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We want to derive the Stirling formula

log n!
.
= n log n− n+

1

2
log n+ log

√
2π

where log is the natural logarithm. The
.
= sign here means that

lim
n→∞

log n!− (n log n− n+
1

2
log n+ log

√
2π) = 0.

Consider the integral
n∫

1

log x dx.

Integrating by parts using u′ = 1 and v = log x we get

n∫
1

log x dx = [x log x]n1 −
n∫

1

1 dx = n log n− n+ 1

and using the trapezoidal rule with the step size equal to 1 we get

n∫
1

log x dx =

n∑
k=1

log k − 1

2
log n+ δn = log n!− 1

2
log n+ δn

where δn is the error which is bounded. Combining these two results we have

log n! = n log n− n+
1

2
log n+ ∆n

where ∆n = 1 − δn. The following table shows the error ∆n for various values
of n

n ∆n

10 0.927269
100 0.919772
1000 0.919022
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We will show that
lim
n→∞

∆n = log
√

2π
.
= 0.918939.

For this purpose consider the integral

In =

π∫
0

sinn x dx.

It is easy to find
I0 = π,

I1 = 2,

I2 =
1

2
π.

Using integration by parts with u′ = sinx and v = sinn x we get

In+1 =

π∫
0

sinx sinn x dx = [− cosx sinn x]π0 + n

π∫
0

cos2 x sinn−1 x dx =

= n

π∫
0

(1− sin2 x) sinn−1 x dx = n(In−1 − In+1).

This gives
(1 + n)In+1 = nIn−1

and thus
In+1 =

n

n+ 1
In−1.

Thus starting with I0 = π we can find In with even n

I0 = π

I2 =
1

2
π

I4 =
3

4

1

2
π

I6 =
5

6

3

4

1

2
π

I8 =
7

8

5

6

3

4

1

2
π

and so on and similarly starting with I1 = 2 we can find In with odd n

I1 = 2

I3 =
2

3
2
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I5 =
4

5

2

3
2

I7 =
6

7

4

5

2

3
2

I9 =
8

9

6

7

4

5

2

3
2

and so on.
Now we show that

lim
n→∞

In
In−1

= 1.

For 0 < x < 1
2π and for 1

2π < x < π we have 0 < sinx < 1 and thus the
sequence sinn x is positive and strictly decreasing with n so we have

0 < In+1 < In < In−1.

Dividing by In−1 we get
n

n+ 1
<

In
In−1

< 1

which by the squeeze theorem gives

lim
n→∞

In
In−1

= 1.

Writing In and In−1 in terms of I0 and I1 (assuming without the loss of gener-
ality even n) we have

lim
n→∞

1·3·5···n−1
2·4·6···n π
2·4·6···n

1·3·5···n+12
= 1.

Here the product of odd numbers can be multiplied by even numbers to give
factorial and the product of even numbers can be divided by a suitable power
of 2 to give factorial as well yielding

lim
n→∞

n!
(2( n

2 )n
2 !)2

π

(2( n
2 )n

2 !)2

(n+1)! 2
= 1

after simplification

lim
n→∞

n!(n+ 1)!

22n(n2 !)4
π

2
= 1

taking the square root

lim
n→∞

√
n+ 1 n!

2n(n2 !)2

√
π

2
= 1

taking the logarithm and using the above derived formula

log n! = n log n− n+
1

2
log n+ ∆n
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we have

lim
n→∞

1

2
log(n+ 1) + n log n− n+

1

2
log n+ ∆n−

−n log 2− 2(
n

2
log

n

2
− n

2
+

1

2
log

n

2
+ ∆n

2
) +

1

2
log

π

2
= 0

and after simplification we get the result

lim
n→∞

∆n = log
√

2π
.
= 0.918939

which concludes our derivation of the Stirling formula

log n!
.
= n log n− n+

1

2
log n+ log

√
2π.

The following table shows the good agreement of this approximation for various
values of n

n log n! n log n− n+ 1
2 log n+ log

√
2π

10 15.1044 15.0961
100 363.739 363.739
1000 5912.13 5912.13

1 Application

Consider the following question. What is the probability, that among 22 football
players at least two of them have birthday on the same day during the year?
Or vice versa, what is the probability that there is no birthday conflict among
22 players?

In a more general settings, consider a set A with k elements (the football
players) and a set B with n elements (the days during the year). What is
the probability that a randomly chosen map from A to B is injective, i.e. for
different preimages we have different images?

If k > n the probability of no conflict is zero. There are at least two elements
that are mapped to the same image.

If k ≤ n then for the conflict not to occur, the first element from the set A
may be mapped to any of the n elements from the set B. The second element
can be mapped to any of the n− 1 remaining elements of B. The third element
of A can be mapped to any of the n − 2 elements of B. The total number of
maps is nk. So the probability of no conflict is

P =
n(n− 1)(n− 2)(n− 3) · · · (n− k + 1)

nk
=

n!

(n− k)! nk

For k = 22 and n = 365 we have P = 365!
(365−22)! 36522

.
= 0.524305. So the

probability of no conflict is approximately 52 %, thus the probability of at least
two players having birthday on the same day is roughly 48 %.
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For large n we can use the above derived approximation for factorial

log n!
.
= n log n− n+

1

2
log n+ log

√
2π.

giving the log of the probability of no conflict

logP = log
n!

(n− k)! nk
.
=

.
= n log n−n+

1

2
log n+log

√
2π−(n−k) log(n−k)+n−k−1

2
log(n−k)−log

√
2π−k log n =

= n log n+
1

2
log n− n log(n− k) + k log(n− k)− k − 1

2
log(n− k)− k log n =

= n log
n

n− k
+

1

2
log

n

n− k
− k log

n

n− k
− k =

= (n− k +
1

2
) log

n

n− k
− k =

= −(n− k +
1

2
) log

n− k
n
− k =

= −(n− k +
1

2
) log(1− k

n
)− k.

We expand the logarithm

log(1 + x) = x− 1

2
x2 + h.o.t.

with x = − k
n , where h.o.t. stands for higher order terms. This gives

logP = −(n− k +
1

2
)(−k

n
− 1

2

k2

n2
)− k + h.o.t. =

−1

2

k2

n
+ h.o.t.

We can use this approximation for the above example with 22 football players

P
.
= exp(−1

2

222

365
)
.
= 0.515296

which is in agreement that there is the 52 % probability of no birthday conflict.
For much larger values, say k = 2130 and n = 2256 the estimate gives

logP = −1

2

k2

n
= −1

2

2260

2256
= −8

and the probability of no conflict is

P = e−8
.
= 0.000335463
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and the probability of conflict is

1− P = 0.999665.

Note: consider, how difficult it would be to evaluate the expression

P =
2130!

(2256 − 2130)! (2256)2130
.
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