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rovnic s konstantńımi koeficienty.
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1 Úvod

Diferenciálńı rovnice patř́ı k tomu nejzaj́ımavěǰśımu a nejužitečněǰśımu, co
moderńı matematika může nab́ıdnout. Než se zaměř́ıme na soustavy dife-
renciálńıch rovnic, pojd’me si připomenout, jak se řeš́ı ne soustava, ale jedna
diferenciálńı rovnice.

2 Jedna lineárńı diferenciálńı rovnice prvńıho

řádu

Př́ıklad 1
Najděte obecné řešeńı diferenciálńı rovnice

y′ = −2y.

Řešeńı
Nezávisle proměnnou budeme značit t. Čárkou znač́ıme derivaci y′ = dy

dt
.

Ukážeme si dva zp̊usoby řešeńı této diferenciálńı rovnice: metodu separace
proměnných a pomoćı charakteristické rovnice.

• Metoda separace proměnných
Uvažme dva př́ıpady.

Je-li y = 0, je rovnice splněna, tedy funkce y(t) = 0 je řešeńım této
rovnice.

Je-li y 6= 0, rovnici přeṕı̌seme do tvaru

dy

dt
= −2y

a vyděleńım y a vynásobeńım dt separujeme proměnné a dostaneme

dy

y
= −2dt.
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Obě strany zintegrujeme ∫
dy

y
=

∫
−2dt

a dostaneme
ln |y| = −2t+ c

|y| = exp(−2t+ c) = exp(c) exp(−2t).

Exponenciálńı funkci ex budeme psát exp(x). Nyńı chceme odstranit
absolutńı hodnotu. Muśıme uvážit tři př́ıpady

– Je-li y > 0, absolutńı hodnotu odstrańıme, z̊ustane pouze y, zave-
deme

k = exp(c)

a dostaneme
y = k exp(−2t).

– Je-li y < 0, absolutńı hodnotu odstrańıme, z̊ustane −y, zavedeme

k = − exp(c)

a dostaneme opět
y = k exp(−2t).

– Je-li y = 0, zavedeme
k = 0

a dostaneme opět
y = k exp(−2t).

Tedy ve všech třech př́ıpadech dostaneme obecné řešeńı

y(t) = k exp(−2t).

Jaký je význam integračńı konstanty k? Pro t = 0 dostaneme y(0) = k.
Můžeme tedy psát

y(t) = y(0) exp(−2t).
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• Použit́ı charakteristické rovnice
Charakteristická rovnice se většinou použ́ıvá pro diferenciálńı rovnice
vyšš́ıch řád̊u, protože tam nelze použ́ıt metodu separace proměnných.
Ale lze ji použ́ıt i pro rovnici prvńıho řádu. Pro naši rovnici má cha-
rakteristické rovnice př́ımo tvar

λ = −2

a řešeńı je pak opět
y(t) = y(0) exp(−2t).

Př́ıklad 2
V obecněǰśım př́ıpadě můžeme mı́t rovnici

y′ = ay.

Řešeńı
Podobným zp̊usobem najdeme obecné řešeńı

y(t) = y(0) exp(at).

Zde funkce y = 0 je stacionárńı řešeńı. Pro a > 0 je nestabilńı, pro a < 0 je
stabilńı.

3 Soustava lineárńıch diferenciálńıch rovnic

prvńıho řádu

Začneme př́ıkladem soustavy dvou diferenciálńıch rovnic, kde rovnice nejsou
provázané.

Př́ıklad 3

x′ = 4x

y′ = −5y.

Postupem z minulé kapitoly lze naj́ıt řešeńı

x(t) = x(0) exp(4t), y(t) = y(0) exp(−5t).
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3.1 Různá vlastńı č́ısla

V př́ıpadě, že jsou rovnice provázané, tento zp̊usob výpočtu nestač́ı. Ukážeme
si dvě metody řešeńı, převodem na jednu rovnici druhého řádu a pomoćı
vlastńıch č́ısel a vlastńıch vektor̊u matice.

Př́ıklad 4

x′ = 3x+ 2y

y′ = −3x− 4y.

• Převod na jednu rovnici druhé rádu.
Z prvńı rovnice vyjádř́ıme y

2y = x′ − 3x

y =
x′ − 3x

2

a dosad́ıme do druhé rovnice, abychom se zbavili y. (Nebo bychom
mohli z druhé rovnice vyjádřit x a dosadit do prvńı rovnice, abychom
se zbavili x.) A dostaneme jednu rovnici druhého řádu

x′′ − 3x′

2
= −3x− 4

x′ − 3x

2

x′′ − 3x′ = −6x− 4x′ + 12x

x′′ + x′ − 6x = 0.

Tuto rovnici vyřeš́ıme pomoćı charakteristické rovnice

λ2 + λ− 6 = 0

λ1 = 2, λ2 = −3.

Takže partikulárńı řešeńı jsou

x1 = exp(λ1t) = exp(2t), x2 = exp(λ2t) = exp(−3t)

a obecné řešeńı je

x = C1 exp(2t) + C2 exp(−3t).

4



Pro nalezeńı funkce y si připrav́ıme derivaci

x′ = 2C1 exp(2t)− 3C2 exp(−3t)

a dostaneme

y =
1

2
(x′ − 3x) =

=
1

2
(2C1 exp(2t)− 3C2 exp(−3t)− 3C1 exp(2t)− 3C2 exp(−3t)) =

=
1

2
C1 exp(2t)− 3C2 exp(−3t).

Obrázek 1 ukazuje trajektorie řešeńı pro r̊uzné počátečńı podmı́nky.

• Využit́ı vlastńıch č́ısel a vlastńıch vektor̊u matice.
Soustavu rovnic

x′ = 3x+ 2y

y′ = −3x− 4y

zaṕı̌seme ve vektorovém tvaru

~z′ = A~z,

kde

~z =

(
x
y

)
je vektor neznámých funkćı a

A =

(
3 2
−3 −4

)
je matice koeficient̊u.

Proč jsou vlastńı vektory matice užitečné pro řešeńı soustavy lineárńıch
diferenciálńıch rovnic? Ukáže se jako užitečné, kdyby existoval reálný
nenulový vektor ~v, který matice A neotáč́ı, tedy i po vynásobeńı matićı
A zleva z̊ustává ve stejném směru, tedy pro který plat́ı

A~v ‖ ~v,
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Obrázek 1: Trajektorie řešeńı soustavy dvou diferenciálńıch rovnic pro r̊uzné
počátečńı podmı́nky připomı́naj́ı hyperboly.

tedy
A~v = λ~v,

kde λ je č́ıslo neboli skalár. Takový vektor ~v se nazývá vlastńı vek-
tor matice (anglicky eigenvector) a takové č́ıslo λ se nazývá př́ıslušné
vlastńı č́ıslo (anglicky eigenvalue). Pak pro počátečńı podmı́nku lež́ıćı
na př́ımce určené takovým vektorem ~v bude vektor rychlosti ~z′ mı́̌rit
stejným směrem a bod ~z = (x(t), y(t)) neopust́ı tuto př́ımku. Pouze se
může přibližovat nebo vzdalovat od počátku. Takže můžeme psát

~z(t) = α(t)~v,
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kde α(t) je skalár úměrný vzdálenosti od počátku a ~v je vektor udávaj́ıćı
směr. Pak po dosazeńı do rovnice

~z′ = A~z,

dostaneme
α′(t)~v = Aα(t)~v = α(t)A~v = α(t)λ~v.

Takže
α′(t) = λα(t).

To je ale skalárńı rovnice, kterou umı́me vyřešit a dostaneme

α(t) = C exp(λt)

a řešeńı diferenciálńı rovnice pak je

~z′(t) = α(t)~v = C exp(λt)~v.

Když najdeme dva lineárně nezávislé vlastńı vektory ~v1 a ~v2, tak obecné
řešeńı je lineárńı kombinace těchto řešeńı

~z = C1 exp(λ1t)~v1 + C2 exp(λ2t)~v2.

Pojd’me se tedy pod́ıvat, jak najdeme vlastńı vektory a vlastńı č́ısla
matice.

Vlastńım vektorem maticeA nazýváme nenulový vektor ~v, který splňuje

A~v = λ~v.

Č́ıslo λ pak nazýváme vlastńım č́ıslem př́ıslušným k vlastńımu vek-
toru ~v. Postupně upravujeme

A~v − λ~v = ~0

(A− λE)~v = ~0,

kde E je jednotková matice, která má na hlavńı diagonále jedničky a
všude jinde nuly

E =

(
1 0
0 1

)
.
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Dostali jsme rovnici
”
čtvercová matice krát vektor rovná se nulovému

vektoru“. Ta má vždy nulové řešeńı. Nenulové řešeńı má právě tehdy,
když je matice singulárńı, tedy když

det(A− λE) = 0.

Tato rovnice se nazývá charakteristická rovnice. Na levé straně je mno-
hočlen proměnné λ. Pro matici 2x2 je to kvadratická rovnice. Pokud
má dva r̊uzné kořeny, označme je λ1 a λ2, pak k nim najdeme př́ıslušné
vlastńı vektory ~v1 a ~v2 a obecné řešeńı soustavy diferenciálńıch rovnic
je

~z = C1 exp(λ1t)~v1 + C2 exp(λ2t)~v2.

Pro naši soustavu dostáváme charakteristickou rovnici

det(A− λE) = 0∣∣∣∣ 3− λ 2
−3 −4− λ

∣∣∣∣ = 0

(3− λ)(−4− λ)− 6 = 0

λ2 + λ− 6 = 0

a vlastńı č́ısla
λ1 = 2, λ2 = −3.

K těmto dvěma r̊uzným vlastńım č́ısl̊um najdeme př́ıslušné vlastńı vek-
tory takto. Pro λ1 = 2 má rovnice

(A− λ1E)~v1 = ~0(
1 2
−3 −6

)
~v1 = ~0

nekonečně mnoho řešeńı. Nám stač́ı zvolit jedno nenulové řešeńı. Protože
každý nenulový násobek vlastńıho vektoru je opět vlastńı vektor. Pro
větš́ı matice bychom tuto soustavu řešili např. Gaussovou eliminaćı. Pro
matici 2x2 stač́ı uvážit, že hledáme vektor, který je kolmý na řádky ma-
tice. Stač́ı tedy vźıt prvńı nebo druhý řádek matice, obě č́ısla prohodit
a jedno z nich vynásobit -1. Tak dostaneme např.

~v1 =

(
2
−1

)
.

8



Můžeme ověřit, že toto je opravdu vlastńı vektor matice A takto

A~v1 =

(
3 2
−3 −4

)(
2
−1

)
=

(
4
−2

)
= 2

(
2
−1

)
= λ1~v1.

Stejným postupem najdeme pro druhé vlastńı č́ıslo λ2 = −3 př́ıslušný
vlastńı vektor

(A− λ2E)~v2 = ~0(
6 2
−3 −1

)
~v2 = ~0

~v2 =

(
1
−3

)
.

Pak obecné řešeńı soustavy diferenciálńıch rovnic je

~z = C3 exp(λ1t)~v1 + C4 exp(λ2t)~v2 =

= C3 exp(2t)

(
2
−1

)
+ C4 exp(−3t)

(
1
−3

)
.

To je stejný výsledek jako výsledek, který jsme dostali metodou převodu
soustavy dvou rovnic prvńıho řádu na jednu rovnici druhého řádu, jen
s t́ım rozd́ılem, že je trochu jiná role integračńıch konstant. Konkrétně

C1 = 2C3, C2 = C4.

3.1.1 Diagonalizace

Ukažme si, jak zle matici, která má všechna vlastńı č́ısla r̊uzná, rozepsat na
užitečný součin třech jiných matic. Např. pro naši matici

A =

(
3 2
−3 −4

)
s vlastńımi č́ısly

λ1 = 2, λ2 = −3.

a vlastńımi vektory

~v1 =

(
2
−1

)
, ~v1 =

(
1
−3

)
.

9



Označme

Λ =

(
2 0
0 −3

)
diagonálńı matici, která má na hlavńı diagonále vlastńı č́ısla matice A a
označme

V =

(
2 1
−1 −3

)
matici, jej́ıž sloupce jsou vlastńı vektory př́ıslušné vlastńım č́ısl̊um na dia-
gonále matice Λ ve stejném pořad́ı. Pak tyto dva vztahy

A~v1 = λ1~v1

a
A~v2 = λ2~v2

lze zapsat jedńım vztahem
AV = V Λ.

A po vynásobeńı zprava inverzńı matićı k matici V dostaneme užitečný roz-
klad matice A

A = V ΛV −1.

Např. pro naši matici dostaneme(
3 2
−3 −4

)
=

(
2 1
−1 −3

)(
2 0
0 −3

)
(−1

5
)

(
−3 −1

1 2

)
.

Jak tento rozklad souviśı se soustavou diferenciálńıch rovnic

~z′ = A~z ?

Použijeme A = V ΛV −1

~z′ = V ΛV −1~z,

zleva vynásob́ıme matićı V −1 a dostaneme

V −1~z′ = ΛV −1~z.

Nyńı se nab́ıźı substituce
~u = V −1~z,

která převede soustavu na tvar

~u′ = Λ~u.

10



Pesimista může namı́tnout, že jsme si nepomohli. Měli jsme rovnici ve tvaru

”
derivace vektoru rovná se matice krát vektor“ a máme rovnici ve stejném

tvaru. Ale d̊uležité je, že matice Λ je diagonálńı, tedy má nenulové prvky
pouze na hlavńı diagonále a jinde nuly. Takže tato soustava diferenciálńıch
rovnic se rozpadá na nezávislé rovnice, podobně jako soustava v př́ıkladu 3.

3.1.2 Exponenciála matice

Pro libovolné reálné nebo komplexńı č́ıslo x plat́ı

exp(x) =
∞∑
n=0

xn

n!
.

Všechny operace na pravé straně lze provést i pro čtvercovou matici, tedy
násobeńı mezi sebou, násobeńı reálným č́ıslem 1

n!
a sč́ıtáńı. Takže je možné

uvažovat exponenciálu matice, kde roli jedničky hraje jednotková matice.
Na co je to dobré? Řešeńı soustavy diferenciálńıch rovnic

~z′ = A~z

lze zapsat ve tvaru
~z(t) = exp(tA)~z(0).

To lze ověřit tak, že provedeme zkoušku

L = ~z′ = (exp(tA)~z(0))′ = A (exp(tA)~z(0)) = A~z = P.

3.2 Násobná vlastńı č́ısla

Tuto komplikaci si podrobně ukážeme pro matice 2x2.

3.2.1 Diagonalizovatelná matice

Př́ıklad 5

x′ = 2x

y′ = 2y.

Snadno najdeme řešeńı

x(t) = x(0) exp(2t), y(t) = y(0) exp(2t).
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Pojd’me se pod́ıvat, jak to dopadne, když budeme řešeńı hledat pomoćı
vlastńıch vektor̊u a vlastńıch č́ısel matice

A =

(
2 0
0 2

)
.

Charakteristická rovnice je ∣∣∣∣ 2− λ 0
0 2− λ

∣∣∣∣ = 0

(2− λ)2 = 0

a ta má dvojnásobný kořen

λ1 = 2, λ2 = 2.

Vlastńı vektor hledáme jako nenulové řešeńı rovnice

(A− λE)~v = ~0.

V tomto př́ıpadě je matice

(A− λE) =

(
0 0
0 0

)
nulová. Má hodnost 0. Proto existuj́ı dva lineárně nezávislé vlastńı vektory,
např. vektory

~v1 =

(
1
0

)
, ~v2 =

(
0
1

)
.

Obecné řešeńı pak je

~z = C1 exp(λ1t)~v1 + C2 exp(λ2t)~v2 =

= C1 exp(2t)

(
1
0

)
+ C2 exp(2t)

(
0
1

)
.

tedy
x(t) = C1 exp(2t), y(t) = C2 exp(2t)

v souladu s řešeńım źıskaným předchoźı metodou.
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Pod́ıvejme se podrobněji, pro kterou matici 2x2 s dvojnásobným vlastńım
č́ıslem λ1 = λ2 bude mı́t matice

A− λ1E

hodnost 0, tedy bude nulová.
Označme si pro přehlednost prvky matice A jako a, b, c, d, tedy

A =

(
a b
c d

)
.

A hledáme podmı́nky na tato 4 č́ısla a, b, c, d, aby matice A měla dvojnásobné
vlastńı č́ıslo a aby matice A− λ1E byla nulová. Z podmı́nky(

a− λ b
c d− λ

)
=

(
0 0
0 0

)
plyne

b = 0, c = 0.

Pak
λ1 = a, λ2 = d

a z podmı́nky
λ1 = λ2

plyne
a = d.

Takže matice A muśı být ve tvaru

A =

(
a 0
0 a

)
= aE,

tedy muśı to být násobek jednotkové matice. A obrácená implikace je zřejmá,
tedy je-li matice A násobkem jednotkové matice, pak má shodná vlastńı
č́ısla a matice A − λE je nulová. Dostáváme tedy ekvivalenci. Matice má
shodná vlastńı č́ısla a matice A − λE je nulová právě tehdy, když matice
A je násobkem jednotkové matice. A v tom př́ıpadě existuj́ı dva lineárně
nezávislé vlastńı vektory.

Zavád́ıme pojem algebraická násobnost vlastńıho č́ısla, což je násobnost
vlastńıho č́ısla jako kořene charakteristické rovnice. A pojem geometrická
násobnost vlastńıho č́ısla jako počet př́ıslušných lineárně nezávislých vlastńıch
vektor̊u. Zde je algebraická i geometrické násobnost vlastńıho č́ısla 2. Ukažme
si př́ıpad, kdy je geometrické násobnost menš́ı než algebraická násobnost.

13



3.2.2 Nediagonalizovatelná matice

Situace, kdy matice s násobnými vlastńımi č́ısly je násobkem jednotkové ma-
tice je zvláštńı př́ıpad. V typickém př́ıpadě nebude mı́t matice A− λE hod-
nost 0, ale 1. Nebudou tedy existovat dva lineárně nezávislé vlastńı vektory.
Osobně považuji tuto skutečnost za snad jediné ošklivé mı́sto matematiky.
Pojd’me se pod́ıvat, jak to vyřešit. Budeme muset zavést zobecněný vlastńı
vektor. Ukažme si to na dvou př́ıkladech.

Př́ıklad 6

x′ = 2x+ y

y′ = 2y.

Vyřešme tuto soustavu nejdř́ıve bez použit́ı vlastńıch vektor̊u. Pro druhou
rovnici lze napsat řešeńı

y(t) = y(0) exp(2t).

To dosad́ıme do prvńı rovnice a dostaneme

x′ = 2x+ y(0) exp(2t).

Homogenńı rovnice
x′ = 2x

má řešeńı x = k exp(2t). Nehomogenńı rovnici lze vyřešit metodu odhadu
nebo metodou variace konstanty. Při použit́ı metody odhadu hledáme řešeńı
ve tvaru

x = at exp(2t).

Hodnotu konstanty a najdeme dosazeńım tohoto tvaru do rovnice. Připrav́ıme
si derivaci

x′ = a exp(2t) + 2ta exp(2t)

a dostaneme

a exp(2t) + 2ta exp(2t) = 2at exp(2t) + y(0) exp(2t)

a odtud
a = y(0).
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Takže řešeńı je

x = y(0)t exp(2t) + k exp(2t)

y = y(0) exp(2t),

kde integračńı konstanta k má význam počátečńı podmı́nky x(0), takže
můžeme psát

x = y(0)t exp(2t) + x(0) exp(2t)

y = y(0) exp(2t)

nebo ve vektorovém tvaru

~z = x(0)

(
1
0

)
exp(2t) + y(0)

(
t

(
1
0

)
+

(
0
1

))
exp(2t).

Prvńı člen je (až na násobivou konstantu x(0)) roven

~v exp(λt),

kde ~v je (jak ukážeme dále) vlastńı vektor matice A. O tomto členu v́ıme, že
je řešeńım. Ale co ten druhý člen? Ten je (opět až na násobivou konstantu
y(0)) ve tvaru

(t~v + ~w) exp(λt).

Škoda. Když existuj́ı dva lineárně nezávislé vlastńı vektory matice A, tak
tento druhý člen je prostě ~v2 exp(λ2t). Ale když dva lineárně nezávislé vlastńı
vektory neexistuj́ı, tak máme tento tvar řešeńı. Jaké jsou podmı́nky na vek-
tor ~w? Dosazeńım výrazu

~z = (t~v + ~w) exp(λt),

kde
A~v = λ~v

do rovnice
~z′ = A~z

dostaneme po úpravách podmı́nku na vektor ~w

((t~v + ~w) exp(λt))′ = A(t~v + ~w) exp(λt)
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~v + λt~v + λ~w = tλ~v + A~w

A~w = λ~w + ~v

A~w − λ~w = ~v

(A− λE)~w = ~v.

Takový vektor ~w se nazývá zobecněný vlastńı vektor. Právě jsme dokázali,
že pokud takový vektor ~w najdeme, tak výraz ~z = (t~v+ ~w) exp(λt) je řešeńım
naš́ı soustavy diferenciálńıch rovnic. A protože se nejedná o násobek řešeńı
~v exp(λt), tak jsou to dvě lineárně nezávislá řešeńı. A jejich obecná lineárńı
kombinace je obecné řešeńı.

Zbývá otázka, jestli má rovnice

(A− λE)~w = ~v

řešeńı. Ukážeme to pro matici 2x2. Je-li matice A matice 2x2, tak matice
A − λE je také 2x2. Může mı́t hodnost 0, 1 nebo 2. Hodnost 2 nemůže
nastat, protože jsme vlastńı č́ıslo λ našli právě z podmı́nky det(A−λE) = 0.
Hodnost 0 znamená, že matice A−λE je nulová, tedy matice A je násobkem
jednotkové matice, to jsme diskutovali v odd́ıle diagonalizovatelná matice.
Zde uvažujeme př́ıpad, kdy hodnost matice A− λE je 1.

Označme si opět pro přehlednost prvky matice A jako a, b, c, d, tedy

A =

(
a b
c d

)
.

Pak

A− λE =

(
a− λ b

c d− λ

)
.

Charakteristická rovnice je

λ2 − (a+ d)λ+ ad− bc = 0

a jej́ı diskriminant muśı být nulový

D = (a− d)2 + 4bc = 0,

aby měla dvojnásobný kořen

λ1 = λ2 =
a+ d

2
,
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tedy
2λ = a+ d.

Můžeme volit vlastńı vektor

~v =

(
b

λ− a

)
.

Pak rovnice pro ~w zńı(
a− λ b

c d− λ

)
~w =

(
b

λ− a

)
.

Matice na levé straně je singulárńı, jej́ı sloupce jsou lineárně závislé. Aby
tato rovnice měla řešeńı, muśı být a stač́ı, aby vektor na pravé straně byl
násobkem druhého sloupce matice. Ale protože se rovnaj́ı prvńı složky, musej́ı
se rovnat i druhé složky

d− λ = λ− a,
což plat́ı, protože je to ekvivalentńı se vztahem 2λ = a+d. T́ım jsme dokázali,
že zobecněný vektor ~w existuje.

Je jednoznačný? Neńı. Když k zobecněnému vlastńımu vektoru ~w přičteme
libovolný násobek vlastńıho vektoru ~v, tak dostaneme opět zobecněný vlastńı
vektor splňuj́ıćı podmı́nku

(A− λE)~w = ~v,

protože jsme přičetli vektor, který je v jádře matice A − λE, tedy vektor,
který tato matice zobraźı na nulový vektor.

Ukažme si to na ještě jednom př́ıkladě.
Př́ıklad 7

x′ = 5x+ 2y

y′ = −2x+ y.

Vyřeš́ıme tuto soustavu opět dvoj́ım zp̊usobem. Převodem na jednu rovnici
druhého řádu a pak pomoćı vlastńıch vektor̊u a zobecněných vlastńıch vek-
tor̊u.

• Převod na jednu rovnici druhého řádu. Budeme postupovat podobně
jako při řešeńı př́ıkladu 4.

2y = x′ − 5x
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y =
x′ − 5x

2

x′′ − 5x′

2
= −2x+

x′ − 5x

2

x′′ − 5x′ = −4x+ x′ − 5x

x′′ − 6x′ + 9x = 0

λ2 − 6λ+ 0 = 0

λ1 = 3, λ2 = 3

x = C1 exp(3t) + C2t exp(3t)

x′ = 3C1 exp(3t) + C2 exp(3t) + 3C2t exp(3t)

y =

(
−C1 +

C2

2
− C2t

)
exp(3t).

• A nyńı vyřeš́ıme stejnou soustavu pomoćı vlastńıch vektor̊u a zobecněných
vlastńıch vektor̊u. Matice je

A =

(
5 2
−2 1

)
.

Charakteristická rovnice je

det(A− λE) =

∣∣∣∣ 5− λ 2
−2 1− λ

∣∣∣∣ = λ2 − 6λ+ 9 = 0.

Ta má dvojnásobný kořen

λ1 = 3, λ2 = 3.

Najdeme př́ıslušný vlastńı vektor ~v z rovnice

(A− λE)~v = ~0(
2 2
−2 −2

)
~v = ~0

např.

~v =

(
1
−1

)
.
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Druhý vlastńı vektor, který by byl s t́ımto vlastńım vektorem lineárně
nezávislý, neexistuje. Hledáme tedy zobecněný vlastńı vektor ~w z rov-
nice

(A− λE)~w = ~v(
2 2
−2 −2

)
~w =

(
1
−1

)
~w =

1

4

(
1
1

)
.

Nyńı můžeme napsat dvě řešeńı

~z1 = ~v exp(λ1t) =

(
1
−1

)
exp(3t)

a

~z2 = (t~v + ~w) exp(λ1t) =

(
t

(
1
−1

)
+

1

4

(
1
1

))
exp(3t)

a obecné řešeńı pak je
~z = C3~z1 + C4~z2

a jednotlivé funkce řešeńı jsou

x =

(
C3 + C4

(
t+

1

4

))
exp(3t)

y =

(
−C3 + C4

(
−t+

1

4

))
exp(3t).

To je stejný výsledek jako ten źıskaný předešlou metodou, s t́ım, že
integračńı konstanty jsou svázány vztahy

C1 = C3 +
1

4
C4, C2 = C4.

3.2.3 Jordanizace

A co diagonalizace nediagonalizovatelné matice? Pro matici s r̊uznými vlastńımi
č́ısly jsme si ukázali, že je možné ji rozložit na součin

A = V ΛV −1,
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kde sloupce matice V jsou vlastńı vektory matice A a diagonálńı matice Λ
je tvořena vlastńımi č́ısly matice A.

Ale co když neexistuje druhý lineárně nezávislý vlastńı vektor? I v tom
př́ıpadě můžeme sestavit matici V tak, že jej́ı prvńı sloupec bude vlastńı
vektor ~v a jej́ı druhý sloupec bude zobecněný vlastńı vektor ~w matice A. A
vztahy

A~v = λ~v

a
A~w = v + λ~w

můžeme zapsat obdobou vztahu AV = V Λ, totiž jedńım vztahem

AV = V J,

kde matice J neńı bohužel diagonálńı, ale je to tzv. Jordanova matice(
λ 1
0 λ

)
.

Proto jsme tento rozklad matice nazvali Jordanizace. Když tento vztah vy-
násob́ıme zprava matićı V −1, tak dostaneme

A = V JV −1.

Pro naši matici

A =

(
5 2
−2 1

)
.

jsme našli dvojnásobné vlastńı č́ıslo

λ1 = 3, λ2 = 3,

př́ıslušný vlastńı vektor

~v =

(
1
−1

)
a zobecněný vlastńı vektor

~w =
1

4

(
1
1

)
.

Takže

J =

(
3 1
0 3

)
,
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V =

(
1 1

4

−1 1
4

)
,

V −1 =

(
1
2
−1

2

2 2

)
a Jordan̊uv rozklad je

A = V JV −1(
5 2
−2 1

)
=

(
1 1

4

−1 1
4

)(
3 1
0 3

)(
1
2
−1

2

2 2

)
.

4 Vztah mezi vlastńımi č́ısly a stopou a de-

terminantem

Na závěr ještě uvedeme vztah mezi vlastńımi č́ısly λ1 a λ2 matice

A =

(
a b
c d

)
a determinantem matice detA = ad − bc a stopou matice TrA = a + d.
Charakteristická rovnice je

det(A− λE) = 0∣∣∣∣ a− λ b
c d− λ

∣∣∣∣ = 0

(a− λ)(d− λ)− bc = 0

λ2 − (a+ d)λ+ ad− bc = 0.

Když ji porovnáme se zápisem kvadratické rovnice s kořeny λ1 a λ2

(λ− λ1)(λ− λ2) = 0

λ2 − (λ1 + λ2)λ+ λ1λ2 = 0,

tak porovnáńı koeficient̊u u λ dá

λ1 + λ2 = a+ d = TrA

a porovnáńı absolutńıho členu (bez λ) dá

λ1λ2 = ad− bc = detA.
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Takto jsme to ukázali pro matici 2x2, ale tyto vztahy plat́ı pro všechny
čtvercové matice nxn, pro které je stopa definována jako součet prvk̊u na
hlavńı diagonále

TrA =
n∑

i=1

aii.
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