
Matice A reálných č́ısel m × n popisuje lineárńı zobrazeńı

L : Rn → Rm

dané p̌redpisem
y⃗ = L(x⃗) = A · x⃗ .

Pod́ıvejme se na některé jednoduché p̌ŕıklady matic 2× 2 a jaká
zobrazeńı popisuj́ı.
Zkuste porovnáńım obrázk̊u uhádnout matici, která p̌revád́ı levý
obrázek na pravý.
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(
1 1
0 1

)
·
(

1
0

)
= 1

(
1
0

)
Tato matice nemá dvojici lineárně nezávislých vlastńıch vektor̊u.
Vlastńı č́ıslo λ = 1 má algebraickou násobnost 2, ale geometrickou
násobnost jen 1.
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Vlastńı č́ısla a vlastńı vektory
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Tato matice nemá reálná vlastńı č́ısla.
Protože p̌redstavuje otočeńı.
Má imaginárńı vlastńı č́ısla a imaginárńı vlastńı vektory.
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Tato matice nemá reálná vlastńı č́ısla.
Protože p̌redstavuje otočeńı.
Má imaginárńı vlastńı č́ısla a imaginárńı vlastńı vektory.
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