
ÚSKALÍ ČÍSLICOVÝCH POČÍTAČŮ PŘI SIMULACI
NELINEÁRNÍCH DYNAMICKÝCH SYSTÉMŮ

Pavel Pokorný

Současné čı́slicové počı́tače použı́vajı́ pro uchovánı́ a zpracovánı́ přibližných desetinných
čı́sel dvojkovou soustavu. Proč právě dvojkovou? Bylo by možné použı́t jinou, např. trojkovou
nebo desı́tkovou soustavu?

Ano, bylo, ale dvojková soustava je výhodná pro zjednodušenı́ konstrukce hardwaru a také
pro omezenı́ výskytu chyb, protože pravděpodobnost, že bude daná hodnota nějaké fyzikálnı́
veličiny, která se použı́vá pro reprezentaci informace v paměti počı́tače, např. elektrického
napětı́, která je nutně zatı́žená šumem, chybně vyhodnocena, je tı́m většı́, čı́m bližšı́ jsou hod-
noty, tedy tı́m většı́, čı́m vı́ce hodnot se použı́vá. Dvě hodnoty jsou minimum, pravděpodobnost
chyby je pak nejmenšı́. Např. při použitı́ desı́tkové soustavy by byla vzdálenost sousednı́ch
hodnot přibližně desetkrát menšı́, tedy pravděpodobnost chyby by byla většı́. Použitı́ dvojkové
soustavy má ale i závažné nevýhody při simulaci dynamických systémů.
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Obr. 1: Prvnı́ch tisı́c členů posloupnosti generované chaotickým dynamickým systémem (1).
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Obrázek 1 ukazuje prvnı́ch tisı́c členů posloupnosti ��� , které nabývajı́ hodnot mezi nulou a
jedničkou zdánlivě nepravidelně. Lze spočı́tat Lyapunovův exponent( �*),+.-/�
takže se jedná o deterministických chaos. Že se opravdu jedná o deterministický proces se
lze snadno přesvědčit i bez znalosti rovnic, z kterých byla postoupnost vypočtena. Stačı́ si
vynést do grafu v rovině body o souřadnicı́ch �0���!�1��������� a uvidı́me, že ležı́ na křivce, v tomto
přı́padě parabole, což je graf funkce, jejı́ž iteracı́ posloupnost vznikla. Potud je vše v souladu
s očekávánı́m na základě zkušenostı́ z teorie dynamických systémů.

Systém (1) lze homeomorfismem2 �
���3�54167+98��
��: - �;� �=<?>@ !�A��B
převést na systém C �������*DE� C �F��� DE� C ���G�.�
HI- C �J�!H � (3)

Snadno se lze přesvědčit, že pro �=<?>@ !�A��B platı́	LK 2 � 2 KMD�� (4)

tedy 	N� 2 �0���O�P� 2 �0DE�0���O�;�
tedy vlastně �34167+98��0��: - �A�����Q4O6,+!8R�
��: - �1�3�*416,+!8��1�S�.�
HI-R�T�U�!HV��: - �;�
což lze vyjádřit grafem na Obr. 2. Pak řı́káme, že 	 a D jsou konjugované homeomorfismem
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Obr. 2: Komutativnı́ diagram ilustrujı́cı́ vztah (4). Řı́káme, že dynamické systémy (1) a (3) jsou
topologicky ekvivalentnı́.

A tedy platı́ i 	 � K 2 � 2 KMD � Z <\[]� (5)

čili 	 � � 2 K^D � K 2�_ � Z <`[ � (6)

Takže libovolnou iteraci 	 lze vyjádřit pomocı́ přı́slušné iterace D a obráceně. Speciálně, má-
li systém (1) periodickou orbitu s periodou a , pak má i systém (3) periodickou orbitu s touž
periodou.
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Obr. 3: Prvnı́ch sto členů posloupnosti generované chaotickým dynamickým systémem (3). Po
nejvýše 53 iteracı́ch dostaneme pro libovolnou počátečnı́ podmı́nku při simulaci na čı́slicovém
počı́tači samé nuly. To je nepřı́znivý důsledek toho, že čı́sla jsou v počı́tači uložena ve dvojkové
soustavě a toho, že derivace funkce D v (3) je (v bodech, kde derivace existuje) přesně rovna 2.

Jak dopadne numerická simulace systému (3) na čı́slicovém počı́tači? Počátečnı́ podmı́n-
ce (2) odpovı́dá počátečnı́ podmı́nkaC ��� -: b�cOd 4O6,+fe �e ��g !�h�9�W�F&�%�' � (7)

Obr. 3 ukazuje výsledek simulace systému (3). Prvnı́ch cca 50 iteracı́ vypadá podobně jako na
Obr. 1. Ale od jistého

Z
jsou hodnoty

C � konstantnı́, totiž nulové. To je překvapivé, protože
podle (4) jsou systémy (1) a (3) ekvivalentnı́. Přı́čina je v tom, že hodnoty

C � jsou uloženy
v počı́tači jako přibližná desetinná čı́sla v dvojkové soustavě, viz. Tab. 1.

Způsob uloženı́ čı́sel v paměti počı́tače a práce s nimi záležı́ na použitém softwaru. V běž-
ných programovacı́ch jazycı́ch, jako je C, Fortran, Pascal atd. se nejčastěji použı́vá tzv. dvojitá
přesnost, kdy je přibližné desetinné čı́slo uloženo v semilogaritmickém tvaru pomocı́ 8 bytů,
tedy 64 bitů. Těchto 64 bitů je rozděleno do třech skupin:i 1 bit znaménko: 0 znamená plus, 1 znamená mı́nus,i 11 bitů exponent,i 52 bitů mantisa (dvojková mı́sta za desetinnou čárkou).

Hodnota čı́sla v tomto semi-logaritmickém tvaru pak je�j� znaménko � 1+mantisa �Mk 2exponent - 1023 �



Vyjı́mku tvořı́ čı́slo nula, které je uloženo jako samé nuly. Např. na řádku 49 v Tab. 1 vidı́me:
znaménkový bit je 0, tedy plus, exponent je  !���F�F�F�F���F�F�� 8 ���� �-�- a mantisa je �F� 8 (dalšı́ch 50
nul nevypisujeme), takže desetinná hodnota je���mln !�7��� 8 �Mk`- �po 8q8 _ �po 8qr �g !�s&�%Ft �
Rozsah 52 dvojkových mı́st mantisy znamená relativnı́ přesnost-vuq8 ��G�� �pw
tedy cca 16 desetinných mı́st a maximálnı́ exponent 2047 znamená, že největšı́ čı́slo v tomto
formátu, s kterým lze pracovat, je přibližně-xky- 8 o{z�| _ �po 8qr ��5�}k��� r oq~ �
což pro většinu aplikacı́ postačuje. Pro většı́ nároky můžeme použı́t čtyřnásobnou přesnost nebo
speciálnı́ software (Mathematica, Maple), tı́m však výrazně klesá rychlost výpočtu.

Podı́vejme se nynı́ na tento náš výsledek z určitého nadhledu. Při vyčı́slovánı́ pravé strany
dynamického systému (3) se čı́slice ve dvojkovém zápise posouvajı́ doleva (a přı́padně trans-
formujı́) a zprava se doplňujı́ nulami. To je zvláštnı́ přı́pad. Jak to bude vypadat při simulaci
obecného dynamického systému? K posunu informace z mı́st daleko za desetinnou čárkou
směrem doleva, tedy do mı́st s většı́m významem, docházı́ u všech chaotických dynamických
systémů. Tento posuv je tı́m rychlejšı́, čı́m je vyššı́ největšı́ Lyapunovův exponent

(
. Konkrétně

např. pro
( �*),+.- , což je náš přı́pad zde, bude průměrná rychlost posuvu jedno dvojkové mı́sto

na iteraci.
To úzce souvisı́ s citlivou závislostı́ na počátečnı́ch podmı́nkách. Malá změna počátečnı́ch

podmı́nek se projevı́ zprvu změnou v zápise čı́sla někde daleko vpravo za desetinnou čárkou.
V průběhu času se tato změna posunuje doleva, tedy blı́že k desetinné čárce a nabývá na
významu. To je pravá podstata deterministického chaosu. Jeho význam je v tom, že mnoho
rozumných matematických modelů reálných fyzikálnı́ch a jiných systémů vykazuje právě tento
typ chovánı́ a je ve velice dobré shodě s našı́ běžnou i experimentálnı́ zkušenostı́.

V tomto našem přı́padě dynamického systému (3) nastává ta vyjı́mečná situace, že při po-
sunu informace doleva se čı́slo zprava doplňuje nulami. Tı́m po konečném počtu iteracı́, zde cca
52, což je dáno počtem platných mı́st mantisy, je celá informace ztracena a nahrazena nulami.
Systém pak přejde do stavu s periodou 1, tedy do pevného bodu. Toto je vyjı́mečná situace,
která nenı́ typická. V obecném přı́padě, jako např. (1), se většinou zprava nedoplňujı́ nuly, ale
čı́slice, které jsou složitým výsledkem zaokrouhlovacı́ch a jiných chyb.

To se může jevit jako dosti pesimistický důsledek: výsledek simulace chaotického dyna-
mického systému je tedy po malém počtu kroků (zde 52) dán chybami výpočtu a ne fyzikálnı́
podstatou studovaného systému.

Skutečnost nenı́ tak smutná. Tyto zaokrouhlovacı́ a jiné chyby vlastně dobře simulujı́ ter-
málnı́ a jiný šum, přı́tomný v každém reálném ději. A i v přı́padě reálného systému se malé
fluktuace mohou po jisté době projevit makroskopickými změnami chovánı́ systému. Důležité
je, aby pravá strana dynamického systému dobře popisovala studovaný reálný systém. Pokud
tomu tak je, pak růst vlivu malé odchylky bude v reálném systému dobře simulován modelem.

Dalšı́ dobrá zpráva je stı́nové lemma (ang. shadowing lemma), které, volně řečeno, zaručuje,
že i při nepřesné simulaci, tedy když mı́sto přesné orbity���W�����n	��
�������� 



počı́táme pouze pseudoorbitu H ���������n	��
������H������
existuje taková počátečnı́ podmı́nka, z které vycházı́ přesná orbita, která je v jistém smyslu
blı́zká našı́ napočı́tané pseudoorbitě.



n � � � � jak je uloženo v paměti počı́tače
1 0,414879 00111111 11011010 10001101 01011110 10101100 10000101 11100001 10111000
2 0,829757 00111111 11101010 10001101 01011110 10101100 10000101 11100001 10111000
3 0,340486 00111111 11010101 11001010 10000101 01001101 11101000 01111001 00100000
4 0,680972 00111111 11100101 11001010 10000101 01001101 11101000 01111001 00100000
5 0,638056 00111111 11100100 01101010 11110101 01100100 00101111 00001101 11000000
6 0,723887 00111111 11100111 00101010 00010101 00110111 10100001 11100100 10000000
7 0,552226 00111111 11100001 10101011 11010101 10010000 10111100 00110111 00000000
8 0,895548 00111111 11101100 10101000 01010100 11011110 10000111 10010010 00000000
9 0,208903 00111111 11001010 10111101 01011001 00001011 11000011 01110000 00000000

10 0,417807 00111111 11011010 10111101 01011001 00001011 11000011 01110000 00000000
11 0,835614 00111111 11101010 10111101 01011001 00001011 11000011 01110000 00000000
12 0,328773 00111111 11010101 00001010 10011011 11010000 11110010 01000000 00000000
13 0,657545 00111111 11100101 00001010 10011011 11010000 11110010 01000000 00000000
14 0,684910 00111111 11100101 11101010 11001000 01011110 00011011 10000000 00000000
15 0,630180 00111111 11100100 00101010 01101111 01000011 11001001 00000000 00000000
16 0,739640 00111111 11100111 10101011 00100001 01111000 01101110 00000000 00000000
17 0,520720 00111111 11100000 10101001 10111101 00001111 00100100 00000000 00000000
18 0,958560 00111111 11101110 10101100 10000101 11100001 10111000 00000000 00000000
19 0,082880 00111111 10110101 00110111 10100001 11100100 10000000 00000000 00000000
20 0,165760 00111111 11000101 00110111 10100001 11100100 10000000 00000000 00000000
21 0,331521 00111111 11010101 00110111 10100001 11100100 10000000 00000000 00000000
22 0,663041 00111111 11100101 00110111 10100001 11100100 10000000 00000000 00000000
23 0,673918 00111111 11100101 10010000 10111100 00110111 00000000 00000000 00000000
24 0,652164 00111111 11100100 11011110 10000111 10010010 00000000 00000000 00000000
25 0,695671 00111111 11100110 01000010 11110000 11011100 00000000 00000000 00000000
26 0,608657 00111111 11100011 01111010 00011110 01001000 00000000 00000000 00000000
27 0,782686 00111111 11101001 00001011 11000011 01110000 00000000 00000000 00000000
28 0,434628 00111111 11011011 11010000 11110010 01000000 00000000 00000000 00000000
29 0,869256 00111111 11101011 11010000 11110010 01000000 00000000 00000000 00000000
30 0,261488 00111111 11010000 10111100 00110111 00000000 00000000 00000000 00000000
31 0,522975 00111111 11100000 10111100 00110111 00000000 00000000 00000000 00000000
32 0,954049 00111111 11101110 10000111 10010010 00000000 00000000 00000000 00000000
33 0,091902 00111111 10110111 10000110 11100000 00000000 00000000 00000000 00000000
34 0,183804 00111111 11000111 10000110 11100000 00000000 00000000 00000000 00000000
35 0,367607 00111111 11010111 10000110 11100000 00000000 00000000 00000000 00000000
36 0,735214 00111111 11100111 10000110 11100000 00000000 00000000 00000000 00000000
37 0,529572 00111111 11100000 11110010 01000000 00000000 00000000 00000000 00000000
38 0,940857 00111111 11101110 00011011 10000000 00000000 00000000 00000000 00000000
39 0,118286 00111111 10111110 01001000 00000000 00000000 00000000 00000000 00000000
40 0,236572 00111111 11001110 01001000 00000000 00000000 00000000 00000000 00000000
41 0,473145 00111111 11011110 01001000 00000000 00000000 00000000 00000000 00000000
42 0,946289 00111111 11101110 01001000 00000000 00000000 00000000 00000000 00000000
43 0,107422 00111111 10111011 10000000 00000000 00000000 00000000 00000000 00000000
44 0,214844 00111111 11001011 10000000 00000000 00000000 00000000 00000000 00000000
45 0,429688 00111111 11011011 10000000 00000000 00000000 00000000 00000000 00000000
46 0,859375 00111111 11101011 10000000 00000000 00000000 00000000 00000000 00000000
47 0,281250 00111111 11010010 00000000 00000000 00000000 00000000 00000000 00000000
48 0,562500 00111111 11100010 00000000 00000000 00000000 00000000 00000000 00000000
49 0,875000 00111111 11101100 00000000 00000000 00000000 00000000 00000000 00000000
50 0,250000 00111111 11010000 00000000 00000000 00000000 00000000 00000000 00000000
51 0,500000 00111111 11100000 00000000 00000000 00000000 00000000 00000000 00000000
52 1,000000 00111111 11110000 00000000 00000000 00000000 00000000 00000000 00000000
53 0,000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
54 0,000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
55 0,000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Tabulka 1: Prvnı́ch 55 hodnot výsledku simulace dynamického systému (3) na čı́slicovém
počı́tači zapsáno v desı́tkové soustavě (druhý sloupec) a zapsáno tak, jak jsou čı́sla zanesena
v paměti počı́tače (třetı́ sloupec). Vidı́me, jak se zprava šı́řı́ nuly až obsadı́ všechna mı́sta man-
tisy.


