
1 Numerická integrace

1.1 Simpsonova metoda

1.1.1 Odvozeńı

Pokud při výpočtu určitého integrálu

I =

b∫
a

y(x)dx

neznáme primitivńı funkci, můžeme použ́ıt některou z přibližných numerických
metod. Integračńı interval 〈a, b〉 rozděĺıme na n menš́ıch interval̊u pomoćı ekvi-
distantńıch bod̊u

a = x0 < x1 < x2 < . . . < xn = b

a na každém z nich nahrad́ıme integrovanou funkci mnohočlenem. Při lichoběžńıkové
metodě použijeme mnohočlen prvńıho stupně. Pro dosažeńı vyšš́ı přesnosti můžeme
použ́ıt mnohočlen druhého stupně. Taková metoda se nazývá Simpsonova me-
toda. Odvod́ıme si zp̊usob výpočtu a ukážeme si, jak se použ́ıvá. Bez újmy na
obecnosti můžeme uvažovat uzlové body

x0 = −h, x1 = 0, x2 = h.

Nejdř́ıve si spočteme integrál

h∫
−h

(a0 + a1x + a2x
2)dx =

[
a0x + a1

x2

2
+ a2

x3

3

]h
−h

=

= a0h + a1
h2

2
+ a2

h3

3
− (a0(−h) + a1

(−h)2

2
+ a2

(−h)3

3
) = 2a0h + 2a2

h3

3
.

Nyńı chceme naj́ıt hodnoty a0, a1, a2, aby se integrovaná funkce y rovnala
v bodech x = −h, x = 0 a x = h polynomu. Označme funkčńı hodnoty v těchto
třech bodech y0, y1, y2. Tedy aby platilo

a0 − a1h + a2h
2 = y0

a0 = y1

a0 + a1h + a2h
2 = y2

Z druhé rovnice známe hodnotu a0 = y1. Sečteńım prvńı a třet́ı rovnice vy-
louč́ıme a1 a dostaneme

2a0 + 2a2h
2 = y0 + y2

tedy

a2 =
y0 + y2 − 2y1

2h2
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a integrál lze aproximovat výrazem

I
.
= IS = 2a0h + 2a2

h3

3
= 2y1h + 2

y0 + y2 − 2y1
2h2

h3

3
=

= 2y1h + (y0 + y2 − 2y1)
h

3
=

h

3
(y0 + 4y1 + y2).

1.1.2 Použit́ı

Ukážeme si použit́ı lichoběžńıkové a Simpsonovy metody na jednoduchém př́ıkladě

I =

2∫
1

1

x
dx =

[
ln |x|

]2
1

= ln 2
.
= 0.693147.

Tento integrál lze spoč́ıtat přesně, protože známe primitivńı funkci. My si na
něm ukážeme použit́ı přibližných metod a můžeme přibližné výsledky porovnat
s přesnou hodnotou.

Připrav́ıme si tabulku funkčńıch hodnot pro pár hodnot argument̊u, které
budeme potřebovat

x y
1 1
5
4

4
5

3
2

2
3

7
4

4
7

2 1
2

Lichoběžńıkové pravidlo pro n = 1, tedy h = 1:

IL,1 =
h

2
(y0 + y1) =

1

2
(1 +

1

2
) =

3

4
= 0.75.

Lichoběžńıkové pravidlo pro n = 2, tedy h = 1
2 :

IL,2 =
h

2
(y0 + 2y1 + y2) =

1

4
(1 +

4

3
+

1

2
) =

17

24

.
= 0.708.

Lichoběžńıkové pravidlo pro n = 4, tedy h = 1
4 :

IL,4 =
h

2
(y0 +2y1 +2y2 +2y3 +y4) =

1

8
(1+

8

5
+

4

3
+

8

7
+

1

2
) =

1171

1680

.
= 0.697024.

A nyńı se pod́ıvejme, jaké výsledky nám dá Simpsonova metoda pro n = 2,
tedy h = 1

2 :

IS,2 =
h

3
(y0 + 4y1 + y2) =

1

6
(1 +

8

3
+

1

2
) =

25

36

.
= 0.694444.

2



Simpsonova metoda pro n = 4, tedy h = 1
4 :

IS,4 =
h

3
(y0+4y1+2y2+4y3+y4) =

1

12
(1+

16

5
+

4

3
+

16

7
+

1

2
) =

1747

2520

.
= 0.693254.
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In[1]:= a = 1; b = 2; f[x_] := 1.0  x; ip = Integratef[x], x, a, b

Out[1]= 0.693147

In[2]:= it[n_] := h = b - a  n;
s = 0;

Fori = 0, i ≤ n, i++, s += fa + i * h * Ifi ⩵ 0 || i ⩵ n, 1, 2;
s * h  2;

is[n_] := h = b - a  n;
s = 0;

Fori = 0, i ≤ n, i++, s += fa + i * h * Ifi ⩵ 0 || i ⩵ n, 1, 2 + 2 * Modi, 2;
s * h  3;

In[4]:= it4

Out[4]= 0.697024

In[5]:= is4

Out[5]= 0.693254

In[6]:= tt = Tablen, it[n] - ip, n, 2, 100, 2;
ts = Tablen, is[n] - ip, n, 2, 100, 2;
ListLogLogPlottt, ts

Out[8]=

5 10 50 100

10-9

10-7

10-5

10-3

In[9]:= FitLogtt, 1, x, x

Out[9]= -2.78449 - 1.99701 x

In[10]:= FitLogts, 1, x, x

Out[10]= -3.64984 - 3.95393 x
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Porovnáńı lichoběžńıkové a Simpsonovi metody ukazuje obrázek. Zde jsou
vyč́ısleny hodnoty integrálu přesně, dále lichoběžńıkovou metodou pro n = 4 a
Simpsonovou metodou pro n = 4. V grafu je v logaritmickém měř́ıtku vynesena
závislost chyby pro r̊uzné hodnoty n pro obě tyto metody. Pokud těmito body
prolož́ıme př́ımku, jej́ı směrnice nám ř́ıká, s jakou mocninou klesá chyba pro
rostoućı n. Pro lichoběžńıkovou metodu je chyba přibližně úměrná 1

n2 , zat́ımco
pro Simpsonovu metodu chyba klesá rychleji, je úměrná 1

n4 .

1.2 Zobecněńı

Při obdélńıkové metodě nahrad́ıme integrovanou funkci konstantou, tedy mno-
hočlenem stupně nula. A graf integrované funkce nahrad́ıme vodorovnou úsečkou.
Při lichoběžńıkové metodě nahrad́ıme integrovanou funkci mnohočlenem stupně
jedna. A graf integrované funkce nahrad́ıme vhodně skloněnou úsečkou. Podobně
při Simpsonově metodě nahrad́ıme integrovanou funkci mnohočlenem stupně
dva. A graf integrované funkce nahrad́ıme parabolou. Nab́ıźı se otázka, jestli
lze tento postup zobecnit a nahradit integrovanou funkci mnohočlenem vyšš́ıho
řádu. Odpověd’ zńı ano. A čtenář, který zná násobeńı matice a vektoru a inverzńı
matici, bude překvapen eleganćı a stručnost́ı odvozeńı a zápisu této zobecněné
metody.

Očekáváme, že dostaneme opět pravidlo, kde se funkčńı hodnoty integro-
vané funkce vyč́ıslené v ekvidistantńıch uzlových bodech vynásob́ı vhodnými
koeficienty. Jak nalézt tyto koeficienty?

Pro pevné přirozené n ≥ 2 uvažujme n uzlových bod̊u xi = i = 1 . . . n.
Těmito body prolož́ıme křivku, graf mnohočlenu P (x) stupně nejvýše n− 1

P (x) =

n∑
j=1

ajx
j−1.

Integrál funkce f budeme aproximovat integrálem mnohočlenu P

n∫
1

f(x)dx
.
=

n∫
1

P (x)dx.

Označme

I =

n∫
1

P (x)dx =

n∫
1

n∑
j=1

ajx
j−1dx =

n∑
j=1

aj

[xj

j

]n
1

=

n∑
j=1

aj
nj − 1

j
.

Koeficienty v mnohočlenu, tedy č́ısla aj pro j = 1 . . . n můžeme považovat

za složky sloupcového vektoru ~a. Podobně č́ısla nj−1
j pro j = 1 . . . n můžeme

považovat za složky sloupcového vektoru ~b. Tedy

bj =
nj − 1

j
.
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Pravým horńım indexem T budeme značit transponováńı, tedy operaci, která
převád́ı sloupcový vektor na řádkový (a naopak). Pak poč́ıtaný integrál lze psát
jako skalárńı součin těchto dvou vektor̊u

I = ~aT~b =

n∑
j=1

ajbj .

Zbývá ještě naj́ıt vztah mezi koeficienty aj v mnohočlenu P a funkčńımi
hodnotami fi = f(xi) = f(i). Chceme, aby platilo

P (xi) = fi, pro i = 1 . . . n.

Tedy
n∑

j=1

aj ij−1 = fi.

Výraz na levé straně připomı́ná násobeńı matice a vektoru. Zavedeme-li matici
X velikosti n× n s prvky

Xij = ij−1,

pak

(X~a)i =

n∑
j=1

Xijaj =

n∑
j=1

aj ij−1.

Zavedeme-li vektor ~f o složkách fi, kde i = 1 . . . n, můžeme podmı́nku psát ve
tvaru

X~a = ~f.

Uved’me zde bez d̊ukazu, že detX ≥ 1, tedy matice X je regulárńı a tedy
existuje k ńı inverzńı matice X−1. Takže

~a = X−1 ~f

a
~aT = ~fT (X−1)T .

Tedy náš integrál lze psát ve tvaru

I = ~aT~b = ~fT (X−1)T~b = ~fT~c,

kde vektor
~c = (X−1)T~b

je hledaný vektor koeficient̊u pro naši obecnou integračńı formuli. Pro úplnost
připomı́náme, že

Xij = ij−1

a

bj =
nj − 1

j
.
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Vyzkoušejme tento právě odvozený vztah pro některé hodnoty n. Můžeme
s výhodou použ́ıt poč́ıtačový algebraický systém Mathematica. Pro n = 2, tedy
dvěma body prolož́ıme př́ımku, tedy mnohočlen stupně jedna, můžeme postu-
povat takto:

Př́ıkazy

n = 2

x = Table[i^(j-1),{i,n},{j,n}]

si připrav́ıme matici

X =

(
1 1
1 2

)
.

Př́ıkazem

xi = Inverse[x]

spočteme inverzńı matici

X−1 =

(
2 −1
−1 1

)
.

a př́ıkazem

b = Table[(n^j-1)/j,{j,n}]

si připrav́ıme vektor

~b =

(
1
3
2

)
.

A nakonec př́ıkazem

c = Transpose[xi].b

najdeme vektor

~c =

(
1
2
1
2

)
,

tedy koeficienty lichoběžńıkové metody.
A nebo si můžeme připravit funkci (nazvěme ji např. k), která všechny tyto

úkony provede. Funkce k bude mı́t jeden argument, dimenzi n. To lze provést
např. takto:

k[n_]:= (

x = Table[i^(j-1),{i,n},{j,n}];

xi = Inverse[x];

b = Table[(n^j-1)/j,{j,n}];

c = Transpose[xi].b

);

Tuto funkci pak zavoláme s jedńım argumentem, počtem bod̊u. Celý výpočet
pak může vypadat např. takto:
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In[1]:= k[n_]:= (

x = Table[i^(j-1),{i,n},{j,n}];

xi = Inverse[x];

b = Table[(n^j-1)/j,{j,n}];

c = Transpose[xi].b

);

In[2]:= k[2]

1 1

Out[2]= {-, -}

2 2

In[3]:= k[3]

1 4 1

Out[3]= {-, -, -}

3 3 3

In[4]:= k[9]

3956 23552 3712 41984 3632 41984 3712 23552 3956

Out[4]= {-----, -----, -(-----), -----, -(----), -----, -(-----), -----, -----}

14175 14175 14175 14175 2835 14175 14175 14175 14175
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