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Throughout this note, I is a compact interval, and f : I — [ is a continuous map. For
each integer n > 1, let ™ be defined by: f! = f and f* = fo f* ! when n > 2. For ¢ in I,
we call the set {zq, f(z0), f*(xo), - - } the orbit of zy with respect to f and call zg a periodic
point of f with least period m or a period-m point of f if f™(xy) = zo and f*(zy) # o when
0 <i<m. If f(zg) = xg, then we call g a fixed point of f.

The celebrated Sharkovsky’s cycle coexistence theorem [31] can be stated as follows:

Theorem (Sharkovsky[27, 28, 31]) Let the Sharkovsky’s ordering of the natural numbers
be defined as follows:

3<5<7<9~<---<2:3<2-5<2.7<2-9<...<22.3<22.5<22.7<22.9<...

<28 <922 292 <1.,
Then the following three statements hold:

(1) If f has a period-m point and if m < n, then f also has a period-n point.

(2) For each positive integer n there exists a continuous map from I into itself that has a
period-n point but has no period-m point for any m with m < n.

(3) There exists a continuous map from I into itself that has a period-2' point for i =
0,1,2,... but has no periodic point of any other period.

This note is mainly excerpted from [17]. To make it self-contained, we include the fol-
lowing two well-known results.

Lemma 1. If f"(zq) = 20, then the least period of z with respect to f divides n.
Proof. Let m denote the least period of xy with respect to f and write n = km + r with
0 <r <m. Then zg = f*(z0) = f**" (x0) = f(f*"(x0)) = f"(x0). Since m is the smallest

positive integer such that f™(xy) = zo, we must have r = 0. Therefore, m divides n. [ |

Lemma 2. Let k,m,n, and s be positive integers. Then the following statements hold:
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(i) If zo is a periodic point of f with least period m, then it is a periodic point of f™ with
least period m/(m,n), where (m,n) is the greatest common divisor of m and n.

(ii) If zo is a periodic point of f™ with least period k, then it is a periodic point of f with
least period kn/s, where s divides n and is relatively prime to k. In particular, if f2k_1
has a period-(2-m) point for some k > 2 and m > 1, then f has a period-(2¥-m) point.

Proof (i) Let zg be a period-t point of f. Then m divides nt since zo = (f™)(x0) = f™ (o).
So, o) d1v1des ﬁ t. Since (nfL”n) and (nfn) are coprlme, ( d1v1dest Furthermore,

(f™) m/(m ") (z0) = (fm) /) (24) = 2. Thus, ¢ divides ThlS shows that ¢t =

) (m n)'

(ii) Since xy = (f”)k( 0) = fk”(xo), the least peirod of xo under f is % for some
positive integer s. By (i), (22)/((*2),n) = k. So, 2 = ((%)k,n) (which is an integer)
= ((2)k, (2)s) = (% )( ,s) This shows that s divides n and (s, k) = 1. |

Following [35], we first prove the following three statements:

(a) if f has a period-m point with m > 2, then f has a period-2 point and a fixed point;
(b) if f has a period-m point with m > 3 and odd, then f has a period-(m + 2) point; and

(c) if f has a period-m point with m > 3 and odd, then f has periodic points of all even
periods.

Let P be a period-m orbit of f with m > 2 and let b = f™!(min P). Then f(b) = min P <
b. If f(z) < b on [min P,b], then, (min P <) f*(min P) < b for all ¢ > 1, contradicting the
fact that f™ !(min P) = b. So, there is a point a in [min P, b] such that f(a) > b. Thus,
f has a fixed point z in [a,b]. Now suppose m > 3 and let v be a point in [a, z] such that
f(v) =b. Since f*(min P) > min P and f?(v) = min P < v, the point y = max{min P < z <
v: f3(z) = x} exists. Furthermore, f(z) > z on [y,v] and f2(z) < x on (y,v]. Therefore, y
is a period-2 point of f. (a) is proved.

For the proofs of (b) and (c), we assume that m > 3 is odd and note that f(z) > z >z >
f?(x) on (y,v]. Since f™*%(y) = f(y) >y and f™*?(v) = f™(min P) = min P < v, the point
Pmie = min{y <z < wv: f"2(z) = x} exists. Let k denote the least period of p,, o with
respect to f. Then k > 1 and, by Lemma 1, k& divides m 4+ 2. So, k is odd. If &k < m + 2,

then since f2(y) = £(y) > y and f*2(ppya) = (F2)(F (os2) = F(Prrsa) < Dmser there
is a point wy o in (Y, pmie) such that f*72(wp,o) = wpyo. Inductively, there exist points

Y < < Wpyo < Wy <K Wpp—o < 000 < Whgd < W2 < Ptz < VU

such that f* 2 (wyy9;) = wpyo for all i > 1. In particular, f™(wy19) = Wmye and y <
Wit < DPma2, contradicting the fact that p,,, 2 is the smallest point in (y,v) which satisfies
f™2(z) = x. Therefore, k = m + 2. This establishes (b).

We now prove (c). Let
2o =min{v <z < z: f*(z) = x}.

Then f?(z) < x and f(x) > z on (v,2p) and so also on (y,2). If f?(x) < 2z whenever
min P < x < zy, then we have min P < f%(min P) < 2 for all i« > 1 which contradicts the
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fact that (f2)™~V/2(min P) = b > 2. Since f(x) < x < 2 on (y, %), the point
d=max{min P <z <y: f*(z) = 2}
exists and f(z) > z > 2z > f*(z) on (d,y). Therefore, f(z) > 2z > zy > f?(x) on (d, 29). Let
u; = min{d < x <wv: f*(r) = d}.
Then d < f?(x) < zp on (d,u;). Let ¢; be any point in (d,u;) such that f?(c;) = ¢;. Let
uy = min{d < x < ¢; : (f3)?*(z) = d}.

Then d < (f?)*(x) < z on (d,uz). Let ¢y be any point in (d, us) such that (f?)2(ca) = co.
Let
uz = min{d <z < ¢y : (f2)3(z) = d}.

Then d < (f?)%(z) < 20 on (d,u3). Let c3 be any point in (d,u3) such that (f2)3(c3) = c3.
Proceeding in this manner indefinitely, we obtain points

d< - <ep<U, < - <cg<uU<c <u < 2

such that d < (f?)"(z) < 20 on (d,u,) and (f*)"(c,) = c,. Since f(x) > z > 2z on (d, 2),
we have . .
fi(en) < 20 < f’(cy) for all even i and all odd j in [0, 2n].

Therefore, each ¢, is a period-(2n) point of f. This proves (c).
We now prove (1), (2) and (3) of Sharkovsky’s theorem.

If f has a period-m point with m > 3 and odd, then it follows from (b) that f has a
period-(m + 2) point and, from (c) that f has periodic points of all even periods.

If f has a period-(2 - m) point with m > 3 and odd, then, by Lemma 2(i), f* has a
period-m point. It follows from the above (or by (b) and (c)) that f? has a period-(m + 2)
point and a period-(2 - 3) point. If f? has a period-(m + 2) point, then, by Lemma 2(ii),

f has either a period-(m + 2) point or a period-(2 - (m + 2)) point.

If f has a period-(m + 2) point, then it follows from (c) that f has a period-(2 - (m + 2))
point. In either case, f has a period-(2 - (m + 2)) point. On the other hand, if f2 has a
period-(2 - 3) point, then, by Lemma 2(ii), f has a period-(2? - 3) point. This shows that if f
has a period-(2 - m) point with m > 3 and odd, then f has a period-(2 - (m + 2)) point and
a period-(2? - 3) point.

Now if f has a period-(2¥ - m) point with m > 3 and odd and if & > 2, then, by Lemma
2(i), 27" has a period-(2 - m) point. It follows from the previous paragraph that .
has a period-(2 - (m + 2)) point and a period-(2? - 3) point. So, by Lemma 2(ii), f has a
period-(2¥ - (m + 2)) point and a period-(2¢*1 - 3) point.

Furthermore, if f has a period-(2° - m) point with m > 3 and odd and if 7 > 0, then, by
Lemma 2(i), f2 has a period-m point. For each ¢ > i, by Lemma 2(i), /2 = (f2)* ' has a
period-m point and so, by (c), 2 has a period-6 point. Thus, by Lemma 2(i), 2" has a
period-3 point and hence, by (a), has a period-2 point. This implies, by Lemma 2(ii), that f
has a period-2¢+2 point for each ¢ > i.



Finally, if f has a period-2¥ point for some k > 2, then, by Lemma 2(i), 2 has a period-
4 point. By (a), 2" has a period-2 point. By Lemma 2(ii), f has a period-2¢—1 point and
hence, by induction, f has a period-2’ point for each j = 1,2,--- ,k — 2. Furthermore, it
follows from (a) that f has a fixed point. This completes the proof of (1).

As for the existence proofs of (2) and (3) (we refer to [17] for some constructive examples),
we let g(z) : [0,1] — [0, 1] denote any continuous map that has at least one period-3 orbit
and finitely many (> 1 by (1)) period-k orbits for each & > 2. For example, we can take g(x)
to be the tent map g(z) = 1 — |2z — 1| (cf. [11]). We also let the truncated map g, (),
where 0 < a < b < 1, be defined on [0, 1] by

b, if g(x) > b;

Jap(r) = q 9(x), if a<g(z) <b;
a, if g(z) < a.

The relationship between the maps g(x) and g,(z) is that the periodic orbits of g, () are
also periodic orbits of g(x) with the same periods and, conversely, the periodic orbits of
g(x) which lie entirely in the interval [a,b] are also periodic orbits of g, ,(x) with the same
periods. Consequently, if @ is a period-k orbit of g(x), then it is also a period-k orbit of
Gmin Qpmax Qy, (). BY (1), Gmin Qy,max, (z) has a period-¢ orbit for each ¢ with & < ¢. In other
words, the interval [min Qy, max Q] contains a period-¢ orbit of g(x) for each ¢ with k < /.
By assumption, for each integer k > 2, g(x) has finitely many (> 1) period-k orbits. Among
these finitely many period-k orbits, let

P. be one with the smallest diameter max P, — min P.

For each x in [0, 1], let gx(z) = §a, p,(x), where a; = min Py and by = max Py(x). Then it
is easy to see that, for each k > 2, gi(x) has exactly one period-k orbit (i.e., P;) but has
no period-j orbit for any j with 7 < k in the Sharkovsky ordering. This, together with the
constant maps, confirms (2).

By assumption, g(x) has finitely many (> 1) period-2 orbits. Let § denote the smallest
diameter among these period-2 orbits. For every periodic orbit P of g(x) with least period > 3,
it follows from (a) that Gmin pmax p(z) has a period-2 orbit. So, max P —min P > § > 0. Now
let @3 be any period-3 orbit of g(z) of smallest diameter. Then [min @3, max Q3] contains
finitely many period-6 orbits of g(z) among which one, say Qg, is of smallest diameter.
Sinilarly, [min Qg, max Qg] contains finitely many period-12 orbits of g(z) among which one,
say (D12, is of smallest diameter. We continue the process inductively. Let

go = sup{min Qan.3 : n > 0} and ¢ = inf{max Qon.3 : n > 0}

and let §oo(2) = Jgo.q0 (z) for all 0 < z < 1. If Goo(z) had a period-(2' - m) orbit for some
i > 0 and some odd m > 3, then, by (1), jeo(2) has a period-(2it! - 3) orbit, say Qa1 ..
Since Qui+1.3 C [go, ] C [min Qois1 .5, max Quis1.3], Qoitr g is also a period-(271 - 3) orbit, of
g(x) with diameter strictly smaller than that of Qqi+1.3. This is a contradiction. So, §oo()
has no periodic orbit of period not a power of 2. On the other hand, for each £ > 0, the
map g(z) has finitely many period-2* orbits. If each such orbit had an exceptional point
which is not in the interval [qo, 1], then it is clear that we can find an n > 1 such that the
interval [min Qgn.3, max Qan.3] contains none of these exceptional points which implies that
[min Qgn.3, max Qan 3] contains no period-2* orbits of g(z). Consequently, the map gs, 4, (),
where s, = min Qgn.3,t, = max Qqn 3, has no period-2* orbits and yet it has a period-(2" - 3)
orbit, i.e., Qgn.5. This contradicts (1). Therefore,the map goo(z) is an example for (3).
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