1 Numericka integrace

1.1 Simpsonova metoda
1.1.1  Odvozeni
Pokud pii vypoctu urcitého integrélu

b

I= /y(z)da:

a

nezndme primitivni funkci, muZeme pouzit nékterou z piibliznych numerickych
metod. Integra¢ni interval (a,b) rozdélime na n mensich intervalt pomoci ekvi-
distantnich bodu

a=zg <1 <2< ...<xp=0">

ana kazdém z nich nahradime integrovanou funkci mnohoc¢lenem. Pti lichobéznikové
metodé pouzijeme mnohoclen prvniho stupné. Pro dosazeni vySsi pfesnosti muzeme
pouzit mnoho¢len druhého stupné. Takova metoda se nazyva Simpsonova me-
toda. Odvodime si zpusob vypoctu a ukazeme si, jak se pouziva. Bez tjmy na
obecnosti muzeme uvazovat uzlové body

o = 7h, I = O, To = h.

Nejdiive si spoc¢teme integral

r x2 237"
2
/(ao+a1x+a2x Ydx = |agr + a1 — + as— =
2 31,
—h
h? h3 —h)2 _R)3 73
=a0h+a1?+a2§ —(ao(—h)+a1( 2) +a2( 3) ) =2a0h+2a2§.
Nyni chceme najit hodnoty ag, a1, as, aby se integrovand funkce y rovnala
v bodech x = —h, x = 0 a x = h polynomu. Ozna¢me funkéni hodnoty v téchto
tfech bodech yo, y1,y2. Tedy aby platilo
ap —arth+axh®> = yo
a = Y
ap +ath +ash? = yo

7 druhé rovnice zndme hodnotu ag = y;. Se¢tenim prvni a tieti rovnice vy-
lou¢ime a; a dostaneme
2
2a9 + 2a2h” = yo + Yo

tedy
g = Yot Y2 =25
2 2h2



a integral 1ze aproximovat vyrazem

3

h — oy
1= Is = 2a0h + 2004 — ool A T

2h? 3

h h
=2y1h + (yo +y2 — 2y1)§ = g(yo + 4y + y2).

1.1.2 Pouziti

Ukéazeme si pouziti lichobéznikové a Simpsonovy metody na jednoduchém piikladé

2
1

I :/fdx = [ln|x|} =In2 = 0.693147.
z 1

Tento integral lze spocitat presné, protoze zname primitivni funkci. My si na
ném ukézeme pouziti pribliznych metod a muzeme piiblizné vysledky porovnat
s presnou hodnotou.

Pripravime si tabulku funkénich hodnot pro par hodnot argumentu, které
budeme potiebovat
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Lichobéznikové pravidlo pro n =1, tedy h = 1:

h 1 1 3
Ip,s=— ==-(1+=)=-=0.75.
t1= 5 +y)=50+5)=,=075
Lichobéznikové pravidlo pro n = 2, tedy h = %:
h 1 4 1 17
Ipo=— 2 =-(14+-+=-)=—=— =0.708.
L2 2(yo+ Y1 +Yy2) 4( +3+2) oq — 0-708
Lichobéznikové pravidlo pro n = 4, tedy h = i:
h 1 8 4 8 1 1171
Ips=— 2 2 2y: =—(14-4+=-4+=-+4+=)=—= =0.697024.
14 =5Wo+ 21+ 22+ 2ys+ua) = (14 o+ o2 +5) = 105

A nyni se podivejme, jaké vysledky nam dd Simpsonova metoda pro n = 2,
tedy h = %:
8 1 25

h 1
Igo = — 4 = _—(14+ =+ =)= — =0.694444.
S,2 3(y0+ Y1 + y2) 6( +3 2) 36



Simpsonova metoda pro n = 4, tedy h = %:

h 1, 16 4 16 1. 1747
Isa = 3 (yo+ayr+2y2+dys+ys) = 5 (I +3+—+3) = 55

= 0.693254.
12 5 3 7 2 069525



ni- @=1;b=2; f[x_] :=1.0/x; ip = Integrate[f[x], {x, a, b}]
our- 0.693147

In[2):= it[n_] = (h = (b—a)/n;

s=0;
FOF[i:Q, i<n, i++, s += f[a+i*h]*If[' =0]|]1=n,1, 2]];
S*h/Z);
is(n_] := (h=(b-a) /n;
s=0;
FOI"[i:Q, i<n, i++, s += f[a+i*h]*If[i==0||i== n, 1, 2+2*M0d[i, 2]]];
S*h/3);
In[4]:= it[4]

ou4- 0.697024

nisl- 1S [4]
ous- 0.693254

we- tt = Table[{n, it[n] -ip}, {n, 2, 100, 2}];
ts = Tab'Le[{n, is[n] —ip}, {n, 2, 100, 2}];
ListLogLogPlot [{tt, ts}]

1073 F

1078 - "'--..,,\

Out[8]=

109 b

é 16 5‘0 160
In[9]:= Fit[Log[tt] , {1, X}, X]
ourel- -2.78449 -1.99701 x

In[10]:= Fit[Log[ts] , {1, X}, X]
outio- -3.64984 - 3.95393 x



Porovnani lichobéznikové a Simpsonovi metody ukazuje obrazek. Zde jsou
vyéisleny hodnoty integralu presné, déle lichobéznikovou metodou pro n =4 a
Simpsonovou metodou pro n = 4. V grafu je v logaritmickém méritku vynesena
zévislost chyby pro ruzné hodnoty n pro obé tyto metody. Pokud témito body
prolozime pifmku, jeji smérnice nam tika, s jakou mocninou kleséd chyba pro
rostouci n. Pro lichobéznikovou metodu je chyba pfiblizné tmérné #, zatimco

pro Simpsonovu metodu chyba klesa rychleji, je imérna #

1.2 Zobecnéni

Pii obdélnikové metodé nahradime integrovanou funkci konstantou, tedy mno-
hoclenem stupné nula. A graf integrované funkce nahradime vodorovnou useckou.
Pri lichobéznikové metodé nahradime integrovanou funkci mnohoé¢lenem stupné
jedna. A graf integrované funkce nahradime vhodné sklonénou tseckou. Podobné
pfi Simpsonové metodé nahradime integrovanou funkci mnohoclenem stupné
dva. A graf integrované funkce nahradime parabolou. Nabizi se otadzka, jestli
lze tento postup zobecnit a nahradit integrovanou funkci mnohoclenem vyssiho
fadu. Odpovéd zni ano. A étenaf, ktery zna ndsobeni matice a vektoru a inverzni
matici, bude pfekvapen eleganci a struc¢nosti odvozeni a zdpisu této zobecnéné
metody.

Ocekavame, ze dostaneme opét pravidlo, kde se funkéni hodnoty integro-
vané funkce vycislené v ekvidistantnich uzlovych bodech vynéasobi vhodnymi
koeficienty. Jak nalézt tyto koeficienty?

Pro pevné pfirozené n > 2 uvazujme n uzlovych bodu xz; = i = 1...n.
Témito body prolozime kfivku, graf mnoho¢lenu P(z) stupné nejvyse n — 1

n
— i1
:v)fg a;x’ .
J=1

Integral funkce f budeme aproximovat integrdlem mnohoclenu P

/nf(x)d:vi/nP(:E)dx.

Oznatme
i - xl "ol -1
I:/ dx—/Zaxj 1dx—ZaJ{ } Zaj —.
1 i=1
Koeficienty v mnohoclenu, tedy ¢isla a; pro j = 1...n mulzZeme povazovat
n—1

za slozky sloupcového vektoru d. Podobné ¢isla pro j = 1...n muZeme

povazovat za slozky sloupcového vektoru b. Tedy
ni —1

J

;=




Pravym hornim indexem T budeme znacit transponovani, tedy operaci, ktera
prevadi sloupcovy vektor na faddkovy (a naopak). Pak pocitany integral lze psat
jako skalarni soucin téchto dvou vektoru

I=d"b=> ajb;.
j=1

Zbyvé jesté najit vztah mezi koeficienty a; v mnohoclenu P a funkénimi
hodnotami f; = f(x;) = f(i). Chceme, aby platilo

P(z;) = fi, proi=1...n.
Tedy

n

VYA N
E a; 77 = fi.
=1

Vyraz na levé strané pripomina nasobeni matice a vektoru. Zavedeme-li matici
X velikosti n x n s prvky
_ -1
Xij = y

pak
(Xa) =) Xijaj =y a; "
j=1 j=1

Zavedeme-li vektor f o slozkach f;, kde i = 1...n, muzeme podminku pséat ve
tvaru

—

7.

a
Uvedme zde bez dikazu, Ze det X > 1, tedy matice X je reguldrni a tedy
existuje k nf inverzni matice X ~'. Takze

X

Tedy nas integrél lze psat ve tvaru
I=a"s=f"(x")=f"¢

kde vektor ~
= (x"HTy
je hledany vektor koeficientt pro nasi obecnou integra¢ni formuli. Pro tuplnost
pripominame, ze
=41

X

j




VyzkouSejme tento pravé odvozeny vztah pro nékteré hodnoty n. Muzeme
s vyhodou pouzit pocitacovy algebraicky systém Mathematica. Pro n = 2, tedy
dvéma body prolozime piimku, tedy mnohoc¢len stupné jedna, muzeme postu-
povat takto:

Prikazy
n=2
x = Table[i"(j-1),{i,n},{j,n}]

si pfipravime matici

11
(1)
Piikazem

xi = Inversel[x]

spoCteme inverzni matici
2 -1
-1 _
oo (2.

b = Table[(n~j-1)/j,{j,n}]

a ptikazem

si pfipravime vektor

S

Il
7N
oJw =
N——

A nakonec pifkazem
¢ = Transpose[xi].Db

najdeme vektor

.

tedy koeficienty lichobéznikové metody.

A nebo si muzeme pripravit funkci (nazvéme ji napf. k), kterd véechny tyto
ukony provede. Funkce k bude mit jeden argument, dimenzi n. To lze provést
napi. takto:

= N~

k[n_]:= (

x = Table[i~(j-1),{i,n},{j,n}];
xi = Inversel[x];
= Table[(n~j-1)/j,{j,n}];
¢ = Transpose[xi].b
);

Tuto funkci pak zavolame s jednim argumentem, poctem bodu. Cely vypocet
pak muze vypadat napt. takto:



In[1]:

k[n_]:= (
Table [l“ (J_l) ){i:n},{j ,n}] 3
xi = Inverselx];

o]
I

b = Table[(n"j-1)/j,{j,n}];
¢ = Transpose[xi].Db
);
In[2]:= k[2]
1 1
Dut[2]= {_3 _}
2 2
In[3]:= k[3]
1 4 1
Out[3]= {-, -, -}
3 3 3
In(4]:= k[9]

3956 23552 3712 41984 3632 41984 3712 23552 3956

DUt[4]= { _____ s TTTTT ) _( _____ )’ _____ > _(____)) _____ > _( _____ )y _____ P
14175 14175 14175 14175 2835 14175 14175 14175 14175
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