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1 Formulace

Odvod́ıme Stirlingovu formuli

log n!
.
= n log n− n+

1

2
log n+ log

√
2π

kde log je the přirozený logaritmus. Znak
.
= zde znamená, že

lim
n→∞

log n!− (n log n− n+
1

2
log n+ log

√
2π) = 0.

2 Odvozeńı

Uvažujme integrál
n∫
1

log x dx.

Integrujeme per partes (u′ = 1, v = log x) a dostaneme

n∫
1

log x dx = [x log x]n1 −
n∫
1

1 dx = n log n− n+ 1.

Při použit́ı lichoběžńıkové metody s krokem rovným 1 dostaneme

n∫
1

log x dx =
n∑
k=1

log k − 1

2
log n+ δn = log n!− 1

2
log n+ δn

kde δn je chyba, která je omezená (viz Dodatek). Srovnáńım těchto dvou
výsledk̊u máme

log n! = n log n− n+
1

2
log n+ ∆n
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kde ∆n = 1− δn. Následuj́ıćı tabulka ukazuje chybu ∆n pro r̊uzné hodnoty n

n ∆n

10 0.927269
100 0.919772
1000 0.919022

Ukážeme, že
lim
n→∞

∆n = log
√

2π
.
= 0.918939.

Za t́ım účelem budeme uvažovat integrál

In =

π∫
0

sinn x dx.

Lze snadno spoč́ıtat
I0 = π,

I1 = 2,

I2 =
1

2
π.

Když integrujeme per partes (u′ = sinx, v = sinn x), tak dostaneme

In+1 =

π∫
0

sinx sinn x dx = [− cosx sinn x]π0 + n

π∫
0

cos2 x sinn−1 x dx =

= n

π∫
0

(1− sin2 x) sinn−1 x dx = n(In−1 − In+1).

To dá
(1 + n)In+1 = nIn−1

a
In+1 =

n

n+ 1
In−1.

Tedy, když začneme s I0 = π, tak dostaneme In pro sudé n

I0 = π

I2 =
1

2
π
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I4 =
3

4

1

2
π

I6 =
5

6

3

4

1

2
π

I8 =
7

8

5

6

3

4

1

2
π

atd. a podobně, když začneme s I1 = 2, tak dostaneme In pro liché n

I1 = 2

I3 =
2

3
2

I5 =
4

5

2

3
2

I7 =
6

7

4

5

2

3
2

I9 =
8

9

6

7

4

5

2

3
2

atd.
Nyńı ukážeme, že

lim
n→∞

In
In−1

= 1.

Pro 0 < x < 1
2
π a pro 1

2
π < x < π máme 0 < sinx < 1 a tud́ıž posloupnost

sinn x je kladná a klesaj́ıćı s n, takže

0 < In+1 < In < In−1.

Když vyděĺıme č́ıslem In−1, tak dostaneme

n

n+ 1
<

In
In−1

< 1.

Protože
lim
n→∞

n

n+ 1
= 1,

tak z věty o dvou policajtech (anglicky the squeeze theorem) dostaneme

lim
n→∞

In
In−1

= 1.
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Když vyjádř́ıme In a In−1 pomoćı I0 a I1 (zde lze bez újmy na obecnosti
uvažovat sudé n), tak dostaneme

lim
n→∞

1·3·5···n−1
2·4·6···n π
2·4·6···n

1·3·5···n+1
2

= 1.

Zde součin lichých č́ısel můžeme vynásobit sudými č́ısly, abychom dostali
faktorial a podobně součin suchých č́ısel můžeme vydělit vhodnou mocninou
dvou, abychom dostali faktorial. To dá

lim
n→∞

n!
(2( n

2
)n
2
!)2
π

(2( n
2
)n
2
!)2

(n+1)!
2

= 1

a po zjednodušeńı

lim
n→∞

n!(n+ 1)!

22n(n
2
!)4

π

2
= 1

a po odmocněńı

lim
n→∞

√
n+ 1 n!

2n(n
2
!)2

√
π

2
= 1

a logaritmováńı a s použit́ım výše odvozeného vztahu

log n! = n log n− n+
1

2
log n+ ∆n

dostaneme

lim
n→∞

1

2
log(n+ 1) + n log n− n+

1

2
log n+ ∆n−

−n log 2− 2(
n

2
log

n

2
− n

2
+

1

2
log

n

2
+ ∆n

2
) +

1

2
log

π

2
= 0

a po zjednodušeńı máme výsledek

lim
n→∞

∆n = log
√

2π
.
= 0.918939.

T́ım je odvozena Stirlingova formule

log n!
.
= n log n− n+

1

2
log n+ log

√
2π.
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Následuj́ıćı tabulka ukazuje dobrou shodu této aproximace pro r̊uzné hod-
noty n

n log n! n log n− n+ 1
2

log n+ log
√

2π
10 15.1044 15.0961
100 363.739 363.739
1000 5912.13 5912.13

3 Aplikace

Uvažujme následuj́ıćı úlohu. Jaká je pravděpodobnost, že mezi 22 fotbalisty
maj́ı alespoň dva hráči narozeniny stejný den v roce. Nebo obráceně, jaká je
pravděpodobnost, že nedojde k souběhu narozenin mezi 22 hráči?

Obecněji, uvažujme množinu A s k prvky (hráči) a množinu B s n prvky
(dny v roce). Jaká je pravděpodobnost, že náhodně zvolené zobrazeńı z množiny
A do množiny B je prosté, tedy pro r̊uzné vzory máme r̊uzné obrazy?

Pro k > n je pravděpodobnost nesouběhu nulová. Existuj́ı alespoň dva
r̊uzné prvky, které se zobraźı na stejný prvek.

Je-li k ≤ n, pak, aby nedošlo k souběhu, prvńı prvek z množiny A se může
zobrazit na jakýkoliv z n prvk̊u množiny B. Druhý prvek se může zobrazit
na jakýkoliv z n− 1 zbývaj́ıćıch prvk̊u množiny B. Třet́ı prvek množiny A se
může zobrazit na jakýkoliv z n−2 prvk̊u množiny B. Celkový počet zobrazeńı
je nk. Takže pravděpodobnost nesouběhu je

P =
n(n− 1)(n− 2)(n− 3) · · · (n− k + 1)

nk
=

n!

(n− k)! nk
.

Pro k = 22 a n = 365 máme P = 365!
(365−22)! 36522

.
= 0.524305. Takže pravděpodobnost

nesouběhu je přibližně 52 %, tedy pravděpodobnost, že alespoň dva hráči bu-
dou mı́t narozeniny stejný den v roce je přibližně 48 %.

Pro velké n můžeme použ́ıt Stirlingovu formuli pro faktorial

log n!
.
= n log n− n+

1

2
log n+ log

√
2π.

Pak přirozený logaritmus pravděpodobnosti nesouběhu je

logP = log
n!

(n− k)! nk
.
=

.
= n log n−n+

1

2
log n+log

√
2π−(n−k) log(n−k)+n−k−1

2
log(n−k)−log

√
2π−k log n =
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= n log n+
1

2
log n−n log(n− k) + k log(n− k)− k− 1

2
log(n− k)− k log n =

= n log
n

n− k
+

1

2
log

n

n− k
− k log

n

n− k
− k =

= (n− k +
1

2
) log

n

n− k
− k =

= −(n− k +
1

2
) log

n− k
n
− k =

= −(n− k +
1

2
) log(1− k

n
)− k.

Nyńı rozvineme logaritmus

log(1 + x) = x− 1

2
x2 + h.o.t.

pro x = − k
n
, kde h.o.t. znač́ı členy vyšš́ıch řád̊u (anglicky higher order terms).

To nám dá

logP = −(n− k +
1

2
)(−k

n
− 1

2

k2

n2
)− k + h.o.t. =

−1

2

k2

n
+ h.o.t.

Můžeme použ́ıt tuto aproximaci na výše uvedený př́ıklad s 22 hráči

P
.
= exp(−1

2

222

365
)
.
= 0.515296,

což je v souladu s naš́ım předchoźım výsledkem, že pravděpodobnost ne-
souběhu je 52 %.

Pro mnohem vyšš́ı hodnoty (které jsou zaj́ımavé v kryptografických me-
todách, které se použ́ıvaj́ı v šifrované komunikaci a kryptoměnách) např.
k = 2130 a n = 2256 náš odhad dá

logP = −1

2

k2

n
= −1

2

2260

2256
= −8

a pravděpodobnost nesouběhu je

P = e−8
.
= 0.000335463
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a pravděpodobnost souběhu je

1− P = 0.999665.

Zd̊urazněme, jak by bylo obt́ıžné vyč́ıslit výraz

P =
2130!

(2256 − 2130)! (2256)2130
.

4 Dodatek: Chyba lichoběžńıkové metody

Nejprve si odvod́ıme chybu lichoběžńıkové metody pro jeden krok. Uvažujme
integrál

I =

h
2∫

−h
2

f(x)dx =

h
2∫

−h
2

1f(x)dx.

A jeho aproximaci pomoćı lichoběžńıkové metody

IT =
h

2

(
f(−h

2
) + f(

h

2
)
)
.

Použijeme metodu per partes (u′ = 1, v = f) a při úpravách využijeme toho,
že integrál liché funkce přes souměrný interval je roven nule. Dále použijeme
větu o středńı hodnotě, pomoćı které vyjádř́ıme derivaci v bodě x pomoćı
derivace v bodě 0 a pomoćı druhé derivace v jistém bodě c

f ′(x) = f ′(0) + f ′′(c(x)).

Takže

I =
[
xf(x)

]h
2

−h
2

−

h
2∫

−h
2

xf ′(x)dx =

=
h

2

(
f(−h

2
) + f(

h

2
)
)
−

h
2∫

−h
2

x
(
f ′(0) + f ′′(c(x))

)
dx = IT −∆,

kde chyba ∆ jednoho kroku je

∆ =

h
2∫

−h
2

x
(
f ′(0) + f ′′(c(x))

)
dx =

h
2∫

−h
2

xf ′′(c(x))dx.
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Označ́ıme-li maximum absolutńı hodnoty druhé derivace na integračńım in-
tervalu

M2 = max |f ′′(x)|,

pak dostaneme odhad chyby

|∆| =
∣∣∣∣

h
2∫

−h
2

x2f ′′(c(x))dx
∣∣∣∣ ≤M2

∣∣∣∣
h
2∫

−h
2

x2dx

∣∣∣∣ = M2

[
x3

3

]h
2

−h
2

=
1

12
M2h

3.

To je tedy odhad chyby lichoběžńıkové metody v jednom kroku. Tento výsledek
použijeme pro odhad chyby δn integrálu

n∫
1

log x dx

poč́ıtaného lichoběžńıkovým pravidlem. Nejdř́ıve si spočteme odhad druhé
derivace. Pro přirozený logaritmus

f(x) = log x

plat́ı

f ′(x) =
1

x

f ′′(x) = − 1

x2
.

A pro
k ≤ x ≤ k + 1

je

M2 = max |f ′′(x)| = 1

k2
.

Použitý integračńı krok je h = 1, tedy chyba v jednom kroku je

∆ ≤ 1

12

1

k2
.

Pro celkovou chybu dostaneme

δn ≤
n−1∑
k=1

1

12

1

k2
.
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Tato posloupnost je omezená. To lze ukázat např. integrálńım kriteriem.
Součet je vlastně integrál po částech konstantńı funkce. Tuto funkci na-
hrad́ıme větš́ı funkćı, a to funkćı 1

x2
. Chybu prvńıho kroku naṕı̌seme zvlášt’,

abychom dostali konečné hodnoty. Dostaneme

δn ≤
1

12

n−1∑
k=1

1

k2
=

1

12

(
1 +

n−1∑
k=2

1

k2

)
≤ 1

12

(
1 +

n−1∫
1

1

x2
dx
)

=

=
1

12

(
1 +

[
− 1

x

]n−1
1

)
=

1

12

(
1− 1

n− 1
+ 1

)
<

1

6
.
= 0.17.

To jsme chtěli dokázat.
Ve skutečnosti, jak plyne z hlavńıho textu,

lim
n→∞

δn = 1− log
√

2π.

A protože δn je rostoućı omezená posloupnost kladných č́ısel, nejlepš́ı horńı
odhad je právě jej́ı limita

δn < 1− log
√

2π
.
= 0.08.
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