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1 Uvod

Nékteré chemické, mechanické, elektrické, biologické a jiné systémy, které se
vyvijeji v case, lze pomérné dobte popsat matematickymi vztahy. Pouzivame
k tomu zejména diferencialni a diferenéni rovnice. Ve skole se pilné procvicuji
diferencialni, my se zde budeme vénovat tém diferencnim.

2 Diferencni rovnice
Prikladem diferenc¢ni rovnice je rekurentné zadana posloupnost, napft.
Tpt1 = 2T.
Pro kladnou pocédteéni podminku, napf.
To =1
snadno spoc¢teme prvnich par ¢lenu této posloupnosti
T =2, T9 =4, T3 =8, x4 = 16.

Obecné

T, = xo2".

Dostavame geometrickou posloupnost, kterd exponencialné roste pro libovol-
nou kladnou pocateéni podminku. Pro zy = 0 méame konstantni feseni z,, = 0.
A pro zapornou pocateéni podminku zy < 0 posloupnost exponencialné klesa
do minus nekonecna.

Misto dvojky muze byt v rovnici obecny koeficient, napt. ¢q. Pak vztah

Tnt+1 = 4Tp

urcuje posloupnost
Tp = Toq".
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Obrazek 1: Graf funkce f (zlutd kiivka) spolu s grafem identity y = =
(modra kfivka) dovoluji nacrtnou nékolik svislych a vodorovnych usecek
(hnedé kiivka), které ukazuji postupné iterace funkce f.

Pro ¢ > 1 a g > 0 bude posloupnost x,, opét exponencialné rust. Pro ¢ = 1
bude konstantni. A pro 0 < ¢ < 1 bude exponencialné klesat k nule. To je
pripad biologické populace, kdyz hladovi a vymira. Nebo osud nasich tuspor,
jejichz hodnotu snizuje inflace. Takto se také snizuje mnozstvi latky, ktera
se rozpada radioaktivni reakci nebo chemickou reakci prvniho fadu.

Pro zaporné koeficienty se budou stiidat znaménka ¢éisel x,. Pro —1 <
q < 0 se budou z,, blizit k nule. Pro ¢ < —1 budou v absolutni hodnoté rust
do nekonecna.

Jaké jevy tento dynamicky systém popisuje? Index n zde hraje roli dis-
krétniho casu. Slovem diskrétni zde nemyslime néco nemoralniho, o ¢em
bychom radéji neméli hovorit, ale to, Ze ¢as uvazujeme v izolovanych ¢asovych
okamzicich s pevnym ¢asovym krokem. Tak napft. rust poctu bakterii nebo
jinych biologickych jedincu, pokud maji dostatek potravy a prihodné zivotni
podminky, se v Case zvétsuje pravé timto zpusobem, kdyz jej mérime v ekvi-
distantnich casovych okamzicich. To je mozné, ale pouze po urcité omezené
obdobi, dokud jedinci nespotiebuji potravu.

Podobné se bude vyvijet nas dluh, pokud si pujcime c¢astku zy korun
s pevnym trokem, napt. 4 % p.a. Pak bude koeficient ¢ = 1.04.



Obecnéji muzeme psat
Tpi1 = [(Tn), (1)

kde f je redlnd funkce jedné redlné proménné. Rovnice predstavuje jed-
noduchy, ale velice zajimavy a uzitecny dynamicky systém. Nékdy hovorime
o dynamickém systému s diskrétnim ¢asem, nékdy trochu nepresnéji strucné
o diskrétnim dynamickém systému. Tomuto vypoctu, kde vysledek funkce do-
sazujeme opakované zpét jako argument funkce, se ¥ika iterace. Jde vlastné
o skladani funkce sama se sebou.

Vztah (7?7 ndm dovoluje spoc¢itat novy stav x, 1 ze znalosti predchazejiciho
stavu x,. Nékdy se podafi najit formulku pro primy vypocet x,, na zakladé
znalosti n a ng, ale to jen ve vyjimecéné jednoduchych ptipadech, jako byl ten
predchazejici.

Existuje uzitecna grafickd metoda, kterd ndm dovoli na zékladé grafu
funkce f nalézt fadu dulezitych vlastnosti chovani takto rekurentné zadané
posloupnosti, viz obrazek . Napt. pro funkci f(z) = 1+ ¢ a pocatecni
hodnotu xy = 0.1 snadno spoc¢itame prvni nékolik hodnot posloupnosti x,

o — 01,

ry = 105,
zo = 1.525,
vy = 1.7625,
z, = 1.88125,
x5 = 1.94063,
ze = 1.97031,
z; = 1.98516,
zs = 1.99258,
rg = 1.99629.

Lze vypozorovat, ze hodnoty x, rostou, a to ¢im dal tim pomaleji a blizi se
hodnoté ptiblizné 2. Vypocet prvni hodnoty x; z pocateéni podminky zq lze
provést graficky tak, ze hodnotu xy = 0.1 vyneseme na ose x a k ni najdeme
piislusnou funkéni hodnotu tak, ze vedeme svislou tusecku z bodu (zg,0) do
bodu (xg,z1) na grafu funkce f. Pak chceme dosadit funkéni hodnotu zpét
do funkce samotné jako jeji argument, tedy v roli z. To graficky provedeme
tak, ze z bodu (g, 1) vedeme vodorovnou usecku na thlopticku do bodu
(x1, 7). Déle se tyto dva kroky opakuji. Tim vznikne cik-cak ¢éra ze svislych
a vodorovnych tisecek. Na obrazku je nakreslena hnédou barvou.



Tento obrazek nam pomuze vyslovit nékolik uziteénych zavéru o dyna-
mickém systému . Pruseciky grafu funkce s primkou y = z jsou pevné
body, splnuji podminku

fla®) = (2)
a maji tu dulezitou vlastnost, ze pro pocatecni podminku x, = x* plati
T, = x* pro vSechna n.
Dulezitéa je otazka stability takového pevného bodu. Pro dynamicky systém

Tn+1 = 4Ty

jsme videéli, ze pro —1 < ¢ < 1 se hodnoty z,, blizi k nule. Nula je zde stabilni
pevny bod. Pro |¢| > 1 se hodnoty x,, od nuly vzdaluji, nula je zde nestabiln{
pevny bod.

V obecném piipadé roli nuly prebird pevny bod x* dany podminkou ([2))
a roli koeficientu ¢ prebira derivace v tomto pevném bodé f’(x*).

Pokud funkce f obsahuje parametr, pak pii zméné parametru muze dojit
ke zméné hodnoty derivace v pevném bodé. Pokud dojde také ke zméné
stability pevného bodu, dochézi ke kvalitativni zméné chovani dynamického
systému, které se 7ika bifurkace. Ukazme si to na logistickém zobrazeni, kdy
budeme iterovat kvadratickou funkci.

2.1 Logistické zobrazeni

Uvazujme iteraci funkce
f(z) = ax(l - x)

s parametrem 0 < a < 4. To je prirozené zobecnéni vyse uvedeného systému.
Roli koeficientu ¢ zde hraje vyraz a(l — z). Pokud se vratime k nasi biolo-
gické interpretaci, tak pro malé populace, tedy pro x blizké nule, se bude
systém pro a > 1 mnozit. Se vzrustajicim poc¢tem jedincu se po urcité dobé
objevi nedostatek potravy. To priblizné vyjadiuje zavorka (1 — ). Jedinci se
prestanou tak rychle mnozit a muze dokonce dojit k thynu.

Pokud chceme povazovat x za pocet nebo koncentraci biologickych je-
dincu, pak budeme uvazovat pouze nezaporné hodnoty = a f(z). To bude
splnéno pro
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Obréazek 2: Graf funkce f(x) = ax(1 — x) nazyvané logistické zobrazeni, pro
hodnotu parametru a = 4.

Proto budeme tento dynamicky systém uvazovat pouze pro tyto hodnoty
proménné x a parametru a.

Jedna se o kvadratickou funkci, grafem je parabola prochazejici body
(0,0) a (1,0) s maximem pro & = %, viz obrézek .

Jak budou vypadat pevné body dynamického systému

Tpi1 = axp(l —xp,)?
Najdeme je feSenim rovnice
ar(l —z) = .

To je kvadraticka rovnice, kterd mé dva redlné kotreny
1
x] =0, Ty =1——.
a

Obrazek |3| ukazuje zavislost téchto pevnych bodu na parametru a.

2.1.1 Stabilita pevnych bodua

Vysetteme stabilitu téchto dvou pevnych bodu. Pevny bod z* je stabilni,
pokud |f/(z*)| < 1, a nestabilni pokud |f’(z*)| > 1. Spo¢téme tedy derivaci
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Obrazek 3: Zavislost pevnych bodu z* na parametru a pro logistické zobra-
zeni. Plné ¢ara znamena stabilni pevny bod, ¢arkovand cara znamena nesta-
bilni pevny bod, jak bude vysvétleno déle.

funkce f(z) = ax(1 — x) v pevnych bodech 27 =0, a 25 =1 — L.
f'(z) =a—2azx
f'(a1) =a
f(x3) =a—2a(l — %) =2—a.

Pevny bod x} = 0 bude stabilni pro a < 1 a nestabilni pro a > 1 (uvazujeme
stale pouze hodnoty parametru 0 < a < 4). Pro rostouci parametr a pfi
prechodu pies kritickou hodnotu a = 1 pevny bod x] = 0 ztrati stabilitu.
To je srozumitelny jev. Pro malé a je slabé mnozeni biologickych jedincu a
tito vymiraji. Pro velké a je mnozeni silné a pocet jedincu zpocatku roste,
priblizné exponencialné. Pro tuto hodnotu parametru a = 1 také dochazi
k pruseciku grafu zavislosti pevnych bodu na parametru a, viz obrazek [3

Pevny bod 2% bude stabilni pokud |2 —a| < 1. Pro rostouci a tento pevny
bod ziskd stabilitu pro a = 1 (pfesné, kdyz prvni pevny bod stabilitu ztraci,
tedy muzeme Fici, Ze si tyto dva pevné body pro a = 1 vymeéni stabilitu). A
stabilitu ztrati pro a = 3. Na obrazku |3| plna ¢ara znaci stabilitu, ¢arkovand
¢ara nestabilni chovani.



2.1.2 Bifurkace zdvojeni periody
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Obréazek 4: Pro hodnotu parametru a = 3.1 se pro pocateéni podminku zy =
0.1 hodnoty z, neblizi jednomu ¢islu, ale stifidavé dvéma ¢islum, ptiblizné

0.56 a 0.76.

A co se stane, kdyZ parametr a prekro¢i hodnotu a = 3?7 Provedme
si maly numericky experiment. Pro hodnotu parametru napt. a = 3.1 a
pocatecni podminku napt. zo = 0.1 si spoctéme nékolik hodnot x,. To lze
provést napf. pomoci matematického software Mathematica pomoci téchto
piikazu

In[1]:= flx_] := 3.1*xx*x(1 - x);

In[2]:= NestList[f, 0.1, 19]

Out[2]= {0.1, 0.279, 0.623593, 0.727647, 0.614348,
0.734466, 0.60458, 0.741095, 0.594806, 0.747136,
0.585663, 0.752252, 0.577744, 0.756263, 0.571421,
0.759187, 0.566748, 0.761189, 0.56352, 0.762492%}

Vidime, ze hodnoty x,, se po poc¢atecnim prechodném obdobi postupné blizi
stiidavé ke dvéma ruznym ¢islum, ptiblizné 0.56 a 0.76. To ukazuje obrazek [4]
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Obrazek 5: Zavislost dvouperiodickych bodu x, a z;, na parametru a.

Jak muzeme nalézt tato dvé ¢isla (oznacme si je z, a z3), ke kterym se
hodnoty z,, stiidave blizi? Mélo by pro né platit

f(xa) =z f(zy) = 24,

tedy méla by to byt feSeni rovnice

f(f(x)) ==

To je pevny bod druhé iterace funkce f, neboli-li dvouperiodicky bod funkce f.
To pro
f(z) = azx(l - z)

vede na rovnici
a(ax(l —2))(1 — (ax(1 —2))) ==

a po odecteni pravé strany
a(ax(l —2z))(1 = (ax(l —x))) —x = 0.

Na levé strané je mnohoclen 4. stupné. Ten mé 4 kofeny. Dva kofeny uz
zname, jsou to pevné body funkce f, tedy body 2] = 0 a 25 = 1 — %
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Kdyz vydélime tento mnohoclen 4. stupné mnohoclenem a(x — z73)(z — x3),
dostaneme po tupravé kvadratickou rovnici

a’r?* —ala+1)r+a+1=0.

Ta ma pro a > 3 dva realné koreny

a+a®++va2—2a—3

Labp = 202 )
které v zavislosti na parametru a ukazuje obrazek [5| Pro kontrolu si muzeme
spocitat tyto dvouperiodické body pro hodnotu parametru a = 3.1 a dosta-
neme x, = 0.558014 a z;, = 0.764567, coz je ve shodé s nasim piedchozim
odhadem (0.56 a 0.76).
Této kvalitativni zméné chovani se tika bifurkace zdvojeni periody, ang-
licky period doubling bifurcation.

2.1.3 Kaskada zdvojovani periody

Xn

Obrazek 6: Zavislost hodnot z,, na parametru a ukazuje kaskadu zdvojovani
periody.

Pii rostoucim parametru a toto dvou periodické feSeni opét ztrati sta-
bilitu a vznikne dalsi bifurkaci zdvojeni periody nové teseni, tentokrate jiz
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s periodou 4. A tento proces se opakuje a vznikaji tak feSeni s periodou
rovnou celo¢iselnym mocnindm dvou. Intervaly mezi bifurkacemi se zkracuji.
Dobrou ptedstavu lze ziskat, kdyz si nakreslime obrazek, kde pro rizné hod-
noty parametru a zvolime urc¢itou pocateéni podminku xy, provedeme nékolik
iteraci

Tny1 = f(Tn)

bez vykreslovani a pak spocitame nékolik iteraci, pti kterych budeme vynaset
body (a, z,). Vysledek ukazuje obrazek [6]

Vyse popsané jevy ukdzané na jednoduchém dynamickém systému, ite-
race kvadratické funkce, jsou casté i pro slozitéjsi dynamické systémy, jak
v podobé matematickych modelu, tak u realnych systému ptirodnich i tech-
nickych.
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