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1 Formulace

Odvodime Stirlingovu formuli
. 1
logn! =nlogn —n + 510gn+log\/27r
kde log je the prirozeny logaritmus. Znak = zde znamena, ze
1
nli_)rrolologn! — (nlogn —n + Elogn—i- log v2m) = 0.
2 (Odvozeni

Uvazujme integral

/ log x dzx.
1

Integrujeme per partes (u' = 1, v = log ) a dostaneme
/10g$ dx = [xlog x|} —/1 dx =nlogn —n+ 1.
1 1
Pti pouziti lichobéznikové metody s krokem rovnym 1 dostaneme
f n 1 1
/logx de = loghk — §logn+5n = logn! — 510gn+6n
1 k=1

kde 0, je chyba, ktera je omezena (viz Dodatek). Srovnanim téchto dvou
vysledktu mame

1
logn! =nlogn —n + ilogn%—An



kde A, = 1—4,,. Nasledujici tabulka ukazuje chybu A,, pro ruzné hodnoty n

n JANS

10 | 0.927269
100 | 0.919772
1000 | 0.919022

Ukazeme, ze
7}1_{20 A,, = logV2m = 0.918939.

Za tim ucelem budeme uvazovat integral
™
1, = /sin”x dx.
0

Lze snadno spocitat

I():ﬂ',

[1: )
1

]22571'.

Kdyz integrujeme per partes (v’ = sinx, v = sin” z), tak dostaneme

s ™
I..i= [sinz sin®x dr =[—coszsin®z]% +n [ cos®>z sin" 'z der =
n+ 0

0 0

= n/(l —sin®z) sin" o dr =n(l,_1 — 1)
0

To d&
(1 + n)[n-‘rl =nl,_

n
n+1
Tedy, kdyz zacneme s Iy = 7, tak dostaneme [,, pro sudé n

In+1 = I y.
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I4 = 1571'
531
) P
6= 642"
7531
Ja=-—2°Z
878642

Il ==
2
I3 = 52
42
Is = —=2
53
642
I, — -2
T 753
8642
[o=2-"22
79753
atd.
Nyni ukazeme, ze
I,
lim =1.

n—00 [n—l

Pro0 <z < %71' a pro %77 < x < mmame 0 < sinz < 1 a tudiz posloupnost
sin” z je kladné a klesajici s n, takze

O< Il <I,<I, .

Kdyz vydélime ¢éislem [, _q, tak dostaneme

L In <1
n+1 In—l
Protoze n
lim =1,

tak z véty o dvou policajtech (anglicky the squeeze theorem) dostaneme

’ I,
1m
n—00 [n—l

=1.

3



Kdyz vyjadiime [, a I,,_; pomoci Iy a I; (zde lze bez Gjmy na obecnosti
uvazovat sudé n), tak dostaneme

1.3-5n—1
s T

: 2:4-6--n

ﬁﬂnggig
1-3-5--n+1

=1.

Zde soucin lichych ¢isel muzeme vynasobit sudymi ¢isly, abychom dostali
faktorial a podobné soucin suchych ¢isel muzeme vydélit vhodnou mocninou
dvou, abychom dostali faktorial. To d&
n!
n—oo (2(2)2%1)2
CES I

=1

a po zjednoduseni
. onl(n+Drn
lim —————— =
a po odmocnéni

vn+1n!
lim \/71

n—oo 2” n|

a logaritmovani a s pouzitim vyse odvozeného vztahu

1
logn! =nlogn —n + §logn~|—An

dostaneme
li H (n+1)+nl +11 + A
nl_)IglOQ og(n nlogn —n 5 ogn n
log 2 2( 1 4= 1 +Ax)+ +t10g T =0
—nlog2 — og o 0 0g = =
1108 g2 2 gz 2% 73

a po zjednoduseni mame vysledek
nh_}rgo A, = log V2w = 0.918939.

Tim je odvozena Stirlingova formule

1
logn! =nlogn —n + ilogn+log\/27r.



Nasledujici tabulka ukazuje dobrou shodu této aproximace pro ruzné hod-
noty n

n log n! nlogn—n—i—%logn—klog\/%
10 | 15.1044 15.0961

100 | 363.739 363.739

1000 | 5912.13 5912.13

3 Aplikace

Uvazujme nasledujici ulohu. Jaké je pravdépodobnost, ze mezi 22 fotbalisty
maji alespon dva hraci narozeniny stejny den v roce. Nebo obracené, jaka je
pravdépodobnost, ze nedojde k soubéhu narozenin mezi 22 hraci?

Obecnéji, uvazujme mnozinu A s k prvky (hracéi) a mnozinu B s n prvky
(dny v roce). Jaké je pravdépodobnost, ze nahodné zvolené zobrazeni z mnoziny
A do mnoziny B je prosté, tedy pro ruzné vzory mame ruzné obrazy?

Pro k > n je pravdépodobnost nesoubéhu nulova. Existuji alespon dva
ruzné prvky, které se zobrazi na stejny prvek.

Je-li k < n, pak, aby nedoslo k soubéhu, prvni prvek z mnoziny A se muze
zobrazit na jakykoliv z n prvku mnoziny B. Druhy prvek se muze zobrazit
na jakykoliv z n — 1 zbyvajicich prvka mnoziny B. Treti prvek mnoziny A se
muze zobrazit na jakykoliv z n—2 prvka mnoziny B. Celkovy pocet zobrazeni
je n*. Takze pravdépodobnost nesoubéhu je

nn—1)n-2)(n-3)---(n—k+1) n!
P= = .
nk (n — k)! nk
Prok =22 an = 365 mame P = m = 0.524305. Takze pravdépodobnost

nesoubéhu je priblizné 52 %, tedy pravdépodobnost, ze alespon dva hraci bu-
dou mit narozeniny stejny den v roce je piiblizné 48 %.
Pro velké n muzeme pouzit Stirlingovu formuli pro faktorial

1
logn! =nlogn —n + 3 logn + log V2.
Pak pftirozeny logaritmus pravdépodobnosti nesoubéhu je
n!

longlogm =

1 1
= nlog n—n+§ log n+log V27— (n—k) 10g(n—k‘)+n—k—§ log(n—k)—log v2r—klogn =

5



1 1
:nlogn+§logn—nlog(n—k)+klog(n—k)—k—ﬁlog(n—k)—klogn =

1 n n

n
=nl =1 —kl —k=
nOgn—k+20gn—k Ogn—k
1 n
=n—k+ )l — k=
(n + 2) 0g
1 —k
1 k
= —(n—k:+§)log(1 — ﬁ) — k.
Nyni rozvineme logaritmus
L,
log(1+2z) =2 — % + h.o.t.
prox = —%, kde h.o.t. znaci ¢leny vyssich fadu (anglicky higher order terms).
To nam da
1 ko 1k?
logP=—-(n—k+ -)(—— )—k+hot =

2N 2n2
1k2

——— + h.o.t.
2n

Muzeme pouzit tuto aproximaci na vyse uvedeny piiklad s 22 hraci
2
P = exp(—=—=) = 0.515296,
(=5 365)
coz je v souladu s nasim ptredchozim vysledkem, Ze pravdépodobnost ne-
soubéhu je 52 %.

Pro mnohem vyssi hodnoty (které jsou zajimavé v kryptografickych me-
todach, které se pouzivaji v Sifrované komunikaci a kryptoménéch) napf.
k= 2130 a n = 22 n4s odhad d4

1k? 12260

logP = ———

2n g O

a pravdépodobnost nesoubéhu je

P = e ® = 0.000335463



a pravdépodobnost soubéhu je
1 — P =0.999665.
Zduraznéme, jak by bylo obtizné vy¢islit vyraz
9130}

P = (2256 — 2130)[ (2256)27%0

4 Dodatek: Chyba lichobéznikové metody

Nejprve si odvodime chybu lichobéznikové metody pro jeden krok. Uvazujme
integral

A jeho aproximaci pomoci lichobéznikové metody

h h h
=Ry )
=5 (=5 +£)
Pouzijeme metodu per partes (v' = 1, v = f) a pfi dpravach vyuzijeme toho,
ze integral liché funkce pres soumérny interval je roven nule. Déle pouzijeme
vétu o stfedni hodnoté, pomoci které vyjadiime derivaci v bodé x pomoci

derivace v bodé 0 a pomoci druhé derivace v jistém bodé ¢
fi(@) = f10) + f(c(x)).
Takze



Oznacime-li maximum absolutni hodnoty druhé derivace na integracnim in-

tervalu
My = max |f"(z)],

pak dostaneme odhad chyby

v
—_

IB 4
< M| [ 2%de| = M, [3}

A= | [ ety

|
M‘”\w\:-

[Ny

To je tedy odhad chyby lichobéznikové metody v jednom kroku. Tento vysledek
pouzijeme pro odhad chyby ¢, integrélu

/loga: dx
1

pocitaného lichobéznikovym pravidlem. Nejdiive si spocteme odhad druhé
derivace. Pro pfirozeny logaritmus

f(z) =logz
plati
, 1
f(z) = p
1
f'(x) = )
A pro
E<z<k+1
je
M _ " | _ 1
o = max |f"(x)| = =
Pouzity integracni krok je h = 1, tedy chyba v jednom kroku je
11
A< — —
12 k2
Pro celkovou chybu dostaneme
n—1
Sl
12k



Tato posloupnost je omezena. To lze ukazat napt. integralnim kriteriem.
Soucet je vlastné integral po ¢astech konstantni funkce. Tuto funkci na-
hradime vétsi funkei, a to funkei x% Chybu prvniho kroku napiSeme zvlast,
abychom dostali koneé¢né hodnoty. Dostaneme

lnfll 1 nfll 1 1
5 < — —( Z)§<1+/dx):
12 /7 k2 12 = k2 12 J T2
1 1qn-t 1 1 1
- (1 - =—(1-— 1 - =0.17.
12( + Tl ) 12( n—1+ ><6

To jsme chtéli dokazat.
Ve skutecnosti, jak plyne z hlavniho textu,

nh_)ngo 0, =1—logV2m.

A protoze d,, je rostouci omezena posloupnost kladnych ¢isel, nejlepsi horni
odhad je pravé jeji limita

0p < 1 —1logv2m = 0.08.



