the fact that we replace partial derivatives in one direction
by difference formulas while we preserve them in the other direction and
consider them as ordinary derivatives. We explain the method using a simple
quasi-linear equation

ou  du

ot 0x?
with boundary conditions of the first kind

+ R(u) (1.89)

u(0,t) = u(1,t) =0, t>0, (1.90)
and the initial condition
u(z,0) = (), z € (0,1). (1.91)
We replace the spatial derivative using a difference formula
u ~ u(zi_1,t) — 2u(x;, t) + u(wii, t)
0x? h? ’

r=x;

i=1,2,...,n—1, (1.92)
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where x; = ih, 1 =0,1,2,...,n. We denote
u(z,t) = ui(t) . (1.93)
Along vertical lines (see Fig. 1.6) we get differential equations

duz(t) _ Uifl(t) — 2U1(t) + ui—|—1(t)
dt h?

by substituting into equation (1.89). To satisfy boundary equations (1.90),
it is easy to see that it must be

+R(wi(t), i=1,2...,n—1, (1.94)

up(t) =0, up(t) =0. (1.95)

ul(t) uz(t) ’u,3(t) 1J,4(t)

t
T Figure 1.6: Method of lines

Zo T1 Z2 3 T4 Zs
—— 7

Initial condition (1.91) gives initial condition for ordinary differential
equations (1.94):

u;i(0) = ¢(z;) = ¢(ih) , i=1,2,...,n—1. (1.96)
Method of lines is easy even for more complicated problems. E.g. the equa-
tion 5 -
U u 0°u
—=Flz,t,u, —, — 1.97
a1 (‘T % B ax2> (1.97)

can be transformed into a system of ordinary differential equations (without
considering boundary conditions)

dui
dt

Uip1 — Uim1 Uim1 — 2U; + Uiy
2h ’ h?

:F<xiat7uia ), 121,2,,’”—1

(1.98)
There is no principal difference between system (1.94) and system (1.98).
The method of lines is a general approach both for linear and for nonlin-
ear parabolic equations in two variables. A system of ordinary differential
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equations was discussed in chapter ?7. Not all numerical methods for ordi-
nary differential equations are appropriate for solution of systems (1.94) or
(1.98), but most of them can be used. The system (1.94) has two important
properties that must be considered when choosing the integration method:

1. It is a large system. The number of ordinary differential equations may
be several hundreds or thousands.

2. It is not necessary to take an extremely precise method for the numer-
ical integration because even a precise solution of this system suffers
the error of discretization of the spatial derivative. A method with a
similar accuracy to that of the spatial discretization is appropriate.

Having a large number of equations it seems that complicated single step
methods (Runge-Kutta methods of a high order) are not good. Using the
Euler’s method we get the simple explicit formula (1.22). The reader is
invited to check this. To integrate this system of ordinary differential equa-
tions we often use the Runge-Kutta method of order 2 or 3 or a multi step
method or a predictor - corrector method. Then the starting profiles must
be computed using Runge-Kutta methods.

Using an explicit integration method brings the problem of stability. We
cannot use an arbitrarily long integration step for the Runge-Kutta method.
The stability condition must be investigated for each combination of PDE,
spatial derivative approximation and integration method separately. Thus it
is better to use some implicit method, but this requires iteration or to solve
a system of liner algebraic equations for linear PDE.

Treatment of boundary conditions for the method of lines is similar to
that of difference methods. We can again introduce a fictitious profile or we
can use non-symmetric difference formulas for derivatives in the boundary
conditions.

The method of lines with a single step integration is a good starting
method for multi profile methods.

The number of nodes in the spatial coordinate is given by the desired
accuracy. For problems where the solution in different regions of x differs
considerably (e.g. for the wave or front solution, where u changes significantly
in a very small interval of z) with an equidistant grid we must choose the step
size so small to approximate this sharp transition well. Then small changes
of u in the rest of the interval are approximated too precisely and the total
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number of nodes is too high. For such problems methods with adaptive
regulation of non-equidistant spatial grid have been developed (see [?]).

1.3 Numerical solution of parabolic equations
with three independent variables

As compared to problems solved above, here we have one more spatial co-
ordinate, so we solve parabolic equations in two spatial and one temporal
coordinates. The strategies are similar to those discussed above, numerical
realization is more difficult, memory requirements are higher and the com-
putation time is usually much longer.
A typical and the simplest linear parabolic equation in three dimensions
is the equation
ou  du  u
ot~ 02 op?’
describing non-stationary heat conduction in a plane plate or non-stationary
diffusion in a plane. Assume the initial condition

(1.99)

u(z,y,0) = ¢(z,y), z€l0,1], ye]l0,1] (1.100)
and the boundary conditions

u(z,0,t) =1, wu(z,1,t)=0, =x€]0,1], t>0,

u(0,y,t) = u(l,y,t) =0, yel0,1], t>0. (1.101)

This describes warming up a square plate with the initial temperature
©(z,y), by keeping three sides at the zero temperature and one side at the
unit temperature. In the region 0 < z,y < 1,¢ > 0 we define a grid of nodes
x; = th; y; = jh; t, = mk, where 4,7 = 0,1,...,n; m = 0,1,.... This
grid is given by the step h in the two spatial coordinates z and y and by the
temporal step k. Again we define

k
=5 (1.102)
We denote the value of the numerical solution at a grid point
upy & (@i, Yy, tm) = u(ih, jh,mk). (1.103)
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To keep the formulas simple we define central difference operators of the
second order 47 and d; by

2 2
Ogtiij = Uir1j — 2Uij + Uim1,  Oylij = Uijpr — 2uij + uij.  (1.104)

The simple explicit formula then becomes

u™ = (14 a(62 + 02))u™ + O(k* + kh?), (1.105)
or in details
iy =y ol — 2ul g — 2l ) . (1.106)

The order of this method is clearly O(k + h?) and each point in the new
profile is computed from five points in the old profile. It is possible to derive
a similar formula

u™ = (1+ad?) (1 + ad2)u™ + O(k? + kh?) (1.107)

that uses 9 points in the old profile and that has the same order as formula
(1.105). The reader is invited to rewrite (1.107) in the form similar to (1.106).
Equation (1.106) can be written by the scheme

and similarly equation (1.107) by the scheme

o a(l—2a) —— o2

a(l =2a) —(1 - 2a)*—a(l - 2a)

o2 a(l—2a) —— o2
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Formula (1.107) differs from (1.106) by including *626;4™. These formulas
are illustrated in Fig. 1.7. They both are of order O(k + h?); the stability
condition of the 5 point formula (1.106) is

a< -~ (1.108)
while the 9 point formula (1.107) is stable for

a<-. (1.109)

N | —

If we take v = , the order increases to O(k® + h*) and this formula is
appropriate for preparing precise starting profiles for multi profile methods
(this is true for equation (1.99) only). Strict stability conditions (1.108) and
(1.109) require small temporal step size k resulting in a long computation
time which in turn limits the usability of explicit methods (1.105) and (1.107)
for numerical solution of three dimensional problems. For four dimensional
problems the stability restrictions are even stronger. On the other hand, a big
advantage of explicit methods is their generality and ease of use (evaluation
of recurrent formulas).

—
Figure 1.7: Illustration of explicit formu-
las (1.106) and (1.107)

Du Fort and Frankel derived a stable explicit method by taking (similarly
as for a single spatial coordinate) the unstable Richardson formula

uZZJ_H = uzlj—l +20(62 + (55)@4;”? : (1.110)

They replaced u]"; by the arithmetic mean %(u;nfl + uZ’;’l) and they got

(1+4a)ut = (L—da)uls" + 20(u, ; +ulty ; +ul g +uly,) . (1.111)

This equation is the Du Fort - Frankel method. The necessary starting values
must be computed by another method. The convergence is guaranteed if the
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parameters of the grid satisfy certain additional condition, e.g. k/h — 0.
These conditions decrease the value of this method.

Similarly to the case of a single spatial variable it is possible to derive an
explicit - implicit method where the new profile is computed by

ultth = (14 (82 + 0, m+i+j even, (1.112)
(1 —a@+6)ut =ul,  m+i+j odd. (1.113)

Formula (1.112) is an explicit one in the form of (1.106) and (1.113) is
implicit, where we have all the values uﬁ“{lj, u:ff{lj, uzgtll, “Zzﬁll in the (m +
1)-th profile computed by (1.112), thus (1.113) can be used for recurrent
evaluation. This algorithm is illustrated in Fig. 1.8. It can be shown that
this method is very similar to the Du Fort - Frankel method, so even here we
need k/h — 0.

For explicit method the temporal step size k is bounded by the stability
condition or by the condition £/h — 0. Thus implicit methods are often used
instead. When used for problems described by (1.99) - (1.101) we need to
solve a system of linear algebraic equations for (n — 1)® unknowns in each
step. The precise form of this system depends strongly on the type of the
problem and on the method used; generally these systems are sparse because
in each equation only a small number of unknowns appears. So for large n
it is unreasonable to use finite methods (e.g. the Gauss elimination) because
of memory and computation time demands.

It is possible to prepare a special algorithm with a finite method for a par-
ticular problem, but its applicability is restricted to this particular problem
so it is not worth the effort.

Often the method called alternating direction implicit (ADI) is used in-
volving two solutions of a three diagonal system of (n — 1) equations. The
usage is similar to ADI for elliptic problems see chapter ??. Here, however,
the block relaxation ADI is not done for the same time level. Or the point
relaxation (upper) method can be used with only a few (usually just one)
relaxation cycle for each time level.

Of fundamental meaning is the Crank-Nicolson method (which is always
stable for problems (1.99) - (1.101)) with a five point scheme

(1-g@+a)um = (14 5@+ Jum+ 0w+ h) (L1
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Figure 1.8: Explicit implicit method
e - values computed by (1.112)
o - values computed by (1.113)

or from boundary condition

or a nine pOiIlt scheme
2 2 m+1 2 2 m 3 2
. = = - — + + . (111
(1 ‘; 5$> (1 ‘; (5y>u <1+ 0‘2 5z> <1+O‘2 5y> u"+O(K*+kh?) . (1.115)

They both are of order O(k?*+h?). We get the ADI method by introducing
additional profile ut and by appropriate splitting the formula (1.114). This
way we get the Peaceman-Rachford method

(1 - %53) ut = (1 + %55) um, (1.116)
<1 - %55) u™ = (1 + %53) u'. (1.117)

If we eliminate the profile w™, from (1.116) and (1.117) by simple manip-
ulation we get (1.114). Fig. 1.9 illustrates the Peaceman-Rachford method.

There are other methods using alternating directions (Djakon method,
Douglas-Rachford method etc.). The interested reader is invited to use the
original literature.

OfI I.
— Figure 1.9: Peaceman-Rachford method

+ e - known values,

¢ o - unknown values

As the number of unknowns and the number of equations for implicit
methods depends heavily on n, namely as (n — 1)?, we try to reduce the
number of nodes while keeping the accuracy. This can be done by using
more nodes to approximate the spatial derivatives e.g.

82_’& N —Ui—2,5 + 16Ui_1,j — 301111',]' + 16’U,i+1,j — Uiy2,5
0z? i 12h?

(1.118)
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or at the boundary

62u -~ 11U0’j — 20’&1,]’ + 6U27j + 4U37j — Ugj

0x? L 12h2
J

(1.119)

This method is illustrated in Fig. 1.10 for both explicit and implicit methods.
The order in z and y is O(h*), again Crank-Nicolson averaging can be used.
Difference formulas of a very high order can be constructed, using up to all
(n — 1) values of u so that even for small n a good accuracy can be reached
in certain cases.

~ Figure 1.10: Explicit and implicit formula
of higher order
e - known values,
o - unknown values

Solution of nonlinear parabolic equations in three dimensions is similar to
two dimensional problems, the resulting implicit linear problems are solved
by some method given above, e.g. upper relaxation or ADI.

Similarly as for two independent variables, the method of lines can be
used. Consider a quasi-linear equation

ou u  O%u

=55+t T Ru

ot 0x?2  Oy? ()
with initial and boundary conditions (1.100), (1.101). Denoting u,;(t) =
u(x;, yj,t), and using the simplest three point formulas we get

ui’j(O) = go(:v,-,yj), z':l,...,n—l,jzl,...,n—l.

The number of ordinary differential equations is in this case large, pro-
portional to n?. The advantage of this approach is that it is easy.

* * *

For further study see [?], [?], [?], [?], [?], [?], [?], [?], [?], [?), [?], (2], [?], [?)-
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