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1 Úvod

Některé chemické, mechanické, elektrické, biologické a jiné systémy, které se
vyv́ıjej́ı v čase, lze poměrně dobře popsat matematickými vztahy. Použ́ıváme
k tomu zejména diferenciálńı a diferenčńı rovnice. Ve škole se pilně procvičuj́ı
diferenciálńı, my se zde budeme věnovat těm diferenčńım.

2 Diferenčńı rovnice

Př́ıkladem diferenčńı rovnice je rekurentně zadaná posloupnost, např.

xn+1 = 2xn.

Pro kladnou počátečńı podmı́nku, např.

x0 = 1

snadno spočteme prvńıch pár člen̊u této posloupnosti

x1 = 2, x2 = 4, x3 = 8, x4 = 16.

Obecně
xn = x02

n.

Dostáváme geometrickou posloupnost, která exponenciálně roste pro libovol-
nou kladnou počátečńı podmı́nku. Pro x0 = 0 máme konstantńı řešeńı xn = 0.
A pro zápornou počátečńı podmı́nku x0 < 0 posloupnost exponenciálně klesá
do minus nekonečna.

Mı́sto dvojky může být v rovnici obecný koeficient, např. q. Pak vztah

xn+1 = qxn

určuje posloupnost
xn = x0q

n.
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Obrázek 1: Graf funkce f (žlutá křivka) spolu s grafem identity y = x
(modrá křivka) dovoluj́ı načrtnou několik svislých a vodorovných úseček
(hnědá křivka), které ukazuj́ı postupné iterace funkce f .

Pro q > 1 a x0 > 0 bude posloupnost xn opět exponenciálně r̊ust. Pro q = 1
bude konstantńı. A pro 0 < q < 1 bude exponenciálně klesat k nule. To je
př́ıpad biologické populace, když hladov́ı a vymı́rá. Nebo osud našich úspor,
jejichž hodnotu snižuje inflace. Takto se také snižuje množstv́ı látky, která
se rozpadá radioaktivńı reakćı nebo chemickou reakćı prvńıho řádu.

Pro záporné koeficienty se budou stř́ıdat znaménka č́ısel xn. Pro −1 <
q < 0 se budou xn bĺıžit k nule. Pro q < −1 budou v absolutńı hodnotě r̊ust
do nekonečna.

Jaké jevy tento dynamický systém popisuje? Index n zde hraje roli dis-
krétńıho času. Slovem diskrétńı zde nemysĺıme něco nemorálńıho, o čem
bychom raději neměli hovořit, ale to, že čas uvažujeme v izolovaných časových
okamžićıch s pevným časovým krokem. Tak např. r̊ust počtu bakteríı nebo
jiných biologických jedinc̊u, pokud maj́ı dostatek potravy a př́ıhodné životńı
podmı́nky, se v čase zvětšuje právě t́ımto zp̊usobem, když jej měř́ıme v ekvi-
distantńıch časových okamžićıch. To je možné, ale pouze po určité omezené
obdob́ı, dokud jedinci nespotřebuj́ı potravu.

Podobně se bude vyv́ıjet náš dluh, pokud si p̊ujč́ıme částku x0 korun
s pevným úrokem, např. 4 % p.a. Pak bude koeficient q = 1.04.
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Obecněji můžeme psát

xn+1 = f(xn), (1)

kde f je reálná funkce jedné reálné proměnné. Rovnice (1) představuje jed-
noduchý, ale velice zaj́ımavý a užitečný dynamický systém. Někdy hovoř́ıme
o dynamickém systému s diskrétńım časem, někdy trochu nepřesněji stručně
o diskrétńım dynamickém systému. Tomuto výpočtu, kde výsledek funkce do-
sazujeme opakovaně zpět jako argument funkce, se ř́ıká iterace. Jde vlastně
o skládáńı funkce sama se sebou.

Vztah (?? nám dovoluje spoč́ıtat nový stav xn+1 ze znalosti předcházej́ıćıho
stavu xn. Někdy se podař́ı naj́ıt formulku pro př́ımý výpočet xn na základě
znalosti n a n0, ale to jen ve výjimečně jednoduchých př́ıpadech, jako byl ten
předcházej́ıćı.

Existuje užitečná grafická metoda, která nám dovoĺı na základě grafu
funkce f nalézt řadu d̊uležitých vlastnost́ı chováńı takto rekurentně zadané
posloupnosti, viz obrázek 1. Např. pro funkci f(x) = 1 + x

2
a počátečńı

hodnotu x0 = 0.1 snadno spoč́ıtáme prvńı několik hodnot posloupnosti xn

x0 = 0.1,
x1 = 1.05,
x2 = 1.525,
x3 = 1.7625,
x4 = 1.88125,
x5 = 1.94063,
x6 = 1.97031,
x7 = 1.98516,
x8 = 1.99258,
x9 = 1.99629.

Lze vypozorovat, že hodnoty xn rostou, a to č́ım dál t́ım pomaleji a bĺıž́ı se
hodnotě přibližně 2. Výpočet prvńı hodnoty x1 z počátečńı podmı́nky x0 lze
provést graficky tak, že hodnotu x0 = 0.1 vyneseme na ose x a k ńı najdeme
př́ıslušnou funkčńı hodnotu tak, že vedeme svislou úsečku z bodu (x0, 0) do
bodu (x0, x1) na grafu funkce f . Pak chceme dosadit funkčńı hodnotu zpět
do funkce samotné jako jej́ı argument, tedy v roli x. To graficky provedeme
tak, že z bodu (x0, x1) vedeme vodorovnou úsečku na úhlopř́ıčku do bodu
(x1, x1). Dále se tyto dva kroky opakuj́ı. T́ım vznikne cik-cak čára ze svislých
a vodorovných úseček. Na obrázku je nakreslena hnědou barvou.
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Tento obrázek nám pomůže vyslovit několik užitečných závěr̊u o dyna-
mickém systému (1). Pr̊useč́ıky grafu funkce s př́ımkou y = x jsou pevné
body, splňuj́ı podmı́nku

f(x∗) = x∗ (2)

a maj́ı tu d̊uležitou vlastnost, že pro počátečńı podmı́nku x0 = x∗ plat́ı
xn = x∗ pro všechna n.

Důležitá je otázka stability takového pevného bodu. Pro dynamický systém

xn+1 = qxn

jsme viděli, že pro −1 < q < 1 se hodnoty xn bĺıž́ı k nule. Nula je zde stabilńı
pevný bod. Pro |q| > 1 se hodnoty xn od nuly vzdaluj́ı, nula je zde nestabilńı
pevný bod.

V obecném př́ıpadě roli nuly přeb́ırá pevný bod x∗ daný podmı́nkou (2)
a roli koeficientu q přeb́ırá derivace v tomto pevném bodě f ′(x∗).

Pokud funkce f obsahuje parametr, pak při změně parametru může doj́ıt
ke změně hodnoty derivace v pevném bodě. Pokud dojde také ke změně
stability pevného bodu, docháźı ke kvalitativńı změně chováńı dynamického
systému, které se ř́ıká bifurkace. Ukažme si to na logistickém zobrazeńı, kdy
budeme iterovat kvadratickou funkci.

2.1 Logistické zobrazeńı

Uvažujme iteraci funkce
f(x) = ax(1− x)

s parametrem 0 ≤ a ≤ 4. To je přirozené zobecněńı výše uvedeného systému.
Roli koeficientu q zde hraje výraz a(1 − x). Pokud se vrát́ıme k naš́ı biolo-
gické interpretaci, tak pro malé populace, tedy pro x bĺızké nule, se bude
systém pro a > 1 množit. Se vzr̊ustaj́ıćım počtem jedinc̊u se po určité době
objev́ı nedostatek potravy. To přibližně vyjadřuje závorka (1−x). Jedinci se
přestanou tak rychle množit a může dokonce doj́ıt k úhynu.

Pokud chceme považovat x za počet nebo koncentraci biologických je-
dinc̊u, pak budeme uvažovat pouze nezáporné hodnoty x a f(x). To bude
splněno pro

0 ≤ x ≤ 1

a
0 ≤ a ≤ 4.
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Obrázek 2: Graf funkce f(x) = ax(1− x) nazývané logistické zobrazeńı, pro
hodnotu parametru a = 4.

Proto budeme tento dynamický systém uvažovat pouze pro tyto hodnoty
proměnné x a parametru a.

Jedná se o kvadratickou funkci, grafem je parabola procházej́ıćı body
(0, 0) a (1, 0) s maximem pro x = 1

2
, viz obrázek 2.

Jak budou vypadat pevné body dynamického systému

xn+1 = axn(1− xn)?

Najdeme je řešeńım rovnice

ax(1− x) = x.

To je kvadratická rovnice, která má dva reálné kořeny

x∗1 = 0, x∗2 = 1− 1

a
.

Obrázek 3 ukazuje závislost těchto pevných bod̊u na parametru a.

2.1.1 Stabilita pevných bod̊u

Vyšetřeme stabilitu těchto dvou pevných bod̊u. Pevný bod x∗ je stabilńı,
pokud |f ′(x∗)| < 1, a nestabilńı pokud |f ′(x∗)| > 1. Spočtěme tedy derivaci
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Obrázek 3: Závislost pevných bod̊u x∗ na parametru a pro logistické zobra-
zeńı. Plná čára znamená stabilńı pevný bod, čárkovaná čára znamená nesta-
bilńı pevný bod, jak bude vysvětleno dále.

funkce f(x) = ax(1− x) v pevných bodech x∗1 = 0, a x∗2 = 1− 1
a
.

f ′(x) = a− 2ax

f ′(x∗1) = a

f ′(x∗2) = a− 2a(1− 1

a
) = 2− a.

Pevný bod x∗1 = 0 bude stabilńı pro a < 1 a nestabilńı pro a > 1 (uvažujeme
stále pouze hodnoty parametru 0 ≤ a ≤ 4). Pro rostoućı parametr a při
přechodu přes kritickou hodnotu a = 1 pevný bod x∗1 = 0 ztrat́ı stabilitu.
To je srozumitelný jev. Pro malé a je slabé množeńı biologických jedinc̊u a
tito vymı́raj́ı. Pro velké a je množeńı silné a počet jedinc̊u zpočátku roste,
přibližně exponenciálně. Pro tuto hodnotu parametru a = 1 také docháźı
k pr̊useč́ıku graf̊u závislosti pevných bod̊u na parametru a, viz obrázek 3.

Pevný bod x∗2 bude stabilńı pokud |2−a| < 1. Pro rostoućı a tento pevný
bod źıská stabilitu pro a = 1 (přesně, když prvńı pevný bod stabilitu ztráćı,
tedy můžeme ř́ıci, že si tyto dva pevné body pro a = 1 vyměńı stabilitu). A
stabilitu ztrat́ı pro a = 3. Na obrázku 3 plná čára znač́ı stabilitu, čárkovaná
čára nestabilńı chováńı.
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2.1.2 Bifurkace zdvojeńı periody
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Obrázek 4: Pro hodnotu parametru a = 3.1 se pro počátečńı podmı́nku x0 =
0.1 hodnoty xn nebĺıž́ı jednomu č́ıslu, ale stř́ıdavě dvěma č́ısl̊um, přibližně
0.56 a 0.76.

A co se stane, když parametr a překroč́ı hodnotu a = 3? Proved’me
si malý numerický experiment. Pro hodnotu parametru např. a = 3.1 a
počátečńı podmı́nku např. x0 = 0.1 si spočtěme několik hodnot xn. To lze
provést např. pomoćı matematického software Mathematica pomoćı těchto
př́ıkaz̊u

In[1]:= f[x_] := 3.1*x*(1 - x);

In[2]:= NestList[f, 0.1, 19]

Out[2]= {0.1, 0.279, 0.623593, 0.727647, 0.614348,

0.734466, 0.60458, 0.741095, 0.594806, 0.747136,

0.585663, 0.752252, 0.577744, 0.756263, 0.571421,

0.759187, 0.566748, 0.761189, 0.56352, 0.762492}

Vid́ıme, že hodnoty xn se po počátečńım přechodném obdob́ı postupně bĺıž́ı
stř́ıdavě ke dvěma r̊uzným č́ısl̊um, přibližně 0.56 a 0.76. To ukazuje obrázek 4.
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Obrázek 5: Závislost dvouperiodických bod̊u xa a xb na parametru a.

Jak můžeme nalézt tato dvě č́ısla (označme si je xa a xb), ke kterým se
hodnoty xn stř́ıdavě bĺıž́ı? Mělo by pro ně platit

f(xa) = xb f(xb) = xa,

tedy měla by to být řešeńı rovnice

f(f(x)) = x.

To je pevný bod druhé iterace funkce f , neboli-li dvouperiodický bod funkce f .
To pro

f(x) = ax(1− x)

vede na rovnici
a(ax(1− x))(1− (ax(1− x))) = x

a po odečteńı pravé strany

a(ax(1− x))(1− (ax(1− x)))− x = 0.

Na levé straně je mnohočlen 4. stupně. Ten má 4 kořeny. Dva kořeny už
známe, jsou to pevné body funkce f , tedy body x∗1 = 0 a x∗2 = 1 − 1

a
.
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Když vyděĺıme tento mnohočlen 4. stupně mnohočlenem a(x − x∗1)(x − x∗2),
dostaneme po úpravě kvadratickou rovnici

a2x2 − a(a + 1)x + a + 1 = 0.

Ta má pro a ≥ 3 dva reálné kořeny

xa,b =
a + a2 ±

√
a2 − 2a− 3

2a2
,

které v závislosti na parametru a ukazuje obrázek 5. Pro kontrolu si můžeme
spoč́ıtat tyto dvouperiodické body pro hodnotu parametru a = 3.1 a dosta-
neme xa = 0.558014 a xb = 0.764567, což je ve shodě s naš́ım předchoźım
odhadem (0.56 a 0.76).

Této kvalitativńı změně chováńı se ř́ıká bifurkace zdvojeńı periody, ang-
licky period doubling bifurcation.

2.1.3 Kaskáda zdvojováńı periody
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Obrázek 6: Závislost hodnot xn na parametru a ukazuje kaskádu zdvojováńı
periody.

Při rostoućım parametru a toto dvou periodické řešeńı opět ztrat́ı sta-
bilitu a vznikne daľśı bifurkaćı zdvojeńı periody nové řešeńı, tentokráte již
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s periodou 4. A tento proces se opakuje a vznikaj́ı tak řešeńı s periodou
rovnou celoč́ıselným mocninám dvou. Intervaly mezi bifurkacemi se zkracuj́ı.
Dobrou představu lze źıskat, když si nakresĺıme obrázek, kde pro r̊uzné hod-
noty parametru a zvoĺıme určitou počátečńı podmı́nku x0, provedeme několik
iteraćı

xn+1 = f(xn)

bez vykreslováńı a pak spoč́ıtáme několik iteraćı, při kterých budeme vynášet
body (a, xn). Výsledek ukazuje obrázek 6.

Výše popsané jevy ukázané na jednoduchém dynamickém systému, ite-
race kvadratické funkce, jsou časté i pro složitěǰśı dynamické systémy, jak
v podobě matematických model̊u, tak u reálných systémů př́ırodńıch i tech-
nických.
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