Praktické příklady měření a interpretace chemické výměny a relaxací

- A. Chemická výměna
- 1. Dynamická NMR teplotně závislá 1D spektra
- Výměnná spektroskopie EXSY (EXchange SpectroscopY)
- B. <u>Měření pohyblivosti pomocí ¹³C relaxací</u>

Měření rychlostních konstant

Rychlost reakce závisí na <u>AG</u> reakce, které je teplotně závislé. Rychlost reakce se zvýší při zvyšování teploty T. NMR spektra budou vypadat takto:

 Při koalescenční teplotě se rychlost o výměny k mezi jednotlivými stavy stává srovnatelná s rozdílem chemických posunů (v Hz),

Chemická výměna ovlivňuje jak posun, tak tvar signálu a tedy má vliv na příčnou relaxaci

Studium rotační bariéry kolem vazby aromátkarben

 η^2 -chelatovaný (N,N-diallylamino)(aryl)karben wolframu

M = W; R = H

Motivace:

- Stanovení původu bariéry rotace ze dvou předpokládaných možností:
- 1) sterická interakce mezi aromatickým kruhem a karbenovou částí,
- překryv aromatického π-systému s elektronově chudým karbenovým uhlíkem, který způsobuje zvýšení řádu vazby.

Hana Dvořáková, Tomáš Tobrman, Dalimil Dvořák, OMCOS Taipei 2001

Praktické aspekty měření

• Měří se základní 1D homonukleární spektra při různých teplotách. Metodicky velmi jednoduché.

· Je nutné zajistit:

přesnou kalibraci teploty (standardní vzorek MeOH 200-300 K, ethylenglykol 330-450 K), stejně kvalitní naladění magnetu v celém rozsahu teplot. nutný vysoký poměr signál/šum.

Zpracování spekter a výpočty

O co je jednodušší měření, o to jsou těžší výpočty.

Nezbytné je velmi pečlivé zpracování spekter: Fourierova transformace - bez LB a jiných apodizací, fázování, kvalitní odečtení pozadí (baseline correction)

Zpracování spekter a výpočty (pokrač.)

Rychlostní konstanty chemické výměny se získají fitováním pološířek a poloh příslušných rezonancí (např. program g-NMR).

U pomalé výměny: $\Delta v = k/\pi$,

v přechodné oblasti je závislost složitá.

Správné nafitování signálů je překvapivě moc citlivé na kvalitu zpracování spekter!!!

Získají se rychlostní konstanty při každé měřicí teplotě.

Důležité poznámky:

- ΔG^{\neq} aktivační volná energie ($\Delta G^{\neq} = \Delta H^{\neq} T \Delta S^{\neq}$)
- ∆H[≠] aktivační enthalpie
- ∆S[≠] aktivační entropie
- k_B Boltzmannova konstanta 1.3805 x 10⁻²⁴ J/K
- h Planckova konstanta 6.6256 x 10⁻³4 Js
- R univerzální plynová konstanta 8.3144 J/K/mol
- T teplota v K

Výsledek

Obdobná měření byla provedena pro různě substituované (R) deriváty.

	R	∆H [≠] kJ/mol	∆S [≠] J/mol/K	∆G [‡] ₂₉₈ kJ/mol	
electron	CF ₃	81.8±9.5	53.0 ± 17	66.5	
t	CO ₂ CH ₃	73.4 ± 2.5	20.1 ± 4.4	67.7	
	н	59.8 ± 4.5	9.0 ± 8.2	62.5	
electron donors	a	55.8 ± 1.2	-18.6 ± 2.2	61.4	
	СӉ	49.1 ± 1.6	$\textbf{-34.2 \pm 3.0}$	59.3	
	OCH ₃	39.6 ± 2.5	-50.7 ± 4.8	54.7	

- Bráněná rotace je enthalpicky řízená reakce.
- Měření různých derivátů prokázalo, že bariéra rotace je vyšší pro substituenty, které jsou akceptory elektronů. Původ bariéry rotace je tedy sterická interakce mezi aromatickým kruhem a karbenovou částí.

Konformační výměna v kalix[4]arenech

Α

Tetrapropoxythiakalix[4]aren - konický konformer, $^1{\rm H}$ spektrum v $C_2D_2Cl_4,$ teplota 373 K

Odpovídá spektrum statické struktuře **A** nebo dynamické rovnováze **B**?

Spektra při nižších teplotách dokazují, že se jedná o dynamickou rovnováhu **B**.

Počet signálů ve spektru souvisí se symetrií molekuly čím vyšší symetrie, tím větší počet degenerovaných signálů.

chemická výměna mezi polohami E ↔ F

2D EXSY (EXchange SpectroscopY)

Během směšovacího času času $t_{\rm m}$ dochází k přenosu magnetizace vlivem chemické výměny.

V 2D spektru jsou v obou dimenzích chemické posuny, mezi vyměňujícími se spiny jsou krospíky.

Velikost krospíků závisí na rychlosti chemické výměny. Sekvence je totožná s NOESY - ve spektru budou též krospíky v důsledku NOE.

Poznámka: 1D EXSY je totožná s 1D NOESY (diferenční NOE). Výběr 1D nebo 2D sekvence je dán jen počtem počtem krospíků, které chceme analyzovat v 1D excitujeme jediný signál jako "zdroj" chemické výměny, ve 2D sekvenci takto slouží všechny signály.

EXSY - výměnná spektroskopie

Měření rychlosti chemické výměny analýzou pološířek v 1D spektrech je komplikováno náhodným překryvem aromatických signálů kruhů E. Proto je výhodnější EXSY (v tomto případě 2D).

Toto spektrum: 237.5 K, t_m = 200 ms

Krospíky: chemická výměna: F3,5-E, F4-E, F1'-E1' NOE: F3,5-F4

EXSY - výměnná spektroskopie - pokrač.

Integrace krospíků i diagonálních píků ve 2D spektru:

- Diagonální píky vždy slouží jako reference.
- Pro stanovení rychlosti chemické výměny A → B potřebujeme relativní velikost krospíku I(A-B) vzhledem k velikosti I(A) (zdroje ch. výměny).
- Krospíky, symetrické vzhledem k diagonále, jsou vždy stejné (pokud ne, je to artefakt) *I*(A-B) = *I*(B-A).
- Můžeme použít jen dobře separované signály (signál E je nepoužitelný!)

Změříme spektra pro několik hodnot směšovacího času t_m. Obecně (tj. v případě nesymetrické výměny, ([A] \neq [B]) \Leftrightarrow ($I(A) \neq I(B)$) jsou rychlostní konstanta dány: $I(A-B) / I(A) = k(A \rightarrow B) * t_m$

 $I(A-B) / I(B) = k(B \rightarrow A) * t_m$

Tento vzorec platí jen pro "počáteční nárůst", který je lineární.

Odchylka od linearity je způsobena členy s vyššími mocninami $t_m (t_m^2, t_m^3, t_m^4, ...)$, které jsou pro dostatečně malé t_m zanedbatelné (tzv. spinová difúze).

I(A-B) = F3,5-E; F4-E *I*(A) = F3,5; F4 směšovací časy: 10, 20, 50, 100, 200 ms

EXSY - výměnná spektroskopie - pokrač.

V našem případě je chemická výměna symetrická ([E]=[F]) a tedy jako reference postačí diagonální signály F a nepotřebujeme překývající se aromatické signály E.

k(E↔F) = 2.51 s⁻¹

Podobně se změří rychlostní konstanta při jiných teplotách a spočítají se aktivační parametry.

 ΔG^{\neq} = 56.0 kJ/mol aktivační volná energie při 337 K

 $\Delta H^{\neq} = 43.7 \text{ kJ/mol}$ aktivační enthalpie

 $\Delta S^{\neq} = -51 \text{ J/mol/K}$ aktivační entropie

Srovnání EXSY a měření pološířek signálu

- + EXSY je přesnější než měření pološířek signálu,
- + EXSY nevadí složitá reakční schémata,
- EXSY je mnohem pracnější pro jeden bod teplotní závislosti je třeba změřit řadu spekter (třeba 5),
- x obě metody pokrývají rozdílný rozsah rychlostí chemických výměn:
 EXSY - pomalá výměna, která příliš nerozšiřuje čáry
 - (nesmí docházet k překryvu), měření pološířek je nejpřesnější, když chemická
 - výměna rozšiřuje čáru maximálně, tj. v oblasti koalescence (oblast přechodu mezi pomalou a rychlou výměnou).
- Z hlediska časových režimů chemické výměny jsou tyto metody komplementární.
- Měření rychlé výměny, která znatelně nerozšiřuje signál je obtížné. Pomoci může měření relaxační doby T₂.

Případ, kdy je použití EXSY nezbytné: komplikovanější reakční schéma.

Chemická výměna konformérů tetraethyletheru thiakalix[4]arenu.

pinched cone (C)

Různé konformery mají různou koncentraci a symetrii - výměna proto vesměs není symetrická. Jednotlivé rychlostní konstanty jsou odlišné (celkem 5 různých konstant).

EXSY - výměnná spektroskopie

¹H spektrum tetraethoxythiakalix[4]arenu v CDCl₃ při 303 K.

Koncentrace jednotlivých konformérů jsou různé, vzájemně se vyměňující se signály mají rozdílnou míru degenerace. Je to nesymetrická chemická výměna.

EXSY - výměnná spektroskopie

¹H NOESY (EXSY) spektrum aromatické oblasti tetraethoxythiakalix[4]arenu v C₂D₂Cl₄ při 298 K, t_m = 1.5 s. Kladné píky (červené) = diagonála a chemická výměna, záporné píky (modré) = NOE.

Koncentrace jednotlivých konformérů jsou různé, vzájemně se vyměňující se signály mají rozdílnou míru degenerace. Je to nesymetrická chemická výměna.

Ve spektru jsou vidět jen signály 1,3-alt a paco konformérů. cone je rozšířený v blízkosti koalescenční teploty chemické výměny pinched cone - pinched cone.

EXSY - výměnná spektroskopie

Závislost relativní intenzity krospíků na směšovacím čase.

k_{PA} = 0,0238 s⁻¹ při 298 K

Při vyšší teplotě jsou v ¹H spektru pozorovatelné i signály cone konformeru.

EXSY - výměnná spektroskopie - pokrač.

Závislost relativní intenzity krospíků na směšovacím čase

Poměrně rychlou chemickou výměnu paco → 1,3-alt je potřeba měřit při velmi krátkých směšovacích časech. Za těchto podmínek nejsou měřitelné krospíky v důsledku výměny paco ↔ cone.

Pro měření výměny paco \rightarrow cone je nutné použít mnohem delších směšovacích časů.

EXSY - výměnná spektroskopie - pokrač.

Závislost relativní intenzity krospíků na směšovacím čase

- Vlivem mnohem (cca 10x) rychlejších procesů dochází k rozsáhlé spinové difúzi a počáteční lineární část výstavbové křivky prakticky neexistuje.
- Je vhodné/nutné použít přesný výpočet pomocí relaxační a výměnné matice - na řádcích a sloupcích jsou jednotlivé spiny, maticové prvky obsahují příslušné rychlosti chemických výměn, kros-relaxační rychlosti a na diagonále též podélné relaxační rychlosti.

EXSY - výměnná spektroskopie - závěr

 výměna k_{CC} je při 363 K rychlá - pro vyhodnocení EXSY ji není třeba uvažovat

Závěr:

- Pomocí EXSY lze studovat i systémy, ve kterých dochází k mnoha různým přenosům magnetizace (s odlišnými rychlostmi) vlivem NOE a chemické výměny.
- Je potřebné matematicky rigorosní vyhodnocení (neplatí aproximace počátečního lineárního nárůstu).
- Užitečná jsou měření při různých teplotách. Aktivační parametry jednotlivých procesů se stanoví v různých teplotních režimech. Přitom se mění relativní rychlosti různých přenosů magnetizace.

Měření pohyblivosti pomocí ¹³C relaxací

Lokální pohyblivost trisacharidu melezitosy

¹³C NMR spektrum, D₂O/DMSO 7/3, 303 K, 11.8 T

Lokální pohyblivost trisacharidu melezitosy

Základní princip

- Reorientační molekulová dynamika moduluje jadernou relaxaci.
- Jádra ¹³C v molekule cukru, která nesou přímo vázaný proton, relaxují téměř výlučně vlivem přímé dipól-dipólové interakce s tímto protonem.

Experimentální metodika

- Měření ¹³C relaxačních dob T₁, T₂ a heteronukleárního NOE při různých intenzitách magnetického pole B₀. Podmínkou je režim mimo "extrémní zúžení" (extreme narrowing) - musí být $\omega \tau_M \ge 1$, aby relaxační doby byly závislé na B₀.
- Základní pulzní sekvence: inversion recovery (T₁)

spinové echo - CPMG (T₂)

měření stacionárního heteronukleárního NOE

Metody měření relaxačních dob

Inversion recovery

Podélná relaxační doba T₁ – návrat po inverzi (inversion recovery).

CPMG

 Příčná relaxační doba T₂ - sekvence CPMG (Carr, Purcell, Meiboom, Gill) – mnohonásobné spinové echo s konstantním echočasem a proměnným počtem cyklů n.

Měření heteronukleárního NOE

13**C**

NOE se získá jako podíl intenzit signálů {(spektrum 1) / (spektrum 2)}.

Maximální navýšení ^{13}C intenzity (tj. v režimu extrémního zúžení): NOE = 1 + 0,5 $\gamma_{H}/\gamma_{C}\cong$ 3

Lokální pohyblivost trisacharidu melezitosy

Lipari-Szabóův přístup

Pro analýzu je nutný <u>model pohybu</u> molekuly jako celku a jejích částí.

Jeden z nejúspěšnějších je Lipari-Szabóův "bezmodelový" přístup ("model-free" approach)

Předpoklady Lipari-Szabóova modelu:

- relaxace je modulována dvěma pohyby: globálním a lokálním
- oba pohyby jsou statisticky nezávislé
- globální reorientace je izotropní

 τ_{e}

• molekulární pohyb je charakterizován parametry:

τ_{M}	korelační čas globálního pohybu		
S^2	parametr uspořádanosti (hodnota 0 -		

korelační čas lokálního pohybu

1)

Lokální pohyblivost trisacharidu melezitosy Závislost jaderné relaxace na molekulárním pohybu

$$T_{1}^{-1} = \frac{n_{H}}{4} D^{2} [J(\omega_{H} - \omega_{C}) + 3J(\omega_{C}) + 6J(\omega_{H} + \omega_{C})]$$

$$T_{2}^{-1} = \frac{n_{H}}{8} D^{2} [4J(0) + J(\omega_{H} - \omega_{C}) + 3J(\omega_{C}) + 6J(\omega_{H}) + 6J(\omega_{H} + \omega_{C})]$$

$$\eta = \left(\frac{\gamma_{H}}{\gamma_{C}}\right) \frac{6J(\omega_{H} + \omega_{C}) - J(\omega_{H} - \omega_{C})}{J(\omega_{H} - \omega_{C}) + 3J(\omega_{C}) + 6J(\omega_{H} + \omega_{C})}$$

Dipól-dipolární interakční konstanta:

 $D = (\mu_0 / 4\pi) \gamma_C \gamma_H \hbar r_{CH}^{-3}$

Lipari-Szabóovy spektrální hustoty :

$$J(\omega) = \frac{2}{5} \left(\frac{S^2 \tau_M}{1 + \omega^2 \tau_M^2} + \frac{(1 - S^2)\tau}{1 + \omega^2 \tau^2} \right) \qquad \tau^{-1} = \tau_M^{-1} + \tau_e^{-1}$$

- Rotační molekulární pohyb ovlivňuje jadernou relaxaci prostřednictvím spektrálních hustot J(ω) udávají (zhruba) "množství" molekulárního pohybu na frekvenci ω . Pro jadernou relaxaci jsou nejvýznamnější ω_{H} , ω_{C} , ($\omega_{H} + \omega_{C}$), ($\omega_{H} \omega_{C}$) a 0 s⁻¹.
- Při různém magnetickém poli B₀ se mění i kruhové frekvence ω, a tedy zkoumáme pohyby při různých frekvencích.

Lokální pohyblivost trisacharidu melezitosy

Závislost relaxačních rychlostí a NOE pro ¹³C jádra cukerných kruhů ($R_1 = 1/T_1$, $R_2 = 1/T_2$) na magnetickém poli B_0 při teplotách 303 K (a) a 323 K (b).

Závislost relaxačních rychlostí a NOE pro $^{13}\rm{C}$ jádra exocyklických $\rm{CH}_2\rm{OH}$ skupin na magnetickém poli \rm{B}_0 při teplotě 303 K.

Dynamické charakteristiky trisacharidu melezitosy

Atom	T(K)	$\tau_M(ns)$	S^2	τ_e (ns)
C-cykl.	303	0.67 ± 0.02	0.84 ± 0.01	
C-6g ²	303	0.67	0.61 ± 0.01	0.04 ± 0.01
C-6g ³	303	0.67	0.63 ± 0.02	0.03 ± 0.01
C-1f	303	0.81 ± 0.07	0.77 ± 0.02	
C-cykl.	323	0.35 ± 0.02	0.79 ± 0.01	
C-6g ²	323	0.35	0.59 ± 0.02	0.02 ± 0.01
C-6g ³	323	0.35	0.62 ± 0.02	0.01 ± 0.01
C-1f	323	0.38 ± 0.03	0.70 ± 0.03	
C-6f	323	0.35	0.52 ± 0.03	0.03 ± 0.01

<u>Závěr:</u>

- · Jednotlivé kruhy jsou dynamicky ekvivalentní.
- Hydroxymethylová skupina C-1f je podstatně méně pohyblivá než ostatní hydroxymethylové skupiny.

Obecné:

 Pomocí měření relaxací se studuje pohyblivost jak malých tak velkých molekul a jejich funkčních skupin v časové škále 10⁻¹² - 10⁻⁸ s.