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1 Uvod

N

moderni matematika muze nabidnout. Nez se zamérime na soustavy dife-
rencialnich rovnic, pojdme si pfipomenout, jak se fesf ne soustava, ale jedna
diferencialni rovnice.

2 Jedna linearni diferencialni rovnice prvniho

~
radu
Piiklad 1
Najdéte obecné teseni diferencialni rovnice
/
y = —2y.
Reseni
Nezavisle proménnou budeme znacit ¢. Carkou znac¢ime derivaci y' = z—lt’.

Ukéazeme si dva zpusoby feSeni této diferencidlni rovnice: metodu separace
proménnych a pomoci charakteristické rovnice.

e Metoda separace proménnych
Uvazme dva piipady.
Je-li y = 0, je rovnice splnéna, tedy funkce y(t) = 0 je FeSenim této
rovnice.

Je-li y # 0, rovnici prepiSeme do tvaru

dy
29
at Y
a vydélenim y a vynasobenim dt separujeme proménné a dostaneme
d
Y _adr.
)



Obé strany zintegrujeme

[ = [ -2
Y

Inly| = -2t +c¢

a dostaneme

ly| = exp(—2t + ¢) = exp(c) exp(—2t).

Exponencidlni funkci e* budeme pséat exp(z). Nyni chceme odstranit
absolutni hodnotu. Musime uvazit tii pripady

— Je-li y > 0, absolutni hodnotu odstranime, zustane pouze y, zave-
deme
k = exp(c)

a dostaneme
y = kexp(—2t).

— Je-li y < 0, absolutni hodnotu odstranime, zustane —y, zavedeme

k = —exp(c)
a dostaneme opét
y = kexp(—2t).
— Je-li y = 0, zavedeme
k=0
a dostaneme opét
y = kexp(—2t).

Tedy ve vSech tfech piipadech dostaneme obecné reseni

y(t) = kexp(—2t).

Jaky je vyznam integracni konstanty k7 Pro ¢ = 0 dostaneme y(0) = k.
Muzeme tedy pséat

y(t) = y(0) exp(—2t).



e Pouziti charakteristické rovnice
Charakteristicka rovnice se vétsinou pouziva pro diferencialni rovnice
vyssich tadu, protoze tam nelze pouzit metodu separace proménnych.
Ale lze ji pouzit i pro rovnici prvniho fadu. Pro nasi rovnici ma cha-
rakteristické rovnice primo tvar

A= —2

a feseni je pak opét
y(t) = y(0) exp(—21).

Priklad 2
V obecnéjsim pripadé muzeme mit rovnici
Yy = ay.

Reseni
Podobnym zptusobem najdeme obecné teseni

y(t) = y(0) exp(at).

Zde funkce y = 0 je stacionarni feseni. Pro a > 0 je nestabilni, pro a < 0 je
stabilni.

3 Soustava linearnich diferencialnich rovnic
prvniho radu

Zacneme piikladem soustavy dvou diferencialnich rovnic, kde rovnice nejsou

provazané.
Piiklad 3

r = 4x

= —dy.
Postupem z minulé kapitoly lze najit feseni

x(t) = z(0)exp(4t),  y(t) = y(0) exp(—51).



3.1 Ruzna vlastni cisla

V pripadé, ze jsou rovnice provazané, tento zpusob vypoctu nestaci. Ukazeme
si dvé metody TeSeni, prevodem na jednu rovnici druhého fadu a pomoci
vlastnich ¢isel a vlastnich vektoru matice.

Priklad 4

¥ = 3x+2y
y = —3z—4y.

e Pievod na jednu rovnici druhé radu.
Z prvni rovnice vyjadiime y

2y =2’ — 3z

_x'—3a:
y=7

a dosadime do druhé rovnice, abychom se zbavili y. (Nebo bychom
mohli z druhé rovnice vyjadrit x a dosadit do prvni rovnice, abychom
se zbavili z.) A dostaneme jednu rovnici druhého Féadu

z" — 32 3 4:5’ — 3z
—_— = —3T —
2

2" —3x = —6x — 42" + 122
2 +2 —6x=0.

Tuto rovnici vyfesime pomoci charakteristické rovnice
NM4+A—6=0

)\1 - 2, )\2 == —3

Takze partikularni feseni jsou
x1 = exp(Ait) = exp(2t), xo = exp(Aot) = exp(—3t)
a obecné Teseni je
x = Cexp(2t) + Cyexp(—3t).
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Pro nalezeni funkce y si pripravime derivaci
z' = 2C) exp(2t) — 3Cy exp(—3t)
a dostaneme
(' 3)
= —\xr — —_=
Y73

1
= 5(201 exp(2t) — 3Cy exp(—3t) — 3C; exp(2t) — 3Cy exp(—3t)) =
1
= 501 exp(2t) — 3Cy exp(—3t).

Obrazek [1I] ukazuje trajektorie feseni pro ruzné pocatecni podminky.

Vyuziti vlastnich ¢isel a vlastnich vektoru matice.
Soustavu rovnic

¥ = 3x+2y
= =3z —4y

zapiseme ve vektorovém tvaru

—

Z = AZ,

~(;)

je vektor neznamych funkci a
3 2
N E )

Proc jsou vlastni vektory matice uzitecné pro feseni soustavy linearnich
diferencidlnich rovnic? Ukaze se jako uzitecné, kdyby existoval redlny
nenulovy vektor ¢, ktery matice A neotaci, tedy i po vynasobeni matici
A zleva zustava ve stejném sméru, tedy pro ktery plati

kde

je matice koeficientu.

AT || 7,



Obrazek 1: Trajektorie feseni soustavy dvou diferencidlnich rovnic pro ruzné
pocatecni podminky pripominaji hyperboly.

tedy
AT = v,

kde A je ¢islo neboli skalar. Takovy vektor ¢ se nazyva vlastni vek-
tor matice (anglicky eigenvector) a takové ¢islo A\ se nazyva piislusné
vlastni ¢islo (anglicky eigenvalue). Pak pro poc¢ateéni podminku lezici
na primce urcené takovym vektorem o bude vektor rychlosti 2/ miFit
stejnym smérem a bod Z = (x(t),y(t)) neopusti tuto primku. Pouze se
muze priblizovat nebo vzdalovat od poc¢atku. Takze muzeme psat



kde «(t) je skalar imérny vzdalenosti od poc¢atku a ¢ je vektor udavajici
smér. Pak po dosazeni do rovnice

—

Z = AZ,

dostaneme
()0 = Aa(t)v = a(t) AT = at)\v.

Takze
o' (t) = da(t).

To je ale skalarni rovnice, kterou umime vytesit a dostaneme
a(t) = Cexp(At)
a feseni diferencidlni rovnice pak je

2'(t) = a(t)v = Cexp(At)v.

Kdyz najdeme dva linearné nezavislé vlastni vektory v a v, tak obecné
feSeni je linedarni kombinace téchto reseni

Z = Cexp(Ait)v) + Cyexp(Aat)Ts.

Pojdme se tedy podivat, jak najdeme vlastni vektory a vlastni &fsla
matice.

Vlastnim vektorem matice A nazyvame nenulovy vektor o, ktery spliuje
AU = M.

Cislo A pak nazyvame vlastnim éfslem pifslusnym k vlastnimu vek-
toru v. Postupné upravujeme

AT = \i =0
(A—\E)7 =0,
kde FE je jednotkova matice, ktera ma na hlavni diagonale jednicky a

vSude jinde nuly
10
= ( o ) .



Dostali jsme rovnici ,,¢tvercova matice krat vektor rovnéd se nulovému
vektoru“. Ta ma vzdy nulové feSeni. Nenulové feseni ma pravé tehdy,
kdyz je matice singularni, tedy kdyz

det(A — AF) = 0.

Tato rovnice se nazyva charakteristicka rovnice. Na levé strané je mno-
hoc¢len proménné \. Pro matici 2x2 je to kvadratickd rovnice. Pokud
ma dva ruzné koreny, ozna¢me je A\; a A9, pak k nim najdeme prislusné
vlastni vektory o; a U5 a obecné feseni soustavy diferencidlnich rovnic
je

Z= Cl eXp(/\lt)Ul + CQ exp()\gt)z_fz.

Pro nasi soustavu dostavame charakteristickou rovnici
det(A—AE) =0
3—A 2
-3 —4—- )
B=XN)(-4—-)N)—-6=0
NM+A—6=0

0

a vlastni ¢isla

M=2  A=-3.

K témto dvéma ruznym vlastnim ¢islum najdeme prislusné vlastni vek-
tory takto. Pro A\; = 2 ma rovnice

nekonecné mnoho feseni. Nam staci zvolit jedno nenulové feseni. Protoze
kazdy nenulovy nasobek vlastniho vektoru je opét vlastni vektor. Pro
vétsi matice bychom tuto soustavu fesili napt. Gaussovou eliminaci. Pro
matici 2x2 stac¢i uvazit, ze hledame vektor, ktery je kolmy na radky ma-
tice. Staci tedy vzit prvni nebo druhy fadek matice, obé ¢isla prohodit
a jedno z nich vynasobit -1. Tak dostaneme napf.

a-(2).



Muzeme ovérit, ze toto je opravdu vlastni vektor matice A takto

(3 4)(5) () +() e

Stejnym postupem najdeme pro druhé vlastni ¢islo Ay = —3 prislusny
vlastni vektor

Pak obecné teSeni soustavy diferencialnich rovnic je

7= 03 exp()\lt)ﬁl + 04 exp()\gt)ffg =

— Cyexp(21) ( & ) + Cyexp(—31) ( . > .

To je stejny vysledek jako vysledek, ktery jsme dostali metodou pirevodu
soustavy dvou rovnic prvniho fadu na jednu rovnici druhého tadu, jen
s tim rozdilem, ze je trochu jina role integrac¢nich konstant. Konkrétné

Cl = 203, 02 = C’4~

3.1.1 Diagonalizace

Ukazme si, jak zle matici, kterd ma vSechna vlastni ¢isla ruzna, rozepsat na
uziteény soucin tiech jinych matic. Napft. pro nasi matici

(5 4)

s vlastnimi ¢isly

a vlastnimi vektory



Oznacme

(0 )

diagondlni matici, kterdA méa na hlavni diagonale vlastni ¢isla matice A a

oznacme
2 1
=1 5)

matici, jejiz sloupce jsou vlastni vektory prislusné vlastnim cislum na dia-
gonale matice A ve stejném potadi. Pak tyto dva vztahy

AUl - )\1171
a

AUy = Aoty
lze zapsat jednim vztahem

AV =VA.

A po vynéasobeni zprava inverzni matici k matici V' dostaneme uziteény roz-
klad matice A
A=VAVL

Napf. pro nasi matici dostaneme

(3 3)=(4 =) s)ep( )

Jak tento rozklad souvisi se soustavou diferencidlnich rovnic

2l =AZ7
Pouzijeme A = VAV !
Z=VAV'Z
zleva vyndsobime matici V! a dostaneme
VTl = AVTZ
Nyni se nabizi substituce
i=V'z

ktera prevede soustavu na tvar



Pesimista muze namitnout, ze jsme si nepomohli. Méli jsme rovnici ve tvaru
,derivace vektoru rovna se matice krat vektor“ a mame rovnici ve stejném
tvaru. Ale dulezité je, ze matice A je diagonalni, tedy ma nenulové prvky
pouze na hlavni diagondle a jinde nuly. Takze tato soustava diferencialnich
rovnic se rozpadd na nezavislé rovnice, podobné jako soustava v piikladu [3]

3.1.2 Exponenciala matice

Pro libovolné realné nebo komplexni ¢islo z plati

o0 n

exp(z) = Z %

n=0

VsSechny operace na pravé strané lze provést i pro ¢tvercovou matici, tedy

nasobeni mezi sebou, ndsobeni realnym cislem % a sc¢itani. Takze je mozné

uvazovat exponencialu matice, kde roli jednicky hraje jednotkova matice.
Na co je to dobré? Reseni soustavy diferencidlnich rovnic

2 = A7

lze zapsat ve tvaru

2(t) = exp(tA)Z(0).

To 1ze ovérit tak, ze provedeme zkousku

L =2 = (exp(tA)Z(0)) = A (exp(tA)Z(0)) = AZ = P.

3.2 Nasobna vlastni cisla

Tuto komplikaci si podrobné ukazeme pro matice 2x2.

3.2.1 Diagonalizovatelna matice

Priklad 5

Snadno najdeme feseni
z(t) = 2(0)exp(2t),  y(t) =y(0) exp(2t).
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Pojdme se podivat, jak to dopadne, kdyz budeme feSeni hledat pomoci
vlastnich vektoru a vlastnich ¢isel matice

(1)

Charakteristicka rovnice je

a ta ma dvojnasobny koten

Vlastni vektor hledame jako nenulové feseni rovnice
(A= \E)7 = 0.

V tomto ptipadé je matice

(A—AE):(S 8)

nulova. Ma hodnost 0. Proto existuji dva linearné nezavislé vlastni vektory,

napft. vektory
. 1 . 0

7= Cl exp()\lt)ﬁl + CQ exp()\gt)ﬁg =

— Cy exp(2t) ( ; ) + Chexp(2t) ( ; ) .

z(t) = Cyrexp(2t), y(t) = Carexp(2t)

v souladu s feSenim ziskanym predchozi metodou.

Obecné feseni pak je

tedy

12



Podivejme se podrobnéji, pro kterou matici 2x2 s dvojnasobnym vlastnim
¢islem Ay = Ay bude mit matice

A—-M\NE

hodnost 0, tedy bude nulova.
Oznacme si pro prehlednost prvky matice A jako a, b, ¢, d, tedy

A:(ZS).

A hleddme podminky na tato 4 cisla a, b, ¢, d, aby matice A méla dvojnasobné
vlastni ¢islo a aby matice A — A\ E byla nulova. Z podminky

a— A b (00
c d-=X) 00
plyne

Pak
a z podminky

plyne

Takze matice A musi byt ve tvaru

A:<g 2>:aE,

tedy musi to byt nasobek jednotkové matice. A obracena implikace je zfejma,
tedy je-li matice A nasobkem jednotkové matice, pak ma shodna vlastni
¢isla a matice A — AE je nulova. Dostavame tedy ekvivalenci. Matice ma
shodné vlastni ¢isla a matice A — AE je nulova pravé tehdy, kdyz matice
A je nasobkem jednotkové matice. A v tom pfipadé existuji dva linedrné
nezavislé vlastni vektory.

Zavadime pojem algebraicka nasobnost vlastniho ¢isla, coz je nasobnost
vlastniho cisla jako kotfene charakteristické rovnice. A pojem geometricka
nasobnost vlastniho ¢isla jako pocet prislusnych linearné nezavislych vlastnich
vektoru. Zde je algebraicka i geometrické nasobnost vlastniho ¢isla 2. Ukazme
si piipad, kdy je geometrické nasobnost mensi nez algebraicka nasobnost.

13



3.2.2 Nediagonalizovatelna matice

Situace, kdy matice s ndsobnymi vlastnimi ¢isly je nasobkem jednotkové ma-
tice je zvlastni pripad. V typickém ptipadé nebude mit matice A — AF hod-
nost 0, ale 1. Nebudou tedy existovat dva linedrné nezavislé vlastni vektory.
Osobné povazuji tuto skutecnost za snad jediné osklivé misto matematiky:.
Pojdme se podivat, jak to vyiesit. Budeme muset zavést zobecnény vlastni
vektor. Ukazme si to na dvou piikladech.

Priklad 6

r = 2x+vy
= 2y.

Vytesme tuto soustavu nejdiive bez pouziti vlastnich vektoru. Pro druhou
rovnici lze napsat feSeni

y(t) = y(0) exp(2t).
To dosadime do prvni rovnice a dostaneme
z' =2z + y(0) exp(2t).
Homogenni rovnice
=2z

mé feseni x = kexp(2t). Nehomogenni rovnici lze vyfesit metodu odhadu
nebo metodou variace konstanty. Pii pouziti metody odhadu hledame teseni
ve tvaru

x = atexp(2t).

Hodnotu konstanty a najdeme dosazenim tohoto tvaru do rovnice. Piipravime
si derivaci
' = aexp(2t) + 2ta exp(2t)

a dostaneme
aexp(2t) + 2taexp(2t) = 2at exp(2t) + y(0) exp(2t)

a odtud
a=y(0).

14



Takze TeSeni je
x = y(0)texp(2t) + kexp(2t)
= y(0) exp(2t),

kde integracni konstanta k& ma vyznam pociteéni podminky z(0), takze
muzeme psat

r = y(0)texp(2t) + z(0) exp(2t)
y = y(0)exp(2t)

nebo ve vektorovém tvaru

= 2(0) ( : ) exp(21) + y(0) (t( ; ) + ( ; )) exp(21).

Prvni élen je (az na nasobivou konstantu z(0)) roven
vexp(At),

kde ¥ je (jak ukazeme déle) vlastni vektor matice A. O tomto ¢lenu vime, ze
je fesenim. Ale co ten druhy ¢len? Ten je (opét az na ndsobivou konstantu
y(0)) ve tvaru

(t0 + W) exp(At).

Skoda. Kdyz existuji dva linedrné nezavislé vlastni vektory matice A, tak
tento druhy ¢len je prosté vh exp(Aqt). Ale kdyz dva linedrné nezavislé vlastni
vektory neexistuji, tak mame tento tvar feseni. Jaké jsou podminky na vek-
tor w? Dosazenim vyrazu

7 = (tV + W) exp(At),

kde
AT = \U

do rovnice

—

2= A7

dostaneme po tpravach podminku na vektor w

((tv + ) exp(At)) = A(tT + @) exp(\t)

15



U+ MU+ M = tAT + Ad

AT = M +
AT — M =
(A— \E)G =0

Takovy vektor w se nazyva zobecnény vlastni vektor. Pravé jsme dokazali,
ze pokud takovy vektor & najdeme, tak vyraz Z = (tv+ @) exp(At) je feSenim
nasi soustavy diferencidlnich rovnic. A protoze se nejednd o nésobek reseni
vexp(At), tak jsou to dvé linedrné nezavisla feseni. A jejich obecnd linedrni
kombinace je obecné TeSeni.

Zbyva otazka, jestli ma rovnice

(A= \E)@ =¥

feSeni. Ukazeme to pro matici 2x2. Je-li matice A matice 2x2, tak matice
A — A\E je také 2x2. Muze mit hodnost 0, 1 nebo 2. Hodnost 2 nemuze
nastat, protoze jsme vlastni ¢islo A nasli pravé z podminky det(A—AE) = 0.
Hodnost 0 znamen4, ze matice A — \E je nulova, tedy matice A je ndsobkem
jednotkové matice, to jsme diskutovali v oddile diagonalizovatelnd matice.
Zde uvazujeme pripad, kdy hodnost matice A — AFE je 1.

Ozna¢me si opét pro prehlednost prvky matice A jako a,b, ¢, d, tedy

A:(ZS).

a— A b
= (2h 1Y,

Charakteristicka rovnice je

Pak

N —(a+d\+ad—bc=0
a jeji diskriminant musi byt nulovy
D = (a —d)* + 4bc = 0,

aby méla dvojnasobny koten




tedy

Muzeme volit vlastni vektor

Pak rovnice pro w zni

()= ()

Matice na levé strané je singularni, jeji sloupce jsou linedrné zavislé. Aby
tato rovnice méla feseni, musi byt a staci, aby vektor na pravé strané byl
nasobkem druhého sloupce matice. Ale protoze se rovnaji prvni slozky, museji

se rovnat i druhé slozky
d—A=X\—a,

coz plati, protoze je to ekvivalentni se vztahem 2\ = a+d. Tim jsme dokézali,
ze zobecnény vektor W existuje.

Je jednoznacny? Neni. Kdyz k zobecnénému vlastnimu vektoru « pricteme
libovolny nasobek vlastniho vektoru o, tak dostaneme opét zobecnény vlastni
vektor splnujici podminku

(A— \E)& = o,

protoze jsme pricetli vektor, ktery je v jadie matice A — \FE, tedy vektor,
ktery tato matice zobrazi na nulovy vektor.
Ukazme si to na jesté jednom piikladeé.
Priklad 7
¥ = bx+2y
y = —2x+y.
Vytesime tuto soustavu opét dvojim zpusobem. Prevodem na jednu rovnici

druhého Fadu a pak pomoci vlastnich vektoru a zobecnénych vlastnich vek-
toru.

e Pievod na jednu rovnici druhého fadu. Budeme postupovat podobné
jako pii feseni prikladu [

2y =2’ — bz

17



x — 5z
2

x”—5a7’_ 2x+x’—5x
5 _

2 —bx' = —4x 4+ 2’ — bx

y:

2" — 62"+ 92 =0
A —6A+0=0
A =3, A =3
x = C} exp(3t) + Cat exp(3t)
z' = 3C) exp(3t) + Cy exp(3t) + 3Cst exp(3t)

Yy = <—01 + % — Czt) exp(3t).

e A nyni vyTesime stejnou soustavu pomoci vlastnich vektoru a zobecnénych
vlastnich vektoru. Matice je

(3.

Charakteristicka rovnice je

@MA—AE):‘5_A 2

— )2 _ —
_21_A‘_A 6A+9 = 0.

Ta méa dvojnasobny kofen
)\1 - 3, )\2 = 3.
Najdeme prislusny vlastni vektor ¥ z rovnice

(A= XE)T=0

napr.



Druhy vlastni vektor, ktery by byl s timto vlastnim vektorem linedrné
nezavisly, neexistuje. Hledame tedy zobecnény vlastni vektor w z rov-
nice

Nyni muzeme napsat dvé reseni

2 = Foxp(At) = < _} ) exp(3t)

% — (t5+ @) exp(Mt) = (t( o ) +i ( | )) exp(3t)

a obecné Teseni pak je
7=C0521+ Cy2y

a jednotlivé funkce feseni jsou

= (creni ) ) e
y = (—03 +Cy (—t + i)) exp(3t).

To je stejny vysledek jako ten ziskany predeslou metodou, s tim, ze
integracni konstanty jsou svazany vztahy

1
Cy =Cs+ 104, Cy = Cy.

Jordanizace

A co diagonalizace nediagonalizovatelné matice? Pro matici s ruznymi vlastnimi
¢isly jsme si ukazali, Ze je mozné ji rozlozit na soucin

A=VAV
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kde sloupce matice V jsou vlastni vektory matice A a diagonalni matice A
je tvofena vlastnimi ¢isly matice A.

Ale co kdyz neexistuje druhy linearné nezavisly vlastni vektor? I v tom
piipadé muzeme sestavit matici V' tak, ze jeji prvni sloupec bude vlastni
vektor U a jeji druhy sloupec bude zobecnény vlastni vektor «w matice A. A
vztahy

Av = MU

Al =v + \d

muzeme zapsat obdobou vztahu AV = VA, totiz jednim vztahem
AV =V J,
kde matice J neni bohuzel diagondlni, ale je to tzv. Jordanova matice
(5 4)
0 M)

Proto jsme tento rozklad matice nazvali Jordanizace. Kdyz tento vztah vy-
nasobime zprava matici V!, tak dostaneme

A=VJV 1

(37,

jsme nasli dvojnasobné vlastni ¢islo

Pro nasi matici

)\1:3, )\2:3,

prislusny vlastni vektor

a zobecnény vlastni vektor

Takze



<
I
7N
|
— =
PN
N—

a Jordanuv rozklad je

52\ ([ 1 1\[/31
-2 1) \ -1 ; 0 3 '
4 Vztah mezi vlastnimi ¢isly a stopou a de-
terminantem

DO N[
[N

Na zaver jesté uvedeme vztah mezi vlastnimi ¢isly Ay a Ay matice

=)

a determinantem matice det A = ad — bc a stopou matice TrA = a + d.
Charakteristicka rovnice je

det(A—AE)=0
a— A\ b
c d—AX
(a—=X)(d—=X) —bc=0
N — (a+d)\+ ad — be = 0.

Kdyz ji porovname se zapisem kvadratické rovnice s kofeny \; a Ay

-

(A=A)(A=A2) =0
A — (AL + )X+ A =0,

tak porovnani koeficientu u A da
)\1+/\2:a—|—d:TrA
a porovnani absolutniho ¢lenu (bez \) da

A2 = ad — be = det A.
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Takto jsme to ukdazali pro matici 2x2, ale tyto vztahy plati pro vSechny
¢tvercové matice nxn, pro které je stopa definovana jako soucet prvku na

hlavni diagonéle
TrA= Z Q.
i=1
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