
5. Microstructure and properties 
 
5.0 Introduction 
 
Ceramics are heterogeneous materials, i.e. materials with internal phase boundaries or, in 
other words, materials with microstructure. Usually they are polycrystalline (with high- or 
low-angle grain boundaries or a glass phase between the individual grains or crystallites) and 
in most cases multiphase. The phase properties (i.e. properties of the individual phases) are 
determined by the composition of the individual phases and their crystallographic structure, 
while the effective properties of the material as a whole are determined by the microstructure. 
The microstructure itself, obviously, is a result of composition and processing. 
 
5.1 Characterization of microstructures  
 
Microstructural features and their quantitative measures: phase volume fractions, grain size 
(distribution), grain shape and orientation, 3D coordination number (and 2D connectivity), 
contiguity, porosity (relative density), pore size (distribution), pore shape and orientation, 
specific surface area, chemical and phase composition.  
 
Measurement methods: Archimedes method (bulk density, porosity), mercury intrusion (open 
porosity, pore size distribution), optical or electron microscopy (on thin sections, polished 
sections, fracture surfaces) in combination with image analysis and stereological theorems 
(Delesse-Rosiwal, Cauchy) or correction techniques (Saltykov, Cruz-Orive), tomographic 
methods, electron microprobe and local XRD. 
 
5.2 Constitutive equations and material properties  
 
Properties sensu stricu are coefficients in linear constitutive equations. The remaining 
properties (e.g. behavior of nonlinear materials or breakdown characteristics) can be called 
operational properties.   
 

• Mechanical properties: elastic moduli and Poisson ratio (Hooke’s law), strength, 
fracture toughness, hardness, fatigue (stress corrosion), wear resistance. 

• Thermal properties: thermal conductivity (Fourier’s law), specific heat. 
• Thermomechanical properties: thermal expansion coefficient (Neumann-Duhamel 

law), thermal shock resistance. 
• Electric and dielectric properties: electric conductivity (Ohm’s law), permittivity (and 

parameters of the hysteresis curve of ferroelectric ceramics), pyroelectric coefficients, 
piezoelectric moduli and electrostriction coefficients, electro-optic coefficients, 
electrical breakdown strength. 

• Magnetic properties: permeability (and parameters of the hysteresis curve of 
ferrimagnetic ceramics), magnetostriction coefficients. 

• Optical properties: refractive index, absorption coefficient, birefringence (anisotropic 
materials), scattering (heterogeneous materials).      

 
All these properties are temperature-dependent. Moreover, the electric, magnetic and optical 
properties are functions of frequency of the electric current or the electromagnetic waves.   
 
 



5.3 Effective properties of heterogenous materials 
 
Effective properties are the macroscopic properties of heterogeneous (polycrystalline and / or 
multiphase) materials, including polycrystalline ceramics, ceramic composites and porous 
ceramics. Usually, effective properties depend on the material’s microstructure (except for a 
few exceptions which are microstructure-insensitive, e.g. specific heat), more precisely on 
microstructural features apart from phase composition (volume fractions). In other words, the 
effective properties of ceramics cannot be predicted based on the knowledge of phase volume 
fractions (e.g. the content of second-phase inclusions or porosity) alone, particularly in cases 
where the phase contrast (i.e. the difference between the phase properties) is high; in these 
cases prediction requires additional knowledge of the phase topology.  
 

• Effective elastic moduli of statistically isotropic (quasi-isotropic) polycrystalline 
ceramics calculated from the elastic constants of monocrystals (i.e. components of the 
stiffness tensor) → Voigt-Reuss-Hill average, 

• Effective thermal conductivity, electric conductivity, permittivity, permeability and 
thermal expansion coefficient of statistically isotropic polycrystalline ceramics 
calculated from the monocrystal values (components of the corresponding second-
order tensors) → one-third of the tensor trace, 

• Effective elastic moduli, thermal conductivity, electric conductivity, permittivity and 
permeability of statistically isotropic multiphase polycrystalline ceramics calculated 
from the corresponding (volume-averaged polycrystalline) phase properties and their 
volume fractions → Voigt-Reuss bounds, Hashin-Shtrikman-bounds, 

• Effective thermal expansion coefficient of multiphase polycrystalline ceramics 
calculated from the corresponding (averaged polycrystalline) phase thermal expansion 
coefficients and their volume fractions → Levin relation, Turner relation,  

• Effective elastic moduli, thermal conductivity, electric conductivity, permittivity and 
permeability of statistically isotropic porous ceramics calculated from the 
corresponding solid phase properties (i.e. properties of the matrix or skeleton phase) 
and porosity → Voigt bound, Hashin-Shtrikman upper bound, Coble-Kingery / 
Gibson-Ashby relation, predictive or fit relations of exponential or power-law type 
(Spriggs, Pabst-Gregorová, Phani-Niyogi-McLachlan). 

• Note that the thermal expansion coefficient is independent of porosity. 
 
 
Complex exercise problem: Use mathematical modeling to give an explicit analytical solution 
for the effective thermal conductivity of an idealized porous ceramic, consisting of a periodic 
material with a cubic unit cell structure (considering in particular the two extreme cases of 
totally closed pores and a totally open skeleton and using a Voigt-Reuss approach) and 
compare these analytical results with numerical results obtained via numerical (finite element) 
modeling using the commercial software package Abaqus ®. Additional explicit questions: 
 

a.) For what other material properties (apart from thermal conductivity) are the results 
valid ? 

b.) Do the solutions provide a realistic prediction for statistically isotropic ceramics ? In 
particular, consider their relation to the Hashin-Shtrikman bounds.  


