NMR spektroskopie biologicky aktivních molekul

Využití NMR spektroskopie v jednotlivých oborech podle Prof. Richarda Ernsta:

1. Jaké typy biologický aktivních molekul ?

peptidy a proteiny

nukleové kyseliny

oligosacharidy

2. Jaký typ informace může být pomocí NMR získán?

identifikace substrátu

prostorová struktura molekuly

studium dynamického chování systému

prostorová struktura komplexu

zkoumání vazby ligandu a substrátu

První historicky dochované NMR spektrum proteinu.

Fig. 1. The first NMR spectrum of a protein (RNase A; 20% (w/v) in D₂O) published, a single slow scan at 40 MHz [14].

Saunders M., Wishnia A. and Kirkwood J.G: J.Am.Chem.Soc. 79, 3289 (1957).

Strategie pro určování struktur biomolekul

Vzorek pro NMR experimenty

Úspěšné řešení bezpodmínečně vyžaduje kvalitní spolupráci mezi NMR spektroskopiky a biochemiky !

Vzorek musí zůstat aktivní a nedenaturovaný během NMR experimentů!

rozpouštědlo pH	H ₂ O kompromis mezi minimalizací chemické výměny mezi signály labilních protonů a signálem vody a optimem pro studovaný
pufr	protein (4.0 - 7.0) fosfátový pufr neobsabuje žádné protony
pui	acetátový puli neosounaje zduho protoný acetátový puli neosounaje zduho protoný
teplota	podle požadavků studovaného materiálu (15 – 40°C)
aditiva	nutná aditiva je možné zaměnit za deuterovaná analoga
koncentrace	pro NMR experimenty musí být v rozsahu alespoň 0.5-2.0 mM, vzorek nesmí podléhat agregaci, koagulaci, sebezničení v tomto konc. rozmezí
stabilita	nutná dlouhodobá stabilita v rozsahu minimálně několika týdnů

Potlačení signálu vody

Proč H₂O?

- 1. Voda je fyziologické prostředí
- Nelze použít D₂O z důvodů chemické výměny s amidickými protony.

Signál $\rm H_2O$ je 10⁴-10⁵ násobně intenzivnější než odezva měřené molekuly.

Metoda presaurace

Během relaxační doby ozařujeme signál vody slabým RF polem.

¹H spektrum proteinu po presaturaci H_2O

WATERGATE: Založena na selektivní manipulaci signálů vody a rozpuštěné látky spolu s gradientním echem.

180 deg puls

Srovnání sbalené a nesbalené struktury

¹H- ¹⁵N korelace v oblasti amidických vodíků (vzorek nespecificky obohacen ¹

NMR spektroskopie

- Měřená jádra jsou ¹H, ¹³C a ¹⁵N, případně ²H
- ¹H: -vysoké přirozené zastoupení (99.98%)
 -vysoká citlivost (1.00)
 -malá disperze chemických posunů NMR signálů (~15.0 ppm)
- ¹³C: -velká disperze chemických posunů NMR signálů (~200.0 ppm) -nízké přirozené zastoupení (1.108%), možné uměle navýšit až na 100%
 -nízká citlivost (1.76x10⁻⁴), po 100%ním izotopovém obohacení (1.59x10⁻²)
- ¹⁵N: -střední disperze chemických posunů NMR signálů (~30.0 ppm) (oproti ¹³C nezávislost na typu aminokyseliny) -nízké přirozené zastoupení (0.37%), možné uměle navýšit až na 100%

-velmi nízká citlivost (3.85x10⁻⁶), po 100%ním izotopovém obohacení (1.04x10⁻³)

²H: -používá se pro speciální účely

Interpretace NMR spekter

A. Přiřazení signálů (rezonancí)

2) signály postranních řetězců

- typ aminokyseliny (Phe, Tyr...)
- sekvenční zařazení aminokyseliny (Phe 13, Tyr55...)

-

Před započetím zkoumání struktury biomolekuly je nutné znát posloupnost jejích stavebních kamenů. V případě proteinů je to posloupnost aminokyselinových zbytků (primární struktura)

B. Přiřazení parametrů získaných z NMR spekter

- NOE interakce (meziatomová vzdálenost)
- interakční konstanta (dihedrální úhel)
- chemický posun (chemické okolí jádra)
- vodíková vazba (vzdálenost, vazebný úhel)
- prochirální atomy (skupiny) (CH₂, methyly, orientace v prostoru)
- anizotropie chemického posunu (CSA)
- dipolární interakční konstanty (orientace vazby v prostoru)

(paramagnetické species) -interakce s jaderným momentem nespárovaného elektronu

- chemický posun (vzdálenost)
- rychlost relaxace (vzdálenost)

¹H spektrum proteinu kuřecí lysozym 129 AA, M_w = 14.6 kDa

Zjednodušení komplikovaných NMR spekter expanzí do více dimenzí.

NMR experimenty

Malé molekuly M.W. < 6-7 kDa (60 AA)

- izotopově neobohacený materiál
- homokorelované (1H 1H) 2D experimenty
- přiřazení ¹H rezonancí specifickému typu aminokyseliny
- experimenty s koherentním přenosem magnetizace (COSY, TOCSY)

 sekvenční přiřazení, tj. zařazení každého jednotlivého AA systému na správné místo v peptidovém řetězci
 experimenty využívající nekoherentní přenos magnetizace (NOESY, ROESY)

Spinové systémy získané z COSY a TOCSY

NMR experimenty

Středně velké molekuly M.W. < 10 -12 kDa (100 AA)

Problém: ¹H spektra jsou již velmi komplikovaná!

- Řešení: stejná strategie jako u malých molekul obohacení vzorku ¹⁵N nebo ¹³C

 - využití X-editovaných experimentů 2D nebo 3D NMR experimentů
 - přiřazení ¹H rezonancí (HSQC-TOCSY)

- sekvenční přiřazení (HSQC-NOESY)

¹⁵N-editované NOESY

NMR experimenty

Velké molekuly M.W. > 10-12 kDa (100 AA)

- Problém č. 1: příliš komplikovaná ¹H spektra !
- Problém č. 2 příliš velká molekula » dlouhý korelační čas » velmi rychlá spin-spinová relaxace » » široké čáry » přenos magnetizace přes malé interakční konstanty je nefektivní ! ³J_{HH} (R₂ > ³J_{HH})

Řešení:

- dvojnásobné izotopové obohacení ¹³C, ¹⁵N
- přiřázení signálů a sekvenční přiřázení AA pomocí experimentů s trojnásobnou rezonancí 3D a 4D experimenty

- využití větších heteronukleárních interakčních konstant (J $_{CC,}$ J $_{HC}$, J $_{HN})$

CBCA(CO)NH

Kuřecí lysozym 129 AA, M_w = 14.6 kDa

HNCA

Pozorovatelné korelace (krospíky)

 $egin{array}{l} \mathsf{H}^{\mathsf{N}}_{i}$ - $m{\mathsf{N}}_{i}$ - $m{\mathsf{C}}^{\mathsf{a}}_{i}$ $m{\mathsf{H}}^{\mathsf{N}}_{i}$ - $m{\mathsf{N}}_{i}$ - $m{\mathsf{C}}^{\mathsf{a}}_{i-1}$

Sekvenční přiřazení

Zvolená strategie

Sekvenční přiřazení aminokyselin Ser11 až Trp15 M-PMV proteázy pomocí HNCACB a CBCA(CO)NH experimentů

Přiřazení postranních řetězců

Kompletní přiřazení Prolinu 4 proteázy M-PMV pomocí HcCH-COSY spektra

NMR experimenty

Extra velké molekuly M.W. > 20 - 25 kDa (200 AA)

- Problém č. 1: příliš komplikovaná ¹H spektra !
- Problém č. 2 příliš velká molekula » dlouhý korelační čas » velmi rychlá spin-spinová relaxace » » široké čáry » přenos magnetizace i přes větší heteronukleární interakční konstanty je nefektivní !

Řešení:

 ⁿJ_{HX} (R₂ > ⁿJ_{HX})
 stejná strategie přiřazování signálů jako v případě značení ¹³C /¹⁵N
 trojnásobné izotopové značení, navíc ještě
 ²H za všechny atomy H kromě amidických

Důvod:

- ²H má šestkrát menší γ než ¹H

$$\sigma_{IS} = \left(\frac{\mu_o}{4\pi}\right)^2 \frac{\hbar^2 \gamma_A^2 \gamma_B^2}{10} \left[\frac{6\tau_c}{1 + 4\omega^2 \tau_c^2} - \tau_c \right] r_{IS}^{-6}$$

- využívá se deuteriový dekapling

Nukleární Overhauserův efekt

$\sigma_{IS} = \left(\frac{\mu_o}{4\pi}\right)^2 \frac{h^2 \gamma^4}{10}$	$-\left[\frac{6\tau_c}{1+4\omega^2\tau_c^2}-\tau_c\right]r_{IS}^{-6}$	$\begin{array}{l} \sigma_{IS} \text{ - rychlost nárustu NOE} \\ \tau_c & \text{ - korelační čas} \\ r_{IS} & \text{ - meziatomová vzdáleno} \\ \omega & \text{ - pracovní frekvence} \end{array}$
$\frac{\sigma_{IS}}{\sigma_{cal}} = \left(\frac{r_{IS}}{r_{cal}}\right)^{-6}$	$\frac{f_I\{S\}}{f_{cal}} = \left(\frac{r_{IS}}{r_{cal}}\right)^{-6}$	NMR spektrometru

 \bowtie Poměr intenzit NOE efektů $f_h(S)/f_{cal}$ je úměrný poměru vzdáleností příslušných atomů vodíku pouze pro velmi krátké časy!!!

X-editovaná NOESY spektra

4D ¹³C/ ¹⁵N-editované NOESY

3D 15N-editované NOESY

4D ¹³C /¹⁵N-editované NOESY

Vztah mezi interakční konstantou a dihedrálními úhly peptidu Karplusova rovnice

 $^{3}J = A \cos^{2}\Theta + B \cos \Theta + C$

Typické hodnoty interakčních konstant ${}^3J_{HH}$ pro dihedrální úhel ϕ

 $\begin{array}{ll} \alpha \text{-helix} & \phi \sim -\ 60 \ \text{deg} \\ \\ 3 \leq J \leq 6 \ \text{Hz} \\ \\ \text{typické nastavení pro úhel } \phi: \\ -110 \leq \phi \leq -10 \ \text{deg} \end{array}$

β-struktura skládaného listu $φ ~ -120^{\circ}$ 6 ≤ J ≤ 9 Hz typické nastavení pro úhel φ: -170 ≤ φ ≤ -70 deg

Stereospecifické přiřazení diastereotopních atomů v $C_{\beta}H_2$ skupinách

- $J_{\alpha\beta}$ coupling - H^N - H^β NOE

 $J_{\alpha\beta} = 9.5 \cos^2\theta - 1.6 \cos\theta + 1.8$

Vodíkové vazby 0Н. - výměnné experimenty s D2O Měření: - teplotní závislost výměnitelných protonů (NH, OH...) NMR experimenty:- malé molekuly -COSY - velké molekuly - ¹H-¹⁵N HSQC Z NMR experimentů je možné získat pouze informaci o donoru!! Akceptory jsou většinou určeny až z molekulárního modelování a výpočtů!!

Vodíkové vazby v pravidelných strukturách

 α -helix

β-sheet

Jak vše poskládat dohromady ????

Růstový modulátor Granulin 1e Cyprinus carpio

Růstový modulátor Granulin 1e Cyprinus carpio

Studium dynamických jevů proteinů pomocí NMR spektroskopie. Proč?

- Molekuly nejsou statické, vykonávají pohyby v různých časových škálách.
- Vypočtená statická struktura je často průměrem skutečných stavů molekuly.
- Funkce mnoha biologicky aktivních molekul závisí na jejich flexibilitě.
- V roztoku (fyziologické prostředí) podléhají biologicky aktivní molekuly přirozeným pohybům, které nejsou v krystalové mřížce patrné. Výhoda NMR spektroskopie nad X-ray krystalografií.

Studium dynamických jevů proteinů pomocí NMR spektroskopie

Vztah relaxační rychlostí k molekulárním pohybům v různé časové škále:				
NMR parametr	časová škála			
podélná relaxace R ₁	10 ¹² – 10 ⁸ s ⁻¹			
podélná relaxace během spin-locku R _{1p}	10 ⁶ – 10 ³ s ⁻¹			
příčná relaxace R ₂	10 ³ – 10 ⁻³ s ⁻¹			

Měřená jádra:

- ¹H téměř se neměří (obtížně definovatelné)
- ¹⁵N dynamika páteře proteinu (dobře měřitelné, dobře definovatelné)
- ¹³C dynamika postranních řetězců i páteře (obtížněji měřitelné, dobře definovatelné)
- ²H měří se ve speciálních případech (CH₃) (obtížněji připravitelný vzorek, není jednoduché měřit, dobře definovatelné

HIV-1 proteása

Experimentální uspořádání

Relaxační parametry ¹⁵N:

Měřeny relaxační časy: spin-mřížka (podélná) T₁ spin-spin (příčná) T₂ krosrelaxační rychlost (NOE) ¹H - ¹⁵ľ

Zpracování výsledků

Lipari-Szabóův přístup

Pro analýzu je nutný <u>model pohybu</u> molekuly jako celku a jejích částí.

Jeden z nejúspěšnějších je Lipari-Szabóův "bezmodelový" přístup ("model-free" approach)

Předpoklady Lipari-Szabóova modelu:

relaxace je modulována dvěma pohyby: globálním a lokálním

- · oba pohyby jsou statisticky nezávislé
- globální reorientace je izotropní
- molekulární pohyb je charakterizován parametry:
- t_M korelační čas globálního pohybu
- *S*² parametr uspořádanosti (hodnota 0 1)
- t_e korelační čas lokálního pohybu
- R_{ex} rychlost chemické (konformační) výměny

Výsledky – parametr uspořádanosti a konformační výměna

 $\rm R_{ex}$ znamená příspěvek konformační výměny k relaxační rychlosti $\rm 1/T_2$

 $1/T_2^* = 1/T_2 + R_{ex}$

Interpretace výsledků měření dynamiky páteře HIV-1 proteásy

Aminokyselinové zbytky podléhající rychlým pohybům v pikosekundové časové škále (1-100 ps) o velké amplitudě

Aminokyselinové zbytky podléhající pomalým pohybům (konformační výměněn v mikro- až milisekundové časové škále.

