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CPPS−1. Introduction – Particle size + equivalent diameters 
 
 
1.0 Introduction  
 
Particle size is one of the most important parameters in materials science and technology as 
well as many other branches of science and technology, from medicine, pharmacology and 
biology to ecology, energy technology and the geosciences. In this introduction we give an 
overview on the content of this lecture course and define the most important measures of size 
(equivalent diameters). 
 
 
1.1 A brief guide through the contents of this course 
 
This course concerns the characterization of individual particles (size, shape and surface) as 
well as many-particle systems. The theoretical backbone is the statistics of small particles. 
Except for sieve classification (which has lost its significance for particle size analysis today, 
although it remains an important tool for classification) the most important particle size 
analysis methods are treated in some detail, in particular 
 

• sedimentation methods, 
• laser diffraction, 
• microscopic image analysis, 

 
as well as other methods (dynamic light scattering, electrozone sensing, optical particle 
counting, XRD line profile analysis, adsorption techniques and mercury intrusion). 
Concerning image analysis, the reader is referred also to our lecture course “Microstructure 
and properties of porous materials” at the ICT Prague, where complementary information is 
given, which goes beyond the scope of the present lecture.  
 The two final units concern timely practical applications (aerosols and nanoparticles, 
suspension rheology and nanofluids). Apart from specific appendices to individual course 
units, there are three major inter-unit appendices, which are based on the knowledge of 
several course units and concern in particular 
 

• isometric particles (size characterization by laser diffraction and image analysis), 
• oblate particles (size and shape characterization, sedimentation and laser diffraction),  
• prolate particles (size and shape characterization, image analysis + laser diffraction), 

 
as well as suspension rheology. 
  
 
1.2 Equivalent diameters 
 
Particle size, in the sense commonly used, is a linear length measure, measured in SI unit [m]. 
In this sense it can be uniquely defined only for spheres, where it is the diameter (or radius). 
For all other shapes, particle size must be clearly defined via the measuring procedure. So-
called derived diameters are determined by measuring a size-dependent property of the 
particle and relating it to a single linear dimension. The most widely used of these are the 
equivalent diameters, in particular the equivalent spherical diameters.  
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Important equivalent diameters are: 
 

• Volume-equivalent sphere diameter volumeD  = diameter of a sphere with the same 
volume as the particle particleV , i.e.  
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e.g. for a cube with edge length 1 µm (volume 1 µm3) we have 24.1=volumeD  µm.  

 
• Surface-equivalent sphere diameter surfaceD  = diameter of a sphere with the same 

surface as the particle particleS , i.e.  
 

2
1

6
⎟
⎠
⎞

⎜
⎝
⎛= particlesurface SD
π

 

 
e.g. for a cube with edge length 1 µm (surface 6 µm2) we have 38.1=surfaceD  µm.  

 
• Stokes diameter SD  (= equivalent diameter corresponding to the diameter of a sphere 

with the same final settling velocity as the particle undergoing laminar flow in a fluid 
of the same density and viscosity), defined via the Stokes relation 

 

g
vD
LS

S )(
18

ρρ
η
−

= ,  

 
where η  is the viscosity (of the pure liquid medium without particles), Sρ  the density 
of the solid particles, Lρ  the density of the pure liquid, g  the gravitational 
acceleration and v  the final settling velocity.  

 
• Hydrodynamic equivalent diameter HD  (= diameter of a sphere with the same 

translational diffusion coefficient ntranslatioD  as the particle in the same fluid under the 
same conditions), defined via the Stokes-Einstein relation 

 

ntranslatio
H D

kTD
ηπ3

= , 

 
where k  is the Boltzmann constant, T  the absolute temperature and η  the viscosity 
of the liquid medium (the diffusion coefficient must be extrapolated to zero 
concentration). 

 
• Sieve diameter sieveD  (= equivalent diameter corresponding to the diameter of a 

sphere passing through a sieve of defined mesh size with square or circular apertures). 
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• Laser diffraction equivalent diameter LD  (= diameter of a sphere yielding on the 
same detector geometry the same electronic response from the optical signal, i.e. the 
diffraction pattern, as the particle); when the Fraunhofer approximation is valid, LD  
should correspond to the projected area diameter of the particle in random orientation. 

 
• Projected area diameter PD  (= equivalent diameter corresponding to the diameter of a 

sphere or circle with the same projected area as the particle); in general, PD , is 
orientation-dependent, particularly for anisometric particles; the equivalent area 
diameter measured via microscopic image analysis, MD , usually refers to preferential 
(non-random) “stable“ orientation and thus is not the same as PD  for random 
orientation; another equivalent area diameter, conceptually analogous to the projected 
area diameter, is the random section area diameter, which can be measured from 
random cuts (planar sections, polished sections) via image analysis → see CPPS-10.   

 
• Volume-surface diameter SVD  (Sauter diameter) = ratio of the cube of the volume-

equivalent diameter to the square of the surface-equivalent diameter, i.e. 
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This diameter is inversely proportional to the surface density (surface area per unit 
volume) VS , or the specific surface area (surface area per unit mass), i.e. ρVM SS = , 
where ρ  is the density. The relation between SVD  and VS  is (with values for SVk  
given in Table 1.1) 
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SV
V D
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Table 1.1. Shape factors SVk  for spheres and the Platonic solids (regular polyhedra). 

 
Shape SVk  
Sphere 6 
Tetrahedron 8.94 
Octahedron 8.06 
Cube 7.44 
Dodecahedron (pentagonal faces) 6.59 
Icosahedron (triangular faces) 6.39 
 
Other equivalent diameters are thinkable, but less frequently used, e.g. the perimeter-
equivalent diameter of a particle outline etc. Apart form the equivalent diameters there are 
other size measures which can be used to quantify particle size, mainly in microscopic image 
analysis of 2D particle outlines, among them the chord or intercept lengths (including the 
Martin diameter, i.e. the length of the chord dividing the projected particle area into two equal 
halves) and the caliper or Feret diameters (including the maximum and minimum Feret 
diameter) → see CPPS-9. 
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CPPS−2. Particle shape and surface 
 
 
2.0 Introduction  
 
Particle shape is a complex geometric characteristic. It involves the form and habit of the 
particle as well as features like convexity and surface roughness. The literature on shape 
characterization is enormous and so is the number of possible definitions of shape factors. 
Here we give only the minimum set of definitions which are absolutely necessary for 
understanding (the literature on) particle shape characterization. Since the distinction of shape 
and surface topology is more or less a question of scale, we introduce fractal concepts as well.  
 
 
2.1 Shape characterization and measures of shape 
 
Particle shape has at least two different meanings: 
 

• Shape (form) in the sense of deviations from spherical shape (e.g. regular polyhedra), 
• Shape (habit) in the sense of deviations from isometric shape (e.g. spheroids). 

 
Apart from these two meanings shape can denote the deviation from roundness (rounded 
versus angular) and deviations from convexity (convex versus concave shape). We define an 
isometric shape as a shape of an object (particle) for which, roughly speaking, the extension 
(particle size) is approximately the same in any direction. More precisely, for a particle to be 
isometric, the ratio of the maximum and minimum length of chords intersecting the center of 
gravity of the convex hull of the particle should not exceed the ratio of the least isometric 
regular polyhedron, i.e. the tetrahedron (simplex in 3D). For many practical purposes, 
isometric particles can approximately be considered (modeled) as spherical particles. A size 
measure (e.g. an equivalent diameter) is often sufficient for a description of isometric 
particles. Note that the term ”(an-) isometric” refers to external shape of objects (particles), 
while the term “(an-) isotropic” refers to the internal structure of media (materials). 
 Anisometric particles have significantly different extensions in different directions. 
When the particles (or their convex hulls) are centrally symmetric (at least approximately or 
in a statistical sense), i.e. possess a center of symmetry, they can be modeled as ellipsoids or 
rectangular parallelepipeds. In the general (triaxial) case at least three numbers are needed to 
satisfactorily describe the size and shape of such particles (e.g. hydroxyapatite platelets in 
bones). However, in practice many anisometric particles may be considered as rotationally 
symmetric, i.e. possessing an axis of rotational symmetry (e.g. disks / platelets and rods / 
fibers). In this case, only two numbers suffice for a description of size and shape, e.g. the 
extension in the direction of the rotational axis (maximum Feret diameter) and the maximum 
extension in the direction perpendicular to it (minimum Feret diameter), or an equivalent 
diameter and an aspect ratio. Although prismatic shapes frequently occur in practice, the 
simplest and therefore most popular model shapes for rotationally symmetric particles are 
 

• Cylinders (with height H  and diameter D ) and 
• Spheroids, i.e. rotary ellipsoids (with extension H  in the direction of the rotational 

axis and maximum extension D  in the direction perpendicular to the rotational axis); 
they can be oblate (flattened, e.g. disks / platelets) or prolate (elongated, e.g. rods / 
fibers). 
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In both cases an aspect ratio can be defined as  
 

D
HR =  

 
or vice versa. All other possible shape measures for these model shapes can be reduced to the 
aspect ratio. In contrast to cylinders, spheroids contain spheres as a special case ( 1=R ). 
 In principle, for arbitrary particle shapes in 2D (particle outlines) the chord lengths 
intersecting the center of gravity can be determined in various directions; thus for each 
particle a plot of chord length (in m) versus orientation angle (in radians) can be obtained, 
which may be evaluated via Fourier analysis: using polar coordinates, the shape of the particle 
outline can be considered to be a wave form having a value of radius r , for values of θ   lying 
between 0 and π2 . This wave form can be expressed as a harmonic (Fourier) series, i.e. 
 

( ) ( )∑
∞

=

++=
1

0 sincos
n

nn nbnaar θθθ .  

 
→ Fourier coefficients na  and 0b  describing particle shape. In principle, complete shape 
information is contained in the coefficients. A major practical difficulty, however, is to know 
the point at which the series can be stopped (higher order terms are needed for more angular 
and irregular particles). Moreover, the values of the coefficients depend on the choice of the 
origin. Obviously, for many-particle systems this procedure is usually not economical. 
 
 
2.2 Fractal geometry and surface roughness 
 
The total length T  of a line consisting of n  identical units, each with length a , is 1naT = . 
Similarly, the total area T  of a square of n  units with area 2a , is 2naT = , and the total 
volume T  of a cube of n  units with volume 3a , is 3naT = . Thus, in general,  
 

δnaT = , 
 
where δ  is an integer. In all the above cases the shape (hypervolume) can be considered to be 
completely filled. Partial filling can be represented by noninteger values of δ , with the degree 
of filling increasing as the value of δ  becomes greater. Thus an irregular particle can be 
described by an exponent δ  (non-Euclidean or fractal dimension), which contains 
information about the degree of volume filling, surface roughness or ruggedness of the 
perimeter of the 2D particle outline (projection or section). Irregular particles with a rough 
surface or agglomerates can have fractal dimensions between 2 and 3. The fractal dimension 
of the perimeter of a 2D outline of an irregular particle with a rough surface is between 1 and 
2. That means, if the perimeter (surface) is measured (tiled) with smaller and smaller probes, 
then their total length (area) increases → the surface area of a particle (and similarly, the 
perimeter of a 2D particle outline) is not a uniquely defined value, but dependent on the size 
of the probe used. The fractal dimension δ  is obtained from the slope of the straight line fit in 
log-log-plots ( n  versus a ). The straight line fit in the log-log-plot (or, equivalently, the 
power law fit in the lin-lin-plot) implies geometrical similarity on different length scales, i.e. 
different degrees of magnification (scale-invariance, self-similarity), at least in a limited 
range. For details on measuring techniques see CPPS-12.3. 
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CPPS−3. Particle packing, coordination numbers and 
fractals 
 
 
3.0 Introduction  
 
The packing of particles is of utmost practical importance in materials science and technology 
as well as other branches of science where e.g. packed beds are used (chemical engineering, 
reactor technology), the products consist of particular materials (pharmacology) or the 
systems involved are intrinsically granular and porous (geosciences, petroleum engineering). 
In particular, when classical power processing techniques are used for the production of 
ceramic or metal bodies a knowledge of particle packing is essential to control the subsequent 
high-temperature and / or high-pressure processing steps. The basic quantification of particle 
packing involves the relative packing density (packing fraction) and the coordination number. 
A more detailed characterization of particle systems, in particular those exhibiting geometric 
self-similarity in a certain range of length scales, is possible via concepts of fractal geometry.          
 
 
3.1 Packing fraction and coordination numbers 
 
For monosized spherical particles the densest packing is that with a packing fraction (relative 
packing density = solids volume fractions) of 74.018 ≈π  (Kepler’s conjecture 1611, proved 
by Hales 1998; this apparently obvious result gains its importance from the fact that in 3D 
space one can create suboptimal global packings with finite-sized clusters of spheres, e.g. 
tetrahedral or icosahedral clusters, with local densities higher than the global maximum – at 
the expense of having large voids elsewhere, i.e. these high-density clusters cannot be space-
filling; e.g. identical non-overlapping regular tetrahedra cannot tile 3D space and the system is 
geometrically “frustrated”, meaning that local optimal packing rules are inconsistent with 
global packing constraints). This maximum packing fraction of 0.74 for monosized spheres 
corresponds to hexagonal closest packing (hcp) or face-centered cubic (fcc) and its stacking 
variants, all with a coordination number of 12 (i.e. a chosen particles has 12 nearest neighbors 
in direct point contact). Simple cubic packing, on the other hand, has a packing fraction of 
0.52 and a coordination number of 6. It is not known whether stable packings of monosized 
spheres with lower packing fraction and coordination number exist in 3D space (diamond 
packing with a packing fraction of 0.34 and a coordination number of 4 is unstable). Table 3.1 
lists other ordered packings of monosized spheres.  
 

Table 3.2. Packing fraction and coordination number of ordered packings of monosized 
spheres in 3D space. 

 
Packing type Packing fraction Coordination number 
Closest packing  
(fcc / hcp) 

0.7405 12 

Tetragonal-sphenoidal 0.708  10 
Body-centered cubic 0.680 8 
Orthorhombic  0.605  8 
Simple cubic 0.524  6 
Diamond 0.340 4 
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Inspite of the fact that there are two recognized packings with a coordination number of eight, 
there have been attempts to approximately correlate the packing fraction Sφ  and the 
coordination number CN , e.g. by the relations 
 

S
CN

φ
π
−

=
1

, 

 
( ) 38.014.1014 SCN φ−−= . 

 
The latter relation predicts that the coordination number for densely arranged particles 
approaches 14 when the packing fraction approaches 1, i.e. 100 %. Therefore, the Kelvin 
tetra-kai-decahedron (truncated octahedron with 14 faces, i.e. 6 squares and 8 hexagons) has 
become the preferred basic model shape for sintered microstructures → see the course 
“Technology of Ceramics” at the ICT Prague.  
 When the packing is random (i.e. not ordered), the packing fraction for monosized 
spheres is approx. 0.64, and the average coordination number is 7. Traditionally, this packing 
type has been called random-close packing (rcp structure). Although Torquato (2000, 2002) 
has shown that the rcp structure is ill defined and has replaced it by the concept of the 
“maximally random jammed” state (mrj structure), the best estimate for the mrj packing 
fraction is still 0.64 in the case of monosized spheres. 
 Higher packing fractions can be achieved by polydisperse particle systems and non-
spherical (e.g. polyhedral or anisometric) particles, but reliable theoretical predictions are 
difficult in these cases. In practice, empirical rules and experience with real systems are 
invoked → see the course “Technology of Ceramics” at the ICT Prague.     
 
 
3.2 Mass and surface fractals 
 
When particles aggregate, e.g. from a particulate sol or a macromolecular solution with 
polyfunctional monomers, they commonly form fractal structures. A mass fractal (object) is 
distinguished from a conventional Euclidean object by the fact that its mass M  increases with 
its size (equivalent radius) according to the relation 
 

mdrM ∝ , 
 
where md  is the mass fractal dimension ( 30 ≤≤ md ). For a Euclidean object 3rM ∝ , but for 
a fractal 3<md , that means the density of the object ( 3rM∝ρ ) decreases as it gets bigger; 
a tree-like structure is an example of a mass fractal. A surface fractal (object) has a surface 
area S  increasing more steeply than proportional to 2r , i.e. 
 

sdrS ∝ , 
 

where sd  is the surface fractal dimension ( 32 ≤≤ sd ); a crumpled piece of paper is an 
example of a surface fractal (it is not a mass fractal, however, since its mass increases as 

3rM ∝ ).  
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For Euclidean objects (nonfractal with a smooth surface) 3=md  and 2=sd , for mass 
fractal objects sm dd = , for surface fractal objects the mass fractal dimension equals the 
Euclidean dimension, i.e. 3=md , and 32 << sd . The three most popular techniques to 
determine fractal dimensions are: 
 

• Adsorption of gas or solute molecules (specific surface measurements) – Pfeifer-Avnir 
approach: 

 
32 −−∝ mm dd Da σ , 

 
where a  is the amount of adsorbate adsorbed on the adsorbent (e.g. number of 
adsorbate molecules per unit volume of adsorbent or moles of adsorbate per unit mass 
of adsorbent), σ  is the equivalent area or cross-section of the adsorbate molecule 
(when a linear size measure, e.g. an equivalent diameter, is used the exponent is md−  
instead of 2md− ) and D  is a linear measure of particle size (e.g. an independently 
measured mean equivalent diameter); theoretically, either σ  or D  can be varied (in 
practice usually σ ). Alternative variants of the adsorption technique use a modified 
Frenkel-Halsey Hill equation or the Kiselev equation (Neimark-Kiselev approach) → 
see CPPS-12.3. 

 
• Mercury intrusion (volume-weighted pore-size distribution measurements):  

 
( )

sdr
dr

rdV −∝ 2 , 

 
→ further details see CPPS-12.3. 

 
• Small-angle scattering (Porod region): Small-angle scattering can use neutrons 

(SANS), X-rays (SAXS), or visible light (static light scattering or dynamic / quasi-
elastic light scattering – QELS) → length scales from 0.1 nm to 1 µm. The scattering 
curve, i.e. the log-log plot of scattered intensity as a function of the inverse length 
measure  

 

2
sin4 θ

λ
π

=k , 

 
where λ  is the wavelength and θ  the scattering angle, can be divided into three 
regions: 
  

o Bragg region at large scattering angles ( 1≈βk , where β  is the bond length), 
from which information concerning interatomic spacings is obtained via 
Bragg’s law (in amorphous systems diffuse peaks → radial distribution 
curves). 

 
o Guinier region at very small scattering angles ( 1≈γk ), for which the scattered 

intensity is exponentially related to the radius of gyration γ , i.e. 
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( ) ( )3exp 22γkkI −∝  
   
  → information on the mass or radius of macromolecules. 

 
o Porod region at intermediate scattering angles ( βγ >>>> −1k ), for which the 

scattered intensity decays acccording to a power law, i.e. as 
 

( ) PkkI ∝ , 
   

where P  is the Porod slope, which can be interpreted in terms of fractal 
dimensions as 
 

ms ddP 2−= . 
 
Since for mass fractal objects sm dd =  → mdP −= , i.e. the mass fractal 
dimension is obtained directly from the slope. For surface fractal objects 

3=md  → 6−= sdP . However, polydispersivity of pore sizes (interstitial 
voids in an aggregate / agglomerate of particles) with a number-weighted pore 
size distribution corresponding to a power law also yields a power-law decay 
for the scattered intensity. That means, physically meaningful fractal 
dimensions can be derived from the Porod plot only when the type and degree 
of polydispersivity is known. Table 3.2 gives examples of Porod slopes for 
various structures of particles aggreagates / agglomerates.   

 
Table 3.2. Porod slopes for various structures of particles aggreagates / agglomerates. 

 
Structure Porod slope Type of fractal 
Linear polymer 
(random walk) 

− 2  Mass 

Linear polymer – 
swollen  
(self-avoiding walk) 

− 5/3 ≈ 1.67  Mass 

Branched polymer − 16/7 ≈ 2.29 Mass 
Branched polymer – 
swollen  

− 2  Mass 

Diffusion-limited 
aggregate 

− 2.5  Mass 

Multiparticle diffusion-
limited aggregate 

− 1.8 Mass 

Percolation cluster − 2.5 to – 2.6 Mass 
Fractally rough surface − 3 to – 4  Surface 
Agglomerate of 
particles or porous 
medium with 
smooth surfaces  

− 4  Non-fractal 
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CPPS−4. Small particle statistics 
 
 
4.0 Introduction 
 
Small particle statistics is treated in detail in Herdan’s book (1960). In the pre-computer era, 
analytical functions (and the corresponding special graphical papers) were used whenever 
possible to represent measured particle size distributions. These functions have the advantage 
that they can be characterized by a few fit parameters, from which all statistical values can be 
determined. Real particle size distributions, however, do usually not fit any analytical function 
exactly, and therefore today a numerical (tabular or graphical) representation is preferred. In 
order to reduce the information contained in a complete distribution, statistics can be applied.  
 
 
4.1 Graphical representation of size distributions 
 
Particle size distributions can be represented as histograms (discrete distributions) or as 
continuous curves, when the size classes are sufficiently close (usually the bin width of a size 
class is chosen by dividing the overall width of the distribution by the square root of the 
number of measured particles). The size measure (usually an equivalent diameter ix , 
corresponding to the average in a size class i ) is given on the abscissa (x-axis), while the 
ordinate (y-axis) shows the statistical weight of each size class. This statistical weight can be  
 

• the number of particles in a size class → number-weighted distribution (with index 0),  
• the total length of all particles (= sum of all equivalent diameters) in the selected size 

class → length-weighted distribution (with index 1),  
• the total surface of all particles (= sum of the surface areas of equivalent spheres, as 

calculated from the equivalent diameters) in the selected size class → surface-
weighted distribution (with index 2),  

• the total volume of all particles (= sum of the volumes of equivalent spheres, as 
calculated from the equivalent diameters) in the selected size class → volume-
weighted distribution (with index 3), 

• the total mass of all particles in the selected size class → mass-weighted distribution 
(which is identical to the volume-weighted distribution when all particles in a sample 
have the same density). 

 
Particle size distributions can be represented either in differential form as frequency curves / 
histograms or, more precisely, probability density distributions (denoted rq ), 
 

( )
∑

= r
ii

r
ii

ir xn
xn

xq , 

 
where in  is the number of particles in the i -th size class with average size (equivalent 
diameter) ix , or in integral form as cumulative curves / histograms (denoted rQ ), which can 
be undersize,  
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or oversize, 
 

( ) ( )iri
oversize

r xQxQ −= 1  
 

(in this course we always refer to the undersize distribution, if not explicitly stated otherwise). 
Number-weighted particle size distributions ( 0q , 0Q ) are the primary results of 

counting methods such as microscopic image analysis, while volume-weighted distributions 
( 3q , 3Q ) are the primary results of ensemble methods such as laser diffraction. (The mass-
weighted distributions obtained using sedimentation methods are identical to the volume-
weighted distributions if the density of all particles is the same.) Length- and surface-
weighted distributions are rather uncommon in practice. Note that number-weighted and 
volume-weighted distributions cannot be directly compared. They can be compared only after 
one of them has been transformed into the other (which requires either the assumption that the 
shape is size-invariant or an independent measurement of the shape-size dependence). 
Although comparable after applying this kind of transformation, ( 0q , 0Q ) → ( 3q , 3Q ) or ( 3q , 

3Q ) → ( 0q , 0Q ), the results cannot be expected to coincide in general, because different 
methods measure different equivalent diameters. Only for spherical particles (or 
approximately for isometric particles) coincidence may be expected in principle (→ standard 
reference materials for calibration purposes). In practice, the degree of coincidence can be 
limited by the different measuring ranges and other method-specific errors.  
 
 
4.2 Statistical mean values 
 
In general, the mean values for the different types of distributions are: 
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where r  denotes the type of distribution ( r  = 0, 1, 2, 3 for number-weighted, length-
weighted, surface-weighted and volume-weighted, respectively) and k  denotes the type of 
average (e.g. harmonic mean 1−=k , geometric mean 0=k , arithmetic mean 1=k , 
quadratic mean 2=k  etc.). For these averages Cauchy’s majority relation holds: 
 

...... QAGH xxxx ≤≤≤  
  
The geometric mean is calculated via the relation 
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It can be shown that the harmonic mean of the volume-weighted distribution equals the 
arithmetic mean of the surface-weighted distribution (Herdan’s theorem). Therefore the 
specific surface (surface density) is inversely proportional to the harmonic mean of the 
volume-weighted distribution, also called “natural” mean or Sauter mean (mean volume-to- 
surface particle size). Its reciprocal, i.e. the ratio between the second and third moment (se  
below) is proportional to the specific surface of the powder, the proportionality factor being 6 
for spheres and greater than 6 for other particle shapes. 
 
  
4.3 Other basic parameters characterizing size distributions 
 
Other parameters, which are not statistical mean values (averages), can be used to characterize 
particle size distributions. The most important of them are:  
 

• Quantiles: particle sizes corresponding to a selected cumulative weight; the most 
important quantiles are the lower decile ( 10x ), the median value ( 50x ), and the upper 
decile ( 90x ) → their physical meaning is evident from the cumulative (undersize) 
curve (histogram): 10 % (with respect to number in 0Q , with respect to volume in 3Q  
etc.) are smaller than 10x  etc.  

 
• Median: the special quantile 50x , which divides the particle population into two equal 

parts (with respect to number in 0Q , with respect to volume in 3Q  etc.) 
 
• Span: a measure of the width (breadth) of a distribution, defined as  

 

50

1090
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−

= . 

 
• Mode: the most frequent value (with respect to number in 0Q , with respect to volume 

in 3Q  etc.) in a distribution, corresponding to the maximum in the frequency curve (or 
more precisely, probability density distribution); distributions and particle systems 
with one mode are called monomodal, with two bi- and with three tri-modal (in 
general multimodal); particle systems with one very narrow mode are called 
monodisperse, with two bidisperse etc. (in contrast to polydisperse systems, which 
exhibit a broad distribution); in the extreme case of strictly monodisperse spheres, the 
frequency curve would be a Dirac delta distribution and the corresponding cumulative 
curve a Heaviside step function. 

  
• Variance ( 2σ ): a measure of the width (breadth) of a distribution, defined as 

 
( ) ( )

1

2
2

−

−
= ∑

N
xxxq Aiirσ , 

 
where ∑= inN  for number-weighted distributions and ∑= i

r
i nxN  in general. The 

standard deviation is the square root of the variance (σ ) and the coefficient of 
variation is the standard deviation divided by the arithmetic mean ( Axσ ). 
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• Skewness: a measure of the distortion from a symmetrical distribution, defined as 
 

( ) ( )
( ) ( ) ( ) ( )

3

3

3

3

21 σσ N
xxxqxxxq

NN
NS AiirAiir ∑∑ −

≈
−

−−
= . 

 
A symmetric distribution is defined as having zero skewness. S  is positive if the 
distribution is right-skewed (steep rise on the left, long tail on the right side, i.e. more 
material in the coarse size range) and negative if left-skewed.  

 
• Kurtosis: a measure of the peakedness (shape) of the distribution, defined as  

 
( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

3
32

13
321

1
4

42

4

4

−
−

≈
−−

−
−

−

−−−
−

= ∑∑
σσ N

xxxq
NN

Nxxxq
NNN

NNK AiirAiir

 
A normal distribution (Gauss distribution) is defined as having zero kurtosis (being 
mesokurtic). K  is positive if the distribution is leptokurtic (sharper or narrower than 
the normal distribution) and negative of platykurtic (flattened maximum).  

 
Of course, all these parameters are different for each type of distribution (of the same sample), 
i.e. number-weighted, length-weighted, surface-weighted and volume-weighted.  
 
 
4.4 The moment notation 
 
In the moment notation, mean values are defined through the moments of different types of 
distributions. When the differential area ( )dxxqr  below the frequency curve (probability 
density distribution) ( )xqr  (with r = 0, 1, 2, 3 denoting a number-weighted, length-weighted, 
surface-weighted and volume-weighted distribution, respectively) is multiplied by the “lever“ 

kx  ( =k …-3, -2, -1, 0, 1, 2, 3 …), the so-called moments result. 
 
Complete general moment (of k-th order) of the ( )xqr  distribution: 
 

( ) ( )∑∫
=

+
−

+ −
+

==
N

i

k
i

k
iir

x

x
r

k
rk xxq

k
dxxqxM

1

1
1

1
,, 1

1max

min

. 

 
This general moment is called complete, because the integration extends over all particle 
sizes. The corresponding incomplete general moment would be defined by the integral 
between two selected values min1 xx ≥  and max2 xx ≤ . Note that 10,0 =M . 
 
Complete central moment (of k-th order) of the ( )xqr  distribution: 
 

( ) ( )dxxqxxm
x

x
r

k
rrk ∫ −=

max

min

,1, , 
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where rx ,1  is the average size (arithmetic mean diameter) defined as 
 

0,

0,1
,1,1

r

r
rr M

M
Mx +==  

 
(arithmetic mean, i.e. the abscissa value of the center of gravity of the ( )xqr  curve), which is 
a special case (for 1=k ) of the general mean 
 

k

eer

eerk
k

r

rkk
rkrk M

M
M

M
Mx

,

,

0,

0,
,,

−

−++ === . 

 
Note that the normalization condition for general moments is 
 

 ( ) 1
max

min

,0 == ∫ dxxqM
x

x
rr . 

 
Important is the expectation value (k-th general moment of the number-weighted distribution) 
 

( ) ( )dxxqxMxE
x

x

k
k

k ∫==
max

min

00,  

 
and the variance (second central moment of the number-weighted distribution) 
 

( ) ( )dxxqxxms
x

x
∫ −==
max

min

0
2

0,10,2
2 . 

 
The k-th moment of a ( )xqr  distribution can be determined from a given ( )xq0  distribution 
via the equation 
 

0,

0,
,

r

rk
rk M

M
M += . 

 
This equation also allows a physical interpretation of the moments, e.g. 0,30,23,1 MMM =−  
corresponds to a surface-volume ratio and 0,30,30,03,3 1 MMMM ==−  to a reciprocal 
volume. More generally, the k-th moment of a ( )xqr  distribution can be determined from a 
given ( )xqe  distribution via the equation 
 

eer

eerk
rk M

M
M

,

,
,

−

−+= . 

 
Using two different moments, any mean value of the distribution can be calculated. 
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4.5 The moment-ratio notation 
 
In the moment-ratio notation, mean values are expressed as the ratio between two moments of 
the number-weighted distribution of the size measure x  (usually an equivalent diameter). The 
quantity qpD ,  is the mean size obtained from summing discrete individual x  values to the 
power of p  (relationship between the signal and x ) and normalizing by a sum of x  values to 
the power of q  (relationship between the statistical weight of each particle to its x  value), i.e.  
  

qp

q
i

p
i

qp x
x

D
−

⎟
⎟
⎠

⎞
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⎝
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,                 for          qp ≠  
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=

∑
∑

p
i

i
p
i

qp x
xx

D
ln

exp,                 for          qp =  

 
In other words, qpD ,  (after extraction of a proper root) is the arithmetic mean of the 

distribution obtained by plotting qx  against qpx − . When a certain required mean value cannot 
be measured directly, but two other mean size values are known, then the required mean size 
can be calculated using the relation  
 

( )
( ) qp

cq

cq

qp
cp

cp
qp

D

D
D

−
−

−
−

=
,

,
,                   for          qp ≠ . 

 
For example, a graticule (grid) can be used to measure the total intercept length from random 
sections (cuts) of all particles by optical or electron microscopy; divided by the number of 
particles this yields the mean intercept length 0,1D  (arithmetic mean of the number-weighted 
distribution). If digital image analysis is used to measure the projected areas of all particles 
and the total projected area is divided by the number of particles this yields 0,2D . Similarly, 
the Coulter principle measures 0,3D  and laser diffraction, sedimentation and sieving 3,4D . 

In dynamic light scattering (DLS), also called photon correlation spectroscopy (PCS), 
the scattering intensity is proportional to the volume squared or the sixth power of the particle 
dimension, when the particles are smaller than the wavelength of light (Rayleigh-Debye-Gans 
theory, first-order approximation). Thus, the mean size obtained from DLS (PCS) is 
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This mean size value ( 5,6D ) is always smaller than the weight average 3,.4D . For larger 

particles, the DLS (PCS) mean size ( ) 11 −−D  is smaller than 5,6D . 
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CPPS−5. Sedimentation methods 
 
 
5.0 Introduction 
 
Apart from sieve classification, which has lost its former significance for particle sizing, 
sedimentation methods are the most prominent traditional methods used for particle size 
analysis. Advantages are their conceptual clarity and practical simplicity, without the need of 
sophisticated equipment. Disadvantages are that sedimentation methods are relatively time-
consuming, the measuring range is relatively narrow and the results are very sensitive to 
sample preparation. In particular it is essential to achieve optimal deagglomeration. Too large 
particles develop turbulent motion, too small particles agglomerate and are subject to 
Brownian motion → range 1–100 µm (centrifugal sedimentation down to 0.1 µm). 
 
 
5.1 Measuring principle, equipment and procedure 
 
Principle of sedimentation methods: from a polydisperse particle system suspended in a liquid 
medium large particles exhibit faster settling under the influence of gravitation (and possibly 
centrifugal forces) than small particles. 
 Common traditional equipment is the Andreasen pipette → after preparing the 
suspension according to a standardized recipe (deagglomeration by deflocculants, stirring, 
agitating, ultrasonication, possibly boiling etc.) the suspension is allowed to settle. At 
predetermined time intervals small volume (10 ml) samples are taken by the pipette from a 
fixed position in the sedimentation column (600 ml, more than 20 cm high) to determine the 
concentration of solids which are still in suspension (after the larger size fractions have 
already settled out). For efficient measurements sampling time intervals should grow in a 
geometric series, so that a complete measurement can last several days when submicron 
particles are present.   

Other common equipment for particle sizing via sedimentation methods are 
sedimentation balances, in which the mass increment of the sediment is continuously 
recorded, or photo- and X-ray sedimentographs, in which the cuvette (sedimentation column) 
is scanned in order to determine the particle concentration via attenuation of light or X-rays. 
With the latter, the measurement times can be reduced to a few minutes.  
 Necessary conditions for reliable results are the absence of particle-particle 
interactions (→ dilute suspensions) and laminar flow (→ Reynolds numbers below approx. 1; 
therefore large particles have to be eliminated before measurement, usually by using 63 µm 
sieves; the sieve fraction > 63 µm can be included in the final result). 
 
 
5.2 Standard data evaluation 
 
The standard evaluation of sedimentation measurements is performed by the classical Stokes 
formula for settling spheres → Stokes diameter SD  (equivalent sphere diameter): 
 

tg
hD
LS

S )(
18

ρρ
η

−
= ,  
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where η  is the viscosity (of the pure liquid medium without particles), Sρ  the density of the 
solid particles, Lρ  the density of the (pure) liquid, g  the gravitational acceleration, h  the 
sedimentation path (height of the column above the sampling point) and t  the sedimentation 
time (sampling time). Note that the velocity is thv =  only under steady-state conditions, i.e. 
when the acceleration stage has been exceeded and the final settling velocity has been 
reached. This is usually the case after a few seconds. The Stokes equation can be derived from 
the force equilibrium 
 

0=+− RGB FFF , 
 
where BF  is the lift force (buoyancy force) acting on the particle in the (specifically lighter) 
liquid medium 
 

gRF LB ρπ 3

3
4

= ,                    

 
GF  the gravitational force acting on the particle 

 

gRF SG ρπ 3

3
4

= ,                    

 
and RF  the resistance force (friction force) exerted by the viscous liquid medium on the 
particle 
 

vRFR ηπ6= , 
 
with v  being the (final) velocity of the particle relative to the liquid medium and 2/SDR =  
the “particle“ radius (equivalent sphere radius). Apart from several assumptions of physical 
character (laminarity of flow, steady flow with final velocity), the validity of the Stokes 
equation is essentially based on the geometrical assumption that the particles are spherical. 
Since this is usually not the case for real systems, the Stokes diameters SD  correspond to 
equivalent diameters of hypothetical spheres with the same settling behavior as the irregular, 
anisometric particles in question.  

The results of sedimentation methods are mass-weighted size distributions. When all 
particles have the same density, these results can be considered as identical to volume-
weighted size distributions, i.e. 3Q  curves. 
 
 
5.3 Nonstandard data evaluation and shape determination of oblate particles 
 
The Stokes equation can be modified and adapted to flat cylinders and oblate spheroids. This 
modified Stokes equation can be used to reinterpret the results in the case of oblate particles. 
Based on this reinterpretation, particle shape can be quantified when the sedimentation results 
are known and the size distribuition has been independently measured by image analysis or 
laser diffraction → see CPPS-Appendix-oblate. 
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CPPS−6. Laser diffraction I − Theory 
 
 
6.0 Introduction 
 
The theory of laser diffraction is a special branch of electromagnetic scattering theory. In its 
classical (i.e. non-quantum-mechanical) form it is based on the Maxwell equations and its 
solutions. Mie theory is the exact classical theory of light scattering with small particles. It is 
elaborated for spheres and numerical solutions are available today, which can be implemented 
in computer algorithms. Alternatively, approximate analytical solutions are available for 
particles much smaller or larger than the wavelength of light (Rayleigh / Rayleigh-Debye-
Gans scattering and Fraunhofer diffraction, respectively). The Fraunhofer approximation, 
which is closer to geometrical optics than the other approximations, is commonly used in laser 
diffraction instruments for particle sizing.      
 
    
6.1 Interaction between light and matter 
 
Light is electromagnetic radiation in the frequency range (ν ) from approx. 1013 Hz (IR) to 
1017 Hz (UV), corresponding to the wavelength range (λ ) from 3 nm to 30 µm. The 
conversion between frequency and wavelength is via the speed of light λν=c  (in vacuum 
300 000 km/s). Visible light (i.e. the part of the electromagnetic spectrum to which the human 
eye is sensitive) ranges from approx. 400 nm (violet) to 750 nm (red). 
 The optical properties of matter (particles) are described by the complex refractive 
index, 
 

κinN += , 
 
where the real part accounts for refraction according to Snell’s law and the imaginary part is 
related to the absorption coefficient a  via the relation 
 

λ
κπ4

=a . 

 
This absorption coefficient occurs in the Lambert-Beer law describing the exponential 
attenuation of light intensity (irradiance) I  as the light wave traverses a medium of thickness 
z , i.e. 
 

( )zaII −= exp0 , 
 
where 0I  is the intensity of the incident light (magnitude of the Poynting vector). Generally, 
extinction of light in a medium occurs by the combination of absorption and scattering. The 
absorbed radiation energy can be transformed into heat or re-radiated as fluorescence or 
phosphorescence. Scattering generally occurs in all directions and includes refraction and 
reflection as special cases. Light is characterized by the wave vector k  (directing into the 
direction of propagation of the transverse light wave), whose magnitude is the wave number 

λπ2=k . A relative refractive index between two media can be defined as 21 NNm = . 
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6.2 Rayleigh scattering, Rayleigh-Debye-Gans approximation, and Mie theory 
 
When the particle is much smaller than the wavelength of light ( λ<<D  and λ<<⋅ mD ), 
then each part of the particle experiences the same homogeneous electric and magnetic field 
of incident light and the particle behaves like a dipole radiating in all directions, irrespective 
of its shape → Rayleigh scattering (with scattering angle θ ): 
 

( )θ
λ

2
2

2

2

4

6

0 cos1
2
1

+
+
−

∝
m
mDII . 

 

Thus, if the quantity ( ) ( ) 222 21 +− mm  is independent of the wavelength (this is not always 
true, because the complex refractive index generally depends on frequency, mainly for 
metallic particles), the scattered intensity is inversely proportional to 4λ , as long as extinction 
is dominated by scattering. When extinction is dominated by absorption, the intensity is 
inversely proportional to λ . In either case shorter wavelengths are extinguished more than 
longer ones → reddening of the spectrum of light upon transmission through hetergeneous 
media (aerosols, particle suspensions, fluids with density fluctuations) → blue sky during 
daytime, red sky at sunrise / sunset, use of red traffic lights in dust, fog / mist and haze. 
 When the particles are too large to be treated as single dipoles but still small enough to 
be treated as independent Rayleigh scatterers, they can be treated in the Rayleigh-Debye-Gans 
approximation if their refractive index is close to that of the medium (i.e. 11 <<−m ) and the 

condition λ<<−⋅ 1mD  is fulfilled (in practice up to a few 100 nm). When the shape of the 
particles is known (which implies knowledge of the shape-dependent scattering factor), size 
information can be extracted by measuring the angular scattering intensity (without 
knowledge of the refractive index of the particle).  

For particles of arbitrary size, Mie theory can be applied to evaluate scattering data 
(numerical solution). In order to apply Mie theory, the complex refractive index of the particle 
(and the medium) must be known (for the light wavelength used). With increasing particle 
size the scattered intensity becomes preferentially directed to the forward direction. Note that 
Mie theory has been derived for optically isotropic particles of spherical shape.  
 
 
6.3 Fraunhofer approximation   
  
When the particle size is much larger than the wavelength of light λ>>D , the particle 
removes an amount of light energy corresponding to twice its cross-section area (extinction 
paradox). One areal cross-section is removed by reflection, refraction and absorption, and one 
via diffraction. Diffraction by particles is an edge effect (comparable to diffraction by an 
aperture), and for large particles, interference arises mainly from the particle outline, i.e. only 
the projected area perpendicular to the light propagation direction matters, not the volume and 
the internal structure (optical properties) of the particles → Fraunhofer approximation. More 
precisely, the Fraunhofer diffraction pattern is the Fourier transform of the particle projection. 
Analytical solutions are known for a variety of shapes. For spheres, which scatter as if they 
were opaque disks, the Fraunhofer diffraction equation is 
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II , 

 
where λπα D=  is a dimensionless size parameter and ( )...1J  the spherical Bessel function 
of first kind. In practice the Fraunhofer approximation applies to particles larger than a few 
µm, or highly absorptive particles (with absorption coefficients higher than 0.5), or particles 
with significant different refractive index contrast relative to the medium ( m  > 1.2). Because 
for large particles the scattering intensity is concentrated in the forward direction, typically at 
angles smaller than 10 °, Fraunhofer diffraction is also known as forward scattering or low-
angle laser light scattering (LALLS). In Fraunhofer diffraction by a sphere, the angle of the 
first minimum of scattering intensity is simply related to the particle size via the relation 
 

( )
D

minimumfirst λθ 22.1sin = , 

 
and most of the scattering intensity is concentrated close to the center of the interference 
pattern, see Table 6.1. 
 
 

Table 6.1. Intensity distribution of Fraunhofer diffraction from a sphere. 
 
Intensity ring Radial position Relative intensity 

0II  
Integral intensity in 
the whole ring [%]  

Central max. 0 1 83.8 
First min. ( )Dλ22.1arcsin  0 0 
Second max. ( )Dλ64.1arcsin  0.0175 7.2 
Second min. ( )Dλ23.2arcsin  0 0 
Third max. ( )Dλ68.2arcsin  0.0042 2.8 
Third min. ( )Dλ24.3arcsin  0 0 
Fourth max. ( )Dλ70.3arcsin  0.0016 1.5 
Fourth min. ( )Dλ24.4arcsin  0 0 
   
 

Table 6.2. Common laser light sources. 
 
Laser type Power [mW] Wavelength [nm] Remark 
He-Ne gas laser 1 – 50 543.5, 594.1,  

612.0, 632.8 
 

Ar ion laser 30 – 2000 488, 514.5 Water-cooling 
needed  

Diode laser 0.1 - 200 405, 450, 635, 650, 
670, 685, 750, 780 

Low cost 
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CPPS−7. Laser diffraction II − Practice 
 
 
7.0 Introduction 
 
Laser diffraction is the most widely used method for particle size analysis today. Although the 
underlying physical principles of scattering and diffraction were known for more than 100 
years (Mie theory, 1908), particle sizers based on the diffraction principle could be developed 
only after the invention of the laser (around 1960), and the routine use of these instruments in 
practice required powerful computers (since the 1970es and 1980es). Commercial instruments 
today are fast, flexible (from laboratory batch measurements to in-line production control, 
from suspensions to dry powders, from nanometers to millimeters) and yield highly 
reproducible results. Therefore they are gradually replacing other particle sizing methods, in 
particular sedimentation methods, in most branches of industry. 
 
 
7.1 Typical equipment and sample treatment 
 

A typical laser diffraction instrument (particle sizer) consists of a light source (the 
laser), a sample chamber in the form of a flow-through cell (e.g. a glass cuvette connected to a 
liquid reservoir, approx. 500 ml) and a photodetector (e.g. a half-circle, quarter-circle or 
wedge-shaped segmented detector or a CCD-type detector), which transforms the optical 
signal (interference pattern, i.e. the light intensity in dependence of the scattering angle) into 
an electric signal (from the individual photodetector segments), which is then transferred to 
the computer and used for data generation. The geometry of the photodetector may become 
important when size measurement is to be coupled with shape measurement (based the 
deviation of the interference pattern from circular symmetry) or orientation measurement of 
anisometric particles (fibers) → current research. The distance between laser, sample chamber 
and photodetector as well as the position and spatial resolution of the photodetector (distance 
of detector segments) determine the measuring range which can be achieved. Typically it is 
from 0.1 µm to more than 1 mm, but new instruments principally enable measurements in the 
nanosize range as well. Fourier optics (with a Fourier lens between the sample chamber and 
the detector) or reverse Fourier optics (using a convergent laser beam with a Fourier lens 
between laser and sample chamber) is used to ensure that light scattered at a specific angle 
will fall onto a particular detector element, regardless of the particle’s position in the beam.  

The liquid reservoir (which can be an external beaker) contains the suspension 
(usually a powder sample dispersed in water) and is mechanically agitated by ultrasonics and 
possibly a stirrer. One of the advantages of laser diffraction, in contrast to other sizing 
methods, is the fact that ultrasonication can be used even during measurement (and not only 
as an auxiliary technique for sample preparation before measurement). During measurement 
the suspension is steadily pumped with a chosen flow velocity (adjustable according to the 
density of the particles to avoid settling in the system) through the flow-through cell. 
Alternatively, a dry-dispersion unit can be used in some instruments, from which the sample 
is conveyed through the glass cuvette by a air stream as a dry powder. Sample preparation has 
to be adapted to the character of the particles (type of material as well as particle size), but is 
usually less demanding than for sedimentation and other sizing methods. Of course, 
submicron and especially nanosized particles tend to exhibit strong agglomeration effects, and 
powerful deflocculants or other tricks may have to be used to achieve deagglomeration.  
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7.2 Measuring principle and data evaluation 
 
Laser diffraction is an ensemble method, i.e. a large number of particles is illuminated 
simultaneously and the diffraction pattern recorded by the photodetector is assumed to be the 
superposition of the interference patterns of the individual particles. In order to ensure that the 
latter is really the case, the concentration of the particle system (usually a suspension) has to 
be sufficiently low so that particle overlap and multiple scattering is avoided. On the other 
hand, the concentration must be high enough to achieve a reasoanble signal-to-noise ratio. 
 The standard method for data evaluation in laser diffraction is based on the Fraunhofer 
approximation. For a polydisperse powder sample the usual evaluation procedure consists in a 
deconvolution of the diffraction pattern according to the integral equation 
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where the function ( )Df  is the desired particle size distribution (probability density). This is 
a so-called inverse problem (in mathematical terms ill-posed and ill-conditioned), for which 
questions of existence and uniqueness of the solutions generally arise. In commercial 
equipment the solution is usually based on proprietary algorithms. When the particles are not 
large enough to justify the application of the Fraunhofer approximation (valid for λ>>D ), 
the exact Mie theory should be used for data evaluation (highly recommended for particles 
smaller than 1 µm), i.e. the complex refractive index of the materials should be known. 
 
 
7.3 Data interpretation 
 
The primary results of laser diffraction measurements are volume-weighted size distribution 
curves or histograms. These can be transformed into surface-, length- or number-weighted 
curves (histograms), each with its own statistical values → see Appendix-CPPS-7-A. 
 
Exercise problem 
 
Given the numerical values in Appendix-CPPS-7-A (alumina powder) tabulate the cumulative 
percentage values of the 3Q  distribution in steps of 0.2 µm, i.e. 0.2, 0.4, 0.6 etc. from 0.2 µm 
to 6 µm. Based on these values calculate (assuming of sphercial shape wherever necessary) 
 

1. the probability density distribution (frequency histogram) 3q , 
2. the surface-, length- and number-weighted distributions ( 012 ,, qqq  and 012 ,, QQQ ) 
3. the harmonic, geometric, arithmetic, and quadratic mean for each distribution, 
4. the mode, median and span of each distribution, 
5. the variances, standard deviations, coefficients of variation, skewnesses and kurtoses, 
6. the general moments 0,3−M , 0,2−M , 0,1−M , 0,0M , 0,1M , 1,1M , 2,1M , 3,1M , 0,2M , 0,3M , 

0,4M , as well as the central moment 0,2m ,  
7. the moment ratios from 0,0D  to 6,6D  (i.e. those with index pairs 00, 10, 11, 20, 21, 22, 

30, 31, 32, 33, 40, 41, 42, 43, 44, 50, 51, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66), 
 
and compare the results with the computer printouts given in Appendix-CPPS-7-A. 
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CPPS−8. Other methods − Dynamic light scattering, 
electrozone sensing, optical particle counting  
 
 
8.0 Introduction 
 
Particle sizing methods can be divided into ensemble techniques and counting techniques. 
Ensemble techniques have typically low resolution and low sensitivity, but a broad dynamic 
size range and high statistical accuracy. Examples are sieving, sedimentation, laser diffraction 
and dynamic light scattering (see below). On the other hand, counting techniques are typically 
high-resolution, high-sensitivity techniques with narrow dynamic size range and low 
statistical accuracy. Examples are microscopic image analysis, electrozone sensing and 
optical particle counting (see below). Counting techniques are better suited to detect a few 
small or large particles lying beyond selected size limits. 
 
 
8.1 Dynamic light scattering (photon correlation spectroscopy) 
 
Dynamic light scattering (DLS, also called photon correlation spectroscopy – PCS, a special 
case of quasi-elastic light scattering - QELS) is the method of choice for sizing submicron 
particles (< 1 µm).  
 Measuring principle: Fluctuations of the scattered light intensity (i.e. temporal 
variation in the µs to ms time scale) are recorded (at a given scattering angle) and analyzed → 
decay constant of the autocorrelation function (ACF) → diffusion coefficient → size 
information. Lower size limit (a few nm, depending on the relative refractive index) 
determined by experimental noise, upper size limit (a few µm, depending on particle density 
and fluid viscosity) by sedimentation (particles to be analyzed must be stably suspended). No 
optical properties of the particle and no calibration needed.  
 Instrumental equipment and sample concentration: Light source (e.g. He-Ne, Ar ion or 
diode laser) for coherent and possibly lineraly polarized light (note that coherence describes 
light waves that are in phase both in time and space – temporal and spatial coherence → 
coherence length = coherence time ⋅ speed of light), delivering and collecting optics (e.g. fiber 
optics), sample module (e.g. glass cuvette), photodetector system (photodiode or 
photomultiplier tubes), electronic system (amplifier and pulse discriminator) and correlator 
(hardware or software to measure the ACF). The scattering angle (range) is chosen in order 
maximize information and to increase the signal-to-noise ratio. The masureing time should be 
long enough to produce a smooth ACF. The particle concentration should be low enough to 
avoid multiple scattering and particle-particle interactions (→ mean distance between 
particles should be at least 20 times their diameter), but high enough to achieve a good signal-
to-noise ratio (→ difficult to achieve for particles larger than 1 µm). 
 Data evaluation and interpretation: The ACF decays with time, e.g. for monodisperse 
particles according to  
 

( ) BtAtC +⎟
⎠
⎞

⎜
⎝
⎛ ′
−⋅=′
τ

exp , 

 

where ( ) ( ) 22 tItIA SS −=  and ( ) 22 tIB S=  and the characteristic decay time τ  (for 
polydisperse systems a spectrum of decay times, which has to be deconvoluted) is related to 
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the diffusion coefficient TD  (for spherical particles only translational diffusion due to 
Brownian motion; for anisometric particles rotational diffusion can also be measured) via the 
relation 
 

τ2
1

K
DT = , 

 
where K  is the magnitude of the scattered wave vector 
 

2
sin4 θ

λ
π

⎟
⎠
⎞

⎜
⎝
⎛=

nK , 

 
which is a constant, not containing information on the particle’s optical properties ( n  is the 
refractive index of the liquid medium). On the other hand, the hydrodynamic equivalent 
radius HR  is related to the diffusion coefficient via the Stokes-Einstein relation, e.g. for 
spherical particles 
 

H
T R

kTD
ηπ6

= , 

 
where k  is the Boltzmann constant, T  the absolute temperature and η  the viscosity of the 
liquid medium (the diffusion coefficient must be extrapolated to zero concentration). Similar 
relations are available for non-spherical particles.  

The primarily intensity-weighted distribution can be transformed into a volume-
weighted ot number-weighted distribution via appropriate weighting factors (for Rayleigh 
scattering, Rayleigh-Debye-Gans scattering or Mie theory, depending on particle size). 
Additionally, in macromolecular solutions DLS can be used to determine the volume- or 
number-averaged molecular weight.  
 
 
8.2 Electrozone sensing (Coulter counter technique) 
 
The electrical sensing zone method (Coulter counter) was invented in the early 1950es and 
since then it has become one of the most widely used particle sizing techniques in medicine 
and pharmaceutical technology. The instrumental equipment is based on a tube with an orifice 
(aperture, “sensing zone“) placed in an electrolyte solution containing a low concentration of 
particles. The device has two electrodes, one inside and one outside the orifice and a current 
flows between them through the electrolyte solution. When particles pass through the orifice 
or sensing zone (via liquid flow driven by suction in the inner container), a volume of 
electrolyte equivalent to the immersed volume of the particle is displaced, causing a short-
term change in the conductivity across the orifice (i.e. the current between the two electrodes 
decreases when the particles are electrically insulating). This resistance change can be 
measured either as a voltage pulse or a current pulse. By measuring the number of pulses and 
their amplitudes, one can obtain information about the number of particles and the volume of 
each individual particle (independent of particle shape). → number of pulses − number of 
particles, pulse amplitude − proportional to the particle volume: 
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4R
IVU σ

∝ , 

 
(U  is the amplitude of the voltage pulse, V  the particle volume, σ  the electrolyte resistivity, 
I  the aperture current, R  the aperture radius). The electrical response is independent of 
particle shape. The lower size limit (0.4 µm) is determined by the signal-to-noise ratio, the 
upper size limit (several hundred µm) by the ability to suspend particles uniformly in the 
beaker (sedimentation). For measurements in a wide range, two or more apertures have to be 
used and the results overlapped to provide a complete size distribution.  

The particle size can be channelized using a pulse height analyzer and a number-
weighted particle size distribution is obtained ( 0q , 0Q ). The advantage of this counting 
method are that it measures a particle volume (→ equivalent volume diameter VD ), unbiased 
by particle shape. It counts and sizes with high resolution, sensitivity and reproducibility. The 
limitations (drawbacks) are that electrically conducting particles (metals) cannot be measured, 
that an electrolyte solution must be used (i.e. pure organic solvents, e.g. ethanol, cannot be 
used). Orifice blocking by large particles may lead to information loss concerning small 
particles. Errors are to be expected when the particles are porous, since open pores may or 
may not be filled with electrolyte solution, so that the effectively displaced volume can be 
considerably smaller than the convex hull of the particle. Although standard measurements 
can be in a few minutes, reasonable statistics may require long runs (more than 30 min). Stray 
signals (electronic noise, e.g. from an electron microscope in the same room) can cause high 
background counts.     
 
 
8.3 Optical particle counting (single-particle optical sensing) 
 
Optical particle counting (OPC, also called single particle optical sensing - SPOS) is one of 
the main technologies for environmental monitoring (atmospheric aerosol monitoring, clean 
room monitoring, clean water control) and industrial quality control (of liquid- or gas-borne 
particle systems), due to its ability to make in-situ measurements (especially when simple 
monitors are used). Similar to electrozone sensing and image analysis it is a counting method 
(in contrast to sedimentation, laser diffraction and DLS, which are ensemble methods), 
yielding a number-weighted size distribution. Compared to ensemble methods which have 
relatively low resolution, but a broad dynamical range and high statistical accuracy, OPC is a 
high-resolution technique, but with relatively narrow dynamical range and low statistical 
accuracy. It is ideally suited to detect unwanted single particles with a size lying outside 
specified limits, but the shape of the size distribution is not very reliable. 

Measuring principle: Light scattering technique (for small particles down to approx. 
50 nm, mainly air-borne powders and aerosols) or light extinction technique (for large particle 
from approx. 0.5 µm to more than 1 mm, mainly liquid-borne particles); the scattered 
intensity is dependent on the sixth power of size for small particles (Rayleigh regime) and on 
the second power of size for large or highly absorptive particles (Fraunhofer regime); in the 
Fraunhofer regime (typically > 1-10 µm, depending on absorption) light extinction OPC (light 
blockage OPC) measures the projected area diameter. Each time the particle traverses the 
beam, some part of the beam is blocked (via scattering or absorption by the particle), the light 
flux detected by the photodetector is reduced and a negative signal pulse is produced (pulse 
amplitude → particle size). 

Instrumental equipment and sample concentration: Light source (e.g. gas or diode 
laser), sensing zone (e.g. a glass cuvette), collecting optics and photodetector (usually in 
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forward direction; for scattering OPC sometimes at 90 °); volumetric designs illuminate the 
whole cross-section (→ absolute frequencies), in-situ designs only a part (“spectrometer 
design” for the size distribution, “monitor design” only to detect contamination single 
particles). In OPC often the absolute concentration (counts per unit volume) is of interest → 
volumetric metering and flow control. The electronic system converts light intensity pulses to 
electronic pulses, counts the individual pulses and sorts them according to their amplitude into 
predefined channels (pulse-height analyzer, multichannel analyzer - MCA and / or charge-
coupled device - CCD). For OPC measurements the particle concentration must be very low; 
extremely clean vehicle fluids must be used to prepare the highly dilute suspensions. 

Data evaluation and interpretation: Data evaluation is based on matrix inversion 
schemes (e.g. Phillips-Twomey regularization), but do not require complicated mathematical 
models like laser diffraction. OPC intruments need calibration with particles of the same 
optical properties (otherwise the results are only “optically equivalent diameters“, which are 
not comparable even for spherical particles); if propertly calibrated, good correlation of OPC 
and EZS results can be expected. For non-spherical particles the size measured closely 
approaches the volume-equivalent diameter when the particle size is smaller than the light 
wavelength and the projected area diameter in the Fraunhofer regime. In general, the results 
depend on particle size, shape and orientation, as well as light wavelength, flow rate and 
relative refractive index.  
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CPPS−9. Image analysis I − Free particles, quantitative size 
and shape determination 
 
 
9.0 Introduction  
 
The aim of image analysis is the reduction of the complex visual information contained in 
images to easily interpretable quantitative information in the form of simple graphs (e.g. size 
distributions) or even a few numbers (e.g. average or mean values). Thus, inevitably, some 
information is lost, and the user must ensure that the essential information is extracted.  

Projection is the basic technique to obtain size and shape information for particles and 
particle systems via microscopic image analysis. Thus, in the case of anisometric particles 
(disks / platelets or needles / fibers) it has to be taken into account that the orientation during 
measurement is usually not random, unless special methods of sample preparation are used. 
Therefore, for example, the thickness (height) of platelets is usually not accessible via image 
analysis. Apart from this, sample preparation has to ensure that agglomeration of particles is 
avoided as far as possible (difficult mainly for fibers and nanoparticles).  

Since the resolution limit of optical microscopy (light microscopy) is of order 1 µm, 
particles of such a size and smaller should be characterized by SEM (down to approx. 10 nm), 
TEM (down to approx. 1 nm) or scanning probe microscopes (scanning tunneling microscope 
– STM, atomic force microscope – AFM). Due to diffraction fringes occurring for small 
particles, only dimensions larger than a few µm can be reliably measured by optical 
microscopy.  

Image analysis is traditionally performed with static micrographs, although dynamic 
real-time or even in-line measurement systems are available today. Image analysis can be 
done manually (by selecting and marking each object “by hand”, i.e. via the user interface, 
e.g. the computer) or automatically. Automatic image analysis generally requires much higher 
image quality (e.g. contrast) and usually also image processing (i.e. digital image 
modification to obtain a binary image according to the operator’s specifications) prior to 
image analysis proper. Automatic image analysis (and the image processing steps required) is 
useful for routine measurements (mainly in industry), but is beyond the scope of this course. 
 
 
9.1 Basic size and shape measures 
 

• Caliper diameter (Feret diameter): Normal distance between two parallel tangent 
planes touching the particle surface (in 3D) or two parallel tangents touching the 
particle outline (in 2D); these values are dependent on particle orientation, therefore a 
single measurement has little significance → either measurements in all directions (for 
one single particle) or measurement of a sufficient number of particles in random 
orientation (if all particles are of the same size and shape) or measurement of two 
mutually perpendicular normal values for each particle such that the area of the 
rectangle enclosing the particle outline becomes a minimum (determined by the 
“minimum Feret diameter” min

FD  and the dimension perpendicular to it, the so-called 
“maximum Feret diameter” max

FD ) → aspect ratio R  for each particle (or aspect ratio 
distribution for an ensemble of particles),  
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min

max

F

F

D
DR = . 

 
(Sometimes the inverse definition is used, and many other shape factors have been 
defined in the literature – generally the definition has to be given in each context.)  

For a completely convex particle outline in 2D the average Feret diameter 
FD  (averaged over all directions) is related to the particle perimeter P  via the 

relation 
 

π
PDF = . 

 
The caliper or Feret diameters can be considered as 1D projections of 2D particle 
outlines onto a line, i.e. the average Feret diameter corresponds to an “average 
projection” (ensemble average for a system of randomly oriented particles). Note, 
however, that the errors in determining perimeters from digitalized pixel images are 
usually large and therefore FD  thus calculated is usually not very reliable, especially 
for small particles (for alternative methods to measure the perimeter by image analysis 
→ see our course “Microstructure and properties of porous materials” (ICT Prague).  

 
• Chord length (intercept length): Secant length inside the particle (dependent on 

direction and position); the mean chord length (in 2D or 3D) of a single particle (or 
identical particles in random orientation and position) is principally defined as the 
average of “all” (in practice, many) parallel chord lengths in a single direction, 
averaged over “all” (in practice, a few) directions. It is related in 2D to the area-to-
perimeter ratio via the relation 

 

P
ADC π=  

 
 and in 3D to the volume-to-surface ratio via the relation 
 

S
VDC 4= . 

 
These relations are valid for each single particle as well as for systems of particles 
(interpreted as ensemble averages).  

 
• Projected area diameter: Equivalent diameter PD  of a circle with the same area as the 

2D projection of the particle (projected area PA ): 
 

π
P

P
A

D
4

= . 

  
The projected area can be considered as a 2D projection of a 3D particle and in the 
case of completely convex particles its average value is related to the particle surface 
S  via the Cauchy relation (Cauchy’s stereological theorem, 1840): 
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4
SAP =  

  
(ensemble average for a system of randomly oriented particles). In contrast to 
perimeters the measurement of areas from digitalized pixel images gives quite reliable 
results. 
 

Three types of shape factors are commonly used: 
 

• Aspect ratio (axial ratio, Heywood’s elongation ratio, 1946): Ratio of 
maximum to minimum Feret diameter or vice versa, i.e. 

 

diameterFeretminimum
diameterFeretmaximumratioAspect =  

 
(values from 1 to ∞  or from 0 to 1, depending on the definition variant); a 
measure of elongation or flattening (anisometry) of the convex hull of 
particles; note, however, that only for prolate spheroids (rods) the aspect ratio 
determined via image analysis in 2D is (close to) the true 3D aspect ratio. 
 

• Circularity (roundness): Ratio of the perimeter squared to the projected area 
times π4 , i.e. 

 

PA
PyCircularit
π4

2

=  

 
(values ≥  1, i.e. = 1 for circles and > 1 for non-circles); a combined measure of 
irregularity (anisometry and non-smoothness) for convex and non-convex 
particles; an analogous shape factor in 3D in Waddell’s sphericity factor 
(Waddell 1932), defined as  
 

particleofareasurface
volumesameofsphereofareasurfaceSphericity = , 

 
which is simply the squared ratio of the volume-equivalent and surface-
equivalent diameter, i.e. ( )2

SV DD . 
 

• Concavity (non-convexity): Ratio of the diameter of the smallest circumscribed 
circle (sphere) to the diameter of the largest inscribed circle (sphere) centered 
in the center-of-mass of the particle, i.e. 

 
( )

( )spherecircleinscribedofdiameter
spherecirclebedcircumscriofdiameterConcavity =  

 
(values from ∞  for star-like objects to 1 for circles); only useful for isometric 
particles.



PABST & GREGOROVÁ (ICT Prague)                                     Characterization of particles and particle systems –10 
 

 30

CPPS−10. Image analysis II − Grains in polycrystalline 
materials, stereology 
 
 
10.0 Introduction  
 
Sectioning is the basic technique to obtain 2D images from which information on 3D 
microstructures can be extracted. Planar sections (polished sections) are the simplest and most 
typical type of probe available to investigate the microstructure of polycrystalline materials. 
Other probes, which are beyond the scope of this course, are thin sections and so-called 
disector probes and finally tomographic sectioning techniques. These are treated in our course 
“Microstructure and properties of porous materials” at the ICT Prague. Stereology can be 
considered as a subdiscipline of stochastic geometry and aims at obtaining information on the 
3D microstructure from 2D cuts (planar sections). Classical stereology is based on the 
assumption that there exist mean values characterizing the microstructure of the material, 
which are invariant under affine transformations (i.e. non-distorting translations and 
rotations). Therefore, unless stated otherwise, we assume that the microstructure of the 
material under investigation is isotropic, uniform and random (IUR assumption). More 
general cases are treated in our course “Microstructure and properties of porous materials”.  
 
 
10.1 Stereological terminology and the Delesse-Rosiwal law  
 
The basic symbols used in stereology and their corresponding physical dimensions (units) are 
 

• P  = number of points (e.g. pixels or intersection points in a measuring grid)  
• N  = number of objects (e.g. grains or pores) 
• L  = line or curve length (of a probe or a feature !) [m] 
• A  = area of microstructural features in a planar section (always plane) [m2]  
• S  = surface or interface area of features in 3D space (generally curved) [m2] 
• V  = volume of microstructural features in 3D space [m3] 
• M  = curvature (integral mean curvature) [m].  

 
Note that N  makes sense only when individual objects can be distinguished. This is not the 
case for a bicontinuous microstructure, for example. All other quantities are applicable to 
arbitrary microstructures, if the microstructural features of interest are clearly distinguishable 
(phases or grains). It is common practice in stereology to write ratios as indexed quantities 
instead of fractions. Hence, we have the following shorthand notation for stereological ratios: 
 

• PP  = point fraction = number of points hitting the feature (phase or grain) of interest 
divided by the total number of points placed on the image, 

• LL  = line fraction = cumulative length of lines hitting the feature (phase or grain) of 
interest divided by the total length of lines placed on the image, 

• AA  = area fraction = cumulative area of a feature (phase or grain) divided by the total 
area of the measured image, 

• VV  = volume fraction of a microstructural feature in 3D space (when the feature of 
interest are pores, i.e. the void phase, φ=VV  is the porosity). 
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In general, microstructures can be anisotropic (e.g. transversally isotropic composites) and 
non-uniform (e.g. gradient materials). In order to obtain a reliable and correct quantitative 
description of arbitrary microstructures in 3D, the sampling procedure must ensure that the 
probes intersect the microstructure isotropically, uniformly and randomly (IUR requirement 
on the probes). That means, probing should take all orientations and positions into equal 
account and sampling should not be influenced by microstructural systematicity (e.g. 
periodicity). On the other hand, if the microstructure itself is isotropic, uniform and random 
(IUR microstructures), then any probe is as good as any other. Of course, in both cases 
statistical accuracy requires additionally a sufficient number of measurements (and measured 
“events“). The most fundamental stereological relationship is the Delesse-Rosiwal law, 

 
PLAV PLAV === . 

 
That means, the volume fraction of a phase can be determined by measuring the area fraction 
of that phase on a planar section or, equivalently, by using a superimposed line grid or point 
grid to measure the cumulative line length or the number of points hitting the phase, 
respectively. As mentioned before, in the case of arbitrary microstructures, probing 
(sampling) must satisfy the IUR requirement, while for IUR microstructures, one planar 
section is in principle sufficient if only the number of measured “events“ (hits) is large 
enough to make the ratio accurate from the viewpoint of statistics. Note that, for reasons of 
simplicity, we omit angular brackets with stereological quantities, but with the implicit 
understanding that stereological theorems have to be interpreted as “expected value theorems” 
and the corresponding microstructural quantities as “estimators” → more details see our 
course “Microstructure and properties of porous materials”. 
  
Other fundamental ratios used in stereology are 
 

• LP  = number of intersection points with feature lines or curves (e.g. grain section 
perimeters) per unit length of a probe line (e.g. a line in a superimposed grid) [m−1], 

• LN  = number of objects per unit length of a probe line [m−1], 
• AN  = number of objects per unit area of a planar section [m−2], 
• VN  = number of objects per unit volume in 3D space [m−3], 
• AL  = cumulative length of feature lines or curves (e.g. grain section perimeters) per 

unit area in a planar section [m−1], 
• VL  = cumulative length of feature lines or curves per unit volume in 3D space [m−2], 

sometimes misleadingly called “specific line length“ (should be: “line length density“ 
or shortly “line density“), 

• VS  = cumulative surface or interface area of features per unit volume in 3D space 
[m−1], sometimes misleadingly called “specific surface area“ (should be: “surface area 
density“ or shortly “surface density“) 

• VM  = curvature density (intergral mean curvature per unit volume) [m−2]. 
 
Note that the topological characteristics VN  (number density) and VC  (connectivity density, 
not treated here), provide basic information on arbitrary 3D microstructures, irrespective of 
the objects being convex or even well-defined inclusions or not → Euler characteristic, 
measures of curvature (see our course “Microstructure and Properties of Porous Materials”)  
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10.2 Basic stereological relations  
 
Usually the quantities “per unit volume“ (i.e. VN , VL , VS , VM ) cannot be directly measured 
directly (except for VN , when the disector probe is used → see our course “Microstructure 
and properties of porous materials“) and it is one of the main tasks of stereology to determine 
them indirectly via the other, directly measureable, quantities ( LP , AN , AL ). 
 
This is done using the following stereological relations: 
 

• Surface area density (from line intercept count or length per area): ALV LPS
π
42 == , 

• Line length density (from the area object or point count): AAV PNL 22 == , 
• Curvature density (from the area tangent count): AV TM π= . 

 
The following averages can be defined for all microstructural features: 
 

• Mean intercept length in 3D [m]: 
V

V
C S

V
D

4
=  (in 2D: 

perimetermean
areaprojectedmean⋅π ) 

• Mean cross section [m2]: 
V

V

A

A

M
V

N
A

A
π2

==  

• Mean surface curvature (average curvature of the whole surface) [m−1]: 
V

V

S
M

H = . 

 
If the microstructural features are individual objects (i.e. the microstructure is an ensemble of 
objects), the following averages can be defined additionally: 
 

• Mean volume [m3]: VV NVV =  

• Mean surface [m2]: VV NSS =  
• Mean caliper diameter (“mean height“, defined only for convex bodies but of 

otherwise arbitrary shape) [m]: 
V

V

V

A

N
M

N
N

D
π2

==  

• Mean chord length [m]: LL NLY =  
 
The number of objects per unit volume can be either measured directly from transparent slices 
(via the so-called disector count, which is a 3D equivalent of the 2D area tangent count used 
to determine the curvature density) or determined from the mean diameter (if known) 
 

D
M

D
NN VA

V
π2

== . 

 
In most cases, however, the size distribution (and thus the mean diameter) is not known a 
priori, and the inverse problem must be solved (so-called “unfolding“ of size distributions).  
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10.3 Unfolding size distributions     
 
Without shape assumptions it is not possible to infer the true 3D size (distribution) of 
(convex) objects (inclusions, e.g. grains or pores, in a matrix) from measurements on 2D 
plane sections. From the mathematical viewpoint the problem is ill-posed and ill-conditioned, 
i.e. small statistical variations in the 2D measurements lead to large errors in the 3D results. 
Even if it is assumed that the shape is the same for all objects (inclusions) and size-invariant, 
the solution is not trivial.  

When the objects (inclusions) are spheres, one could in principle apply a simple 
graphical unfolding procedure (Lord-Willis procedure, unfolding of linear intercepts), which 
is based on the fact that the frequency distribution of linear intercepts in a single sphere is a 
triangular distribution (→ see our course “Microstructure and properties of porous 
materials“), but the large errors introduced in the small-size fraction devaluates the method in 
practice.  

An alternative method is based on the simultaneous solution of a system of equations 
(Saltykov method). In practice the largest diameter observed in the planar section is assumed 
to be the true maximum sphere diameter and based on this value, the whole size range is 
subdivided into n  size classes (usually up to 10 – 15 classes of bin width δ ). Then the n -
dimensional vector AiN  (i.e. the AN  values for each size class, corresponding to the measured 
circle diameters) is transformed into another n -dimensional vector VjN  (i.e. the required VN  
values for each size class, corresponding to the desired true sphere diameters) via a quadratic 
matrix (Saltykov-matrix, see below). Using the Einstein summation convention, this 
Saltykov-transformation can be written briefly as 

 

AiijVj NN ⋅⎟
⎠
⎞

⎜
⎝
⎛= α
δ
1 . 

 
Similar transformation matrices are available for other isometric shapes as well (e.g. 
polyhedra and cylinders), but it has to be emphasized that the results are only reasonable 
when the assumption of a unique, size-invariant shape is at least approximately fulfilled. In 
the case of rotational ellipsoids (spheroids), which can be useful model shapes for all kinds of 
anisometric inclusions a generalized version of the Saltykov transformation is available 
(DeHoff-transformation), 
 

( )
AiijVj NRKN ⋅⎟

⎠
⎞

⎜
⎝
⎛= α

δ
, 

 
where K  is a function of the aspect ratio (axial ratio) R  (here defined to be always < 1; the 
values of ( )RK  are > 1 for prolate and < 1 for oblate spheroids). In order to decide from a 2D 
planar section whether the shape is prolate or oblate, one considers the most isometric 
(equiaxed) sections. If their diameter corresponds to the length of the anisometric sections, the 
inclusions (e.g. grains or pores) are oblate, otherwise prolate. It is in principle thinkable to 
extend this matrix unfolding approach to convex features that do not all have the same shape 
(using a fourth-order transformation matrix). Statistical errors, however, devaluate this idea in 
practice.   
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Figure 10.1. Saltykov matrix. 
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CPPS−11. Crystallite size from XRD line profile analysis 
 
 
11.0 Introduction  
 
The shape and broadening (breadth) of XRD line profiles provides microstructural 
information, including the average size, size distribution and shape of crystallites in the range 
5 – 100 nm (i.e. crystalline nanoparticles and nanocrystalline materials), lattice faulting / 
twinning and density and spatial arrangement of dislocations. This microstructural 
information is generally convoluted together and can be grouped into size-broadening and 
strain- / distortion-broadening contributions. Line profile analysis attempts to extract 
microstructural information from the observed (recorded) line profiles. This commonly 
involves the solution of an inverse problem (integral equation), for which questions of 
existence and uniqueness may arise. Therefore, currently, line profile analysis still is a field of 
intense research activities. Concomitantly with the progress in nanotechnology and the need 
for a straightforward routine size and shape analysis in the nanosize range, there are many 
attempts to develop and select suitable standard materials, and to compare the size 
distributions and shape information obtained by XRD methods with the results of image 
analysis using SEM, TEM and possibly, scanning probe microscopes such as the scanning 
tunneling microscope (STM) and the atomic force microscope (AFM). XRD line profile 
analysis seems to be a promising tool to be applied in fast and convenient routine 
measurements (as soon as reliable evaluation procedures are established and the physical 
interpretation of the results is clarified).  
 
 
11.1 Scherrer formula and Williamson-Hall plot 
 
When the crystallite size is smaller than approx. 100 nm XRD line profile broadening 
becomes a measurable effect. The classic relation used for the calculation of crystallite size is 
the Scherrer formula: 
 

θβ
λ

cossize
Scherrer

KD = , 

 
where ScherrerD  is the volume-weighted apparent crystallite size, sizeβ  the integral breadth of 
the line profile (XRD peak) caused by small crystallite size, θ2  the diffraction angle, λ  the 
X-ray wavelength (e.g. 0.154 nm for CuKα1 radiation) and K  the (shape-dependent) Scherrer 
constant (e.g. 0.94 for cubic crystallites). 
 However, apart from generic instrumental broadening, another important cause for 
broad XRD peaks is strain broadening (distortion broadening caused by dislocations, stacking 
faults and twins). This broadening is related to the microstrain dd∆=ε  (with d  being the 
interplanar distance between (hkl) planes) via the relation  
 

θεβε tan4= . 
 
Due to the different angular dependence of the two broadening effects, they can in principle 
be distinguished. Traditionally this is done using the Williamson-Hall plot, based on the 
relation 
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θ
λ
ε

λ
θββ sin4cos* +==

D
K , 

 
where β  is the observed integral breadth. When *β  values are plotted against θsin  and 
fitted by linear regression, a line is obtained with a slope proportional to microdeformations 
and an intercept (extrapolated to θ  = 0°) inversely proportional to the crystallite size ScherrerD . 
 
 
11.2 Theory of nanocrystallite size broadening of X-ray line profiles 
 
Constructive (i.e. non-destructive) interference of the scattered (diffracted) X-ray beam in a 
crystal occurs only when the Bragg condition is met: 
 

gss if
rrr

=− , 
 
where the wave vectors fsr  and isr  refer to the diffracted and incident wave, respectively (with 

λ1== if ss rr , where λ  is the X-ray wavelength), and gr  is the diffraction vector with 

dg 1=r  and d  being the interplanar spacing (interatomic spacing for a set of ( )hkl  planes). 
Taking into account the angle between fsr  and isr  the Bragg condition can be written as 
 

λθ =0sin2d  
 
where 02θ  is the Bragg angle. The resulting diffraction spot (in reciprocal space) is and 
intensity distribution (in 3D) which is infinitesimally narrow and of infinite intensity. 
Diffraction of monochromatic X-rays from an ideal crystal of infinite size ( ∞→D ): 
 

( ) ( )sAsI δ= , 
 
where ( )...δ  denotes the Dirac delta distribution; this relation follows from 
 

( ) ( ) 2

2
2sin

⎟
⎠
⎞

⎜
⎝
⎛≈

ds
DsAsI

π
π , 

 
where the reciprocal space unit is defined as: 
 

( )0sinsin2 θθ
λ

−=s . 

 
For spherical crystallites with finite size (diameter D  < 100 nm) the size-broadened line 
profile (Fourier transformation of the crystallite) is 
 

( ) ( )∫
+

−

=
τ

τ

π dtstDtVDsI 2cos,, , 
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where t   defines the displacement of a crystallite shifted parallel to the diffraction vector, 
( )DtV ,  is the so-called common-volume or “ghost” function of the crystallite and the 

dimension τ  defines the maximum thickness of the crystallite parallel to the diffraction 
vector gr  (for anisometric crystallites a function of the crystallite size D  in the respective 
direction; thus, principally, shape information can be extracted from considering the line 
profile differences at different angles). The diffraction spots and line profiles are Fourier 
transforms of the crystallites (as a direct consequence of the far-field approximation). 
Therefore small crystallites correspond to broad diffraction spots (line profiles). The Fourier 
coefficients ( )tA  are 
 

( ) ( )
( )0

0,
V

tVtA = , 

 
where ( )0V  is the volume of the crystallite. Based on these Fourier coefficients, an area-
weighted average crystallite size can be defined as 
 

( )
0

1

=

− =
t

A td
tAdt . 

 
Alternatively, the integral breadth β  (a direct consequence of the additivity of I ) can be 
defined in reciprocal space units as  
 

( ) ( )
1

0

2,1
−∞+

∞−
⎥
⎦

⎤
⎢
⎣

⎡
== ∫∫

τ

β dttAdsDsI
I mex

, 

 
and, based on this integral breadth, another size measure, the volume-weighted average size 
can be defined as 
 

1−= βVt . 
 
Both At  (column length) and Vt  (domain size) correspond to the apparent size (thickness) 
of the crystallite in the direction of the diffraction vector gr . A shape assumption is required 
to interpret them in terms of physical crystallite dimensions. This generally requires 
determining the Scherrer constant in order to relate them to the actual thickness τ  of the 
crystallite, parallel to gr . Given a diffraction pattern consisting only of size-broadened line 
profiles, each (hkl) defines the thickness of the crystallite in a particular direction. Using this 
information, an average crystallite shape can be obtained.  
 In a nanocrystalline material with crystallites of the same shape, but with a distribution 
of sizes ( )DP , the size broadening, ( )sf , consists of a superposition of line profiles, ( )DsI , , 
weighted by ( )DP , i.e. 
 

( ) ( ) ( )∫
∞

=
0

, dDDPDsIsf . 
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The modified common-volume function now involves the contribution of crystallites in the 
size range between D  and dDD + , i.e. 
 

( ) ( ) ( ) dDDPDtVtV
t
∫
∞

= ,~ , 

 
and the Fourier coefficients are given as 
 

( ) ( )
( )0~

~

V
tVtA = . 

 
The difficulty in determining ( )DP  from the observed line profile, ( )sg , is that there are 
other contribution to line broadening which must be removed (instrumental broadening, 
background and noise).  
 The area- and volume-weighted average sizes (apparent theicknesses) can be related to 
a spherical nanocrystallite model → area- and volume-weighted average diameters: 
 

AA tD
2
3

= , 

 

VV tD
3
4

= . 

 
The ratio of the two average sizes also gives a qualitative indication as to the presence of a 
crystallite diameter distribution: if 89.098 ≈== VAVA DDtt  for spherical crystallites, 
then the size distribution is a Dirac delta-distribution about 0D , i.e. all crystallites gave the 
same size. Other values of this ratio are indicative of a size distribution with finite breadth. 
When a log-normal size distribution is assumed for spherical crystallites, i.e.  
 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2

0

0

0
22 ln

ln
2
1exp

ln2
1

σσπ

DD

D
DP , 

 
AD  and VD  can be related to the median diameter 0D  and the log-normal variance 2

0σ  [Krill 
& Birringer 1998]. VD  corresponds to the crystallite size determined by the Scherrer formula.  

A new method of crystallite size determination, proposed by [Kužel et al. 2004] and 
usable for thin films (foils), is based on the measurement of the small-angle diffuse scattering 
of the transmitted wave.  
 
Standard reference materials for XRD line profile analysis: 
 

• NIST SRM 660 a LaB6 powder for correction of instrumental broadening  
• NIST SRM CeO2 powder (cubic, isometric-spherical) in the size range 10-20 nm with average 

crystallite diameter 17 nm (in preparation) 
• NIST SRM ZnO powder (hexagonal, prismatic-cylindrical) in the size range 40-60 nm (in preparation).  
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Line-broadening analysis (LBA) is the method to extract crystallite size and inhomogeneous 
strain (associated with local lattice deformations due to defects) from diffraction data → two 
main phenomenological approaches related to two different crystallite-size dimensions: 
 

• One based on the integral breadth of the diffraction lines → volume-averaged 
apparent dimension in the direction normal to the reflecting planes (domain size) VD  
[Klug & Alexander 1974], 

• One based on the Fourier analysis of the line profile → area-averaged apparent 
dimension in the direction normal to the reflecting planes (column length) AD  
[Bertaut 1949]. 

 
The second derivative of the Fourier coefficient is related to the column-length distribution 
function, while determination of the real crystallite size distribution includes the third Fourier 
coefficients → large errors and unreliable because of the approximations inherent in size-
strain separation approaches. An unbiased determination of crystallite size and strain can be 
undertaken only if the diffraction lines do not overlap. Otherwise, pattern fitting and 
decomposition must be made before LBA. In the simplest case line profiles can be considered 
as a convolution of two types of analytical functions:   
 

• Gauss functions, loosely associated with strain broadening, 
• Lorentz functions (Cauchy functions), loosely associated with size broadening. 

 
It is widely accepted that the best analytical fucntion for profile fitting is a convolution of the 
two, i.e. a Voigt function. Pearson VII and pseudo-Voigt functions were then introduced as 
satisfactory approximations to the Voigt function, but faster to evaluate → advantage in 
Rietveld refinement. One of the most frequently used functions for profile fitting is the 
Thompson-Cox-Hastings pseudo-Voigt function, where the full widths at half maximum 
(FWHM) of the Gauss and Lorentz components are constrained to be the same and equal to 
the width of the pseudo-Voigt function itself. Note, however, there is no a priori reason to 
believe that a simple Voigt function can sucessfully describe all size- and strain-broadening 
effects. For example, “super-Lorentzian“ line profiles (with tails falling off more slowly than 
the Lorentzian function) can be more adequately modeled by a priori assuming a size 
distribution, e.g. multimodal or broad log-normal.     

The log-normal size distribution for spherical crystallites is characterized by two 
parameters, the average radius R  and the dispersion 2

Rσ  or, alternatively, the dimensionless 
ratio 22 Rc Rσ= : 
 

( )
( )

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡

+
+

−
+

=
−

c
crR

cr
rf

1ln2
1lnexp

1ln2
1 12

π
. 

 
Volume-averaged and area-averaged diameters: 
 

( )
2

13 3cRDV
+

=  

 
( )

3
14 2cRDA
+

=  
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In principle, the values VD  and AD  can be used to calculate the distribution parameters R  
and c  for the log-normal distribution. However, except for materials with highest symmetry 
the line profiles commonly overlap and have to be reconstructed (by fitting with simple 
analytical functions such as the Voigt function or its approximations or by “whole-pattern 
fitting“), before Fourier analysis of the line profiles can be performed. When a Voigt function 
is used the following inequality holds between VD  and AD : 
 

231.1
2

1erfc2 <≤≈⎟
⎠

⎞
⎜
⎝

⎛

A

V

D
D

eπ . 

 
The lower limit of this ratio (which ensures that the column-length distribution function is 
always positive) constraints the dispersion parameter 164.0≥c , i.e. the Voigt function is not 
appropriate for very narrow distributions (this lower limit is not necessary for the pseudo-
Voigt function, which ensures positivity of AD  automatically). Both the Voigt and the 
pseudo-Voigt function are inadequate for very broad distributions ( 4.0>c ). Assuming a 
priori a log-normal size distribution leads to reasonable line profile fits. 
      
 
Exercise problems 
 

1. For a given XRD pattern determine the crystallite size and microstrain using the 
Williamson-Hall plot (neglecting instrumental broadening).  

2. Calculate the average crystallite radius R  and the dispersion parameter c  for cubic 
ceria (CeO2) when the domain size VD  is 22.2 nm and the column length AD  is 16.8 
nm and a log-normal size distribution is assumed (solution: 9.0 nm and 0.181). 

3. Calculate the domain size VD  and the column length AD   for cubic ceria (CeO2) when 
the crystallite size distribution is log-normal with and average crystallite radius R  of 
16.8 nm and a dispersion parameter c  of 2.82 (solution: 140.8 nm and 32.8 nm). 
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CPPS−12. Adsorption methods and mercury intrusion 
 
 
12.0 Introduction 
 
The adsorption of gas molecules in a gaseous medium (or solute molecules in a liquid 
medium, the solvent) can be used to characterize the surface of porous and / or particulate 
materials. Also mercury intrusion, which is commonly used to determine porosity and pore-
size distributions, can under certain circumstances be used to characterize particle size. 
Specific surface area measurement by adsorption methods is most frequently based on the 
BET model (1938), while particle sizing by mercury intrusion is usually based on the so-
called Mayer-Stowe theory (1965).  
 
 
12.1 Principles of adsorption, classification of isotherms, BET method 
 
The specific surface area [m2/g] of a powder or a porous material can be transformed into 
surface density [m2/cm3] when the helium-pycnometric density [g/cm3] is known. Since the 
helium-pycnometric density differs from the true density (e.g. the theoretical X-ray density of 
crystalline substances) when closed (isolated) pores are present, all these characteristics 
usually refer only to the open void space accessible from outside. 
 When a solid surface is exposed to a gaseous atmosphere, gas molecules impinge on 
the surface and a certain percentage (depending on the partial pressure of the gas) of them 
sticks to the surface, i.e. is adsorbed. The equilibrium amount a  of adsorbed gas in [moles/g], 
i.e. in moles of adsorbate on 1 g of adsorbent, or in [cm3 at STP/g], i.e. in volume of adsorbate 
at standard temperature (0 °C = 273 K) and pressure (1 atm = 101.3 kPa) on 1 g of adsorbent, 
as a function of relative pressure 0ppx =  (where 0p  is the saturation vapor pressure, e.g. 
101.3 kPa for nitrogen at 77 K) at a certain constant temperature, is called an adsorption 
isotherm. Thus, the adsorption isotherm represents a dynamical equilibrium situation between 
condensation on and evaporation from the solid surface.  

According to the IUPAC classification, pore sizes can be divided into micropores (< 2 
nm), mesopores (2-50 nm) and macropores (> 50 nm). In micro- and mesoporous materials 
the adsorbed gas can attain a liquid-like state (capillary condensation) and thus the amount of 
gas molecules apparently adsorbed greatly exceeds that needed for monolayer (or even 
multilayer) adsorption → unrealistically high surface area values. 
 
Six types of adsorption isotherms are commonly distinguished, the most important of which 
are: 
 

• Type I (Langmuir): for microporous materials; monolayer adsorption, with a nearly 
horizontal part, from which the amount of absorbate in the monolayer (monolayer 
capacity) ma  can be read off and the specific micropore volume [cm3/g] can be 
estimated as 

  
vaV mmicro ⋅= , 

 
where v  is the molar volume of the liquid adsorbate (e.g. 34.6 cm3/mole for liquid 
nitrogen at 77 K). 
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• Type II (Brunauer-Emmett-Teller, BET): for nonporous or macroporous materials; 
multilayer adsorption, which can be described in the relative pressure range 

3.005.0 << x  via the equation 
 

( ) ( )Cxxx
Cx

a
a

m +−−
=

11
, 

 
where C  is a constant related to the difference between heat of adsorption and heat 
of condensation. This BET equation can be rewritten in the alternative form  

 

( ) x
Ca

C
Caxa

x

mm

⋅
−

+=
−

11
1

. 

  
When the l.h.s. of this equation is plotted against x  and fitted by linear regression, 
the values of the monolayer capacity ma  and the BET constant C  can be determined 
from the slope s  and the intercept i  ( ( )isam += 1  and isC += 1 ). As soon as ma  
is known, the specific BET surface can be calculated as 

 
σ⋅⋅= AmBET NaS , 

 
where AN  is Avogadro’s number (6.023 ⋅1023  molecules per mole) and σ  the 
average cross-sectional area of the adsorbate gas molecule (e.g. for nitrogen 0.162 
nm2 per molecule). Note that the BETS  value calculated from type II (and IV) 
isotherms corresponds to a realistic specific surface value only when micropores are 
absent. High values of the BET constant C  (i.e. sharp knees in the isotherm) usually 
indicate the presence of micropores and devaluate the results. On the other hand, 
values 2<C  result, then the isotherms are of type III or V (i.e. there is no knee in 
the isotherm) and indicate that the interaction between adsorbate and adsorbent is 
weak. Also in this case the results have to be discarded.  

Specific surface determinations via so-called single-point methods (e.g. using 
the chromatographic Nelssen-Eggertsen technique, which does not require vacuum 
equipment) are based on the simplifying assumption that ∞≈C . In other words, the 
intercept in the BET graph is neglected and a straight line is drawn from the point in 
question to the origin; the monolayer capacity is then calculated form the slope of 
this line as ( ) sisam 11 ≈+= . The principle of this technique is that from a gas 
mixture containing nitrogen and hydrogen or helium, nitrogen is preferentially 
adsorbed when the dry sample is cooled down by inserting the sample flask into 
liquid nitrogen. A thermal conductivity detector is used to determine the 
concentration change (partial pressure change) in the gas mixture and thus the partial 
pressure of the adsorbate. In practice this technique is used mostly as a comparative 
technique, i.e. using a reference standard of known specific surface refS . The sample 
specific surface S  is then calculated from the peak areas (signal responses) of the 
reference refA  and sample A  (with weights refW  and W , respectively) as 
 

( )
( )refrefref WA

WA
S
S

= . 
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• Type IV isotherms exhibiting hysteresis are characteristic of mesoporous materials 

exhibiting capillary condensation at sufficiently high relative pressures (> 0.42) and 
allow the determination of the specific surface BETS  as well as the pore size 
distribution (of mesopores; note that mercury porosimetry yields the size distribution 
of macropores). The basic equation for pore size determination is the modified 
Kelvin equation 

 

( )
xRT

vxr
ln
cos2 θγτ −= , 

 
where r  is the (equivalent) pore radius, γ  and v  the surface tension and the molar 
volume of the liquid adsorbate (for liquid nitrogen 88.8=γ ⋅10-3 N/m at 77 K) and 
( )xτ  the equilibrium thickness of the adsorbed film (before capillary condensation or 

during or after evaporation), for which empirical approximations are available, e.g. 
when 65.0>x  for nitrogen (with τ  in nm) the Halsey relation, 

 

( ) 3
1

ln
5354.0 ⎟
⎠
⎞

⎜
⎝
⎛ −⋅=

x
xτ , 

 
or similar relations. Since during nitrogen adsorption at 77 K nitrogen is perfectly 
wetting, °= 0θ  and thus 1cos =θ . By calculating the r  values for different relative 
pressures (usually from the desorption isotherm) yields a pore size distribution. Note 
that, similar to mercury porosimetry, this pore size determination is based on the 
idealized model of straight, non-intersecting, cylindrical pores (capillaries) with 
circular cross-section. That means, for a real system (porous material) the results 
have to be interpreted in terms of equivalent diameters. Note that the Kelvin equation 
is valid only as long as the continuum approach is justified, i.e. at best down to radii 
of approx. 1 nm (i.e. not for micropores). 

 
• Isotherms of type III (for nonporous materials) and type V (for mesoporous 

materials) may occur when the interaction between adsorbate and adsorbent is weak. 
They are less common in practice (similar to the stepped type VI isotherm) and no 
standard evaluation procedures are available to extract microstructural information 
from them.    

  
 
12.2 Principles of mercury intrusion and Mayer-Stowe theory 
 
Mercury intrusion porosimetry is based on the Washburn equation, 
 

p
r θγ cos2−
= , 

 
where γ  is the surface tension of mercury (usually conventionally taken as 0.480 N/m, 
although modern research favors 0.485 N/m as the best values for highly pure mercury at 
room temperature in vacuum), θ  the mercury contact angle at the material surface (usually 
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taken as 140 °, although it is strongly dependent on the substrate and temperature and varies 
at least between 120 and 160°) and p  the hydrostatic pressure. This equation is derived from 
the force balance θγππ cos22 ⋅=⋅ rpr  (in words, area times pressure equals perimeter 
times effective surface tension) and can for practical purposes be written as pr 735= , with 
r  in nm and p  in MPa. Since mercury is a non-wetting liquid, high pressures are needed to 
fill small pores (the higher the pressure the smaller are the pores intruded by mercury). Note 
that at 0.1 MPa (i.e. approximately atmospheric pressure, since 1 atm = 101.325 kPa) pores 
larger than 7 µm are already filled, while pressures higher than 100 MPa (approx. 1000 atm) 
are needed to fill pores (or better pore throats, due to the idealized model of “equivalent“ 
cylindrical pore channels) smaller than 7 nm. For pores (pore throats) larger than 7 µm a low-
pressure unit with vacuum has to be used. The volume of mercury pressed into the sample is 
recorded electrically with a capillary dilatometer and the resulting intrusion curve can be 
directly converted into a cumulative pore size distribution, from which a frequency 
distribution can be obtained by derivation. 

When powder beds are analyzed by mercury intrusion, the peak at low pressures 
corresponds to the size (usually in the micrometer range) of the interstitial voids between 
powder particles and has nothing to do with the internal porosity of the particles itself. 
According to a simple theory by Mayer and Stowe (1965) the breakthrough pressure 
p (usually determined from a re-intrusion curve, after the agglomerates have been destroyed 

by the first intrusion) required to force mercury into the void spaces between regularly or non-
regularly packed spheres of diameter D  is given by the relation 
 

D
p γκ ⋅= , 

 
where γ  is the surface tension of mercury (here assumed to be 0.485 N/m) and the 
(dimensionless) Mayer-Stowe constant κ  depends on the mercury contact angle at the 
particle surface and on the interstitial void space (interparticle porosity). Mayer and Stowe 
considered regular packings from simple cubic (void fraction 0.48) to close packed (fcc or 
hcp, void fraction 0.26), for which κ  varies in the wide range from approx. 5 to 17 (assuming 
a contact angle of 130°). For random packing (void fraction approx. 0.36) the κ  value is 
approx. 10. Experimental measurements by Pospěch & Schneider (1989) have indeed 
confirmed this value as a reasonable estimate e.g. for comparison with “mean particle sizes” 
(“integral mean size” and mode) determined from image analysis. For comparison with 
sedimentation data the same authors recommend a κ  value lower by approx. 40 % (i.e around 
7). However, experimental scatter is generally high (corresponding to κ  values of 8-13 for 
comparison with image analysis and 6-10 for comparison with sedimentation), and thus the 
average particle size calculated via Mayer-Stowe theory should be considered only as a rough 
estimate.  
 
 
12.2 Determination of fractal dimensions 
 
Concepts of fractal geometry, elaborated by Mandelbrot from the late 1960es onwards, have 
been successfully applied in the study of solid surfaces. Fractal objects are self-similar, i.e. 
they look similar at all levels of magnification (at least in a certain range of length scales). 
The degree of roughness (topography) of irregular surfaces can be characterized by the fractal 
dimension D , which may differ from the Euclidean dimension of the surface 2=d . The 
fractal dimension of an irregularly shaped solid can vary between 2 and 3, depending on 
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surface roughness and / or porosity, i.e. the surface of such solids can in some sense be 
“almost volume-filling“. By analogy, a fractal curve has 21 << D , i.e. can almost fill an area. 
There exist several experimental methods to determine the fractal dimension, e.g. small-angle 
X-ray scattering (SAXS), small-angle neutron scattering (SANS), adsorption techniques and 
mercury porosimetry. 
 Real solids have surface areas which are proportional to Dr , where D  is the fractal 
dimension ranging from 2 (for perfectly flat surfaces) to 3 (for extremely rough surfaces). 
Well-defined mathematical examples of fractal objects are the 1D Koch curve (with 

...26.13log4log ==D ), the Koch surface (translated Koch curve) in 2D (with 
...26.23log4log1 =+=D ), the 3D Menger sponge (with ...72.23log20log ==D ) and the 

2D Menger sieve (with ...89.13log8log ==D ). Note that the translated Menger sieve in 3D 
has a fractal dimension of ...89.23log8log1 =+=D , which is higher than that of the 3D 
Menger sponge, corresponding to the fact that its solid volume is larger. The Koch surface is 
an example of a low-D surface (very rough, but not volume filling), the Menger sponge of a 
high-D surface (almost volume-filling).    
 Curves, surfaces and volumes can be measured by isometric, regular 1D, 2D or 3D 
“yardsticks“ (usually hypercubes or hyperspheres) characterized by a linear size r . The “size“ 
of the object ( )rN  is then characterized by the scaling law of the type 
 

( ) DrCrN −= , 
 
(power law), letting 0→r , where D  is the fractal dimension and C  is a constant, which 

equals L
2
1 , A

π
1   and V

4
3π  in 1D, 2D and 3D, respectively. This relation can be rewritten to 

define the fractal dimension as  
 

( )
r
rND

r log
loglim

0→
−= . 

 
In practice, (specific) surface areas (or surface area densities) are usually measured via the 
monolayer capacity n , i.e. the number of moles n  of adsorbate corresponding to the 
formation of a monolayer on the adsorbent. Therefore the fractal dimension can in principle 
be determined by using different (spherical) molecules, according to the relation 
 

Drn −∝ . 
 
When the adsorbate molecules of a series are not spherical (but geometrically similar), it is 
more useful to use the effective cross-section σ , i.e. 
 

2Dn −∝ σ . 
 
Fractality of the surface implies a straight line of the nlog - rlog - (or nlog - σlog -) plot in 
the scale range of self-similarity. In this range the fractal dimension can easily be determined 
from the slope of the line ( ) constDn +−= σlog2log , which relates the number of adsorbate 
molecules n  (in moles) in the adsorbed monolayer to the effective adsorbate cross-section σ  
(which has to be appropriately estimated). 
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The aforementioned method uses yardsticks of different size. For powders and powder 
compacts consisting of differently sized particles, a complementary approach can be chosen: 
the surface area of systems with differently sized particles (each characterized by the mean 
diameter d ) is measured with the same yardstick (adsorbate molecule). In this case the 
monolayer capacity (and thus the measured surface area) has the dependence 
 

3−∝∝ DdSn , 
 
and the fractal dimension can be determined from ( ) constdDS +−= log3log , when d  has 
been independently measured, e.g. by electron microscopy. Methods based on the 
aforementioned relations are called molecular tiling (Pfeifer-Avnir approach). To apply this 
methods in practice, the monolayer capacity has to be determined, usually via the BET 
approach. Other methods are based on a “fractal“ Frenkel-Halsey-Hill equation (FHH 
approach)  
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or on the Kiselev equation for the adsorbate−vapor interfacial area LVS  in the region of 
capillary condensation (thermodynamic or Neimark-Kiselev approach),  
 

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=
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0

ln
N

N
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p
pRTS

γ
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Based on this equation the surface area of the adsorbed film can be interpreted as that of the 
adsorbent that would be measured by spheres with radius mr , i.e. for a fractal surface we have 
 

D
mLV rS −∝ 2 , 

 
and the fractal dimension can be obtained from a plot of LVSln  versus mrln . In principle a 
similar method can be applied to the intrusion (and extrusion) of non-wetting fluids. The pore 
size distribution measured by mercury porosimetry can be written as  
 

( ) ( ) Dr
dp

pdV
r
p

dr
rdV −∝⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=− 2 , 

 
or equivalently, using the inverse proportionality pr 1−∝  (Washburn equation),  
 

( ) 4−∝− Dp
dp

pdV . 

 
Hence, the fractal dimension D  can be determined directly from the slope of ( )dpdVlog  
versus plog . 
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CPPS−13. Aerosols and nanoparticles 
 
 
13.0 Introduction  
 
Aerosols, i.e. dispersions of tiny particles (solid particles, liquid drops, or composite particles 
with a solid core covered by liquid shell) in gaseous media, e.g. ambient air, are of importance 
in environmental and health science and technology as well as many other fields such as 
meteoreology, energy technology, powder technology, and materials technology. They 
include dust, fumes, smoke, fog / mist / clouds, haze and smog. In materials technology 
aerosols play a major today in connection with gas-phase synthesis and related synthesis 
routes (e.g. chemical vapor synthesis) of nanopowders. Ubiquitous phenomena connected 
with aerosols (and with many suspensions) are coagulation, i.e. the formation of larger 
secondary particles (“soft“ or “hard“ agglomerates, the latter sometimes called aggregates) 
from small primary particles, as well as coalescence and sintering. Similar to other colloidal 
systems, aerosols exhibit interesting and unique optical properties. Nanoparticles have been 
used in various products for several decades, but the expected increase of production and use 
of newly developed materials makes the question of their safety to life and the environment 
increasingly important. However, fundamental knowledge concerning the toxicity of these 
materials is still missing or controversial.  
 
 
13.1 Aerosols – Classification 
 
Aerosol – a dispersion of solid particle, liquid drops, or composite particles (solid core with 
liquid shell) in a gas, usually air → traditional classification of aerosols: 
 

• Dust: Solid particles formed by disintegration processes (e.g. crushing, grinding, 
drilling), can be classified by screening (sieving), 

• Fumes: Solid particles produced by physicochemical reactions (e.g. combustion, 
sublimation) from metals, typically smaller than 1 µm (too small to be screened), 

• Smoke: Solid particles produced by burning (oxidation) of organic matter (e.g. coal, 
wood, oil), typically smaller than 1 µm, cannot be sized on screens, 

• Mist, fog, clouds: Aerosols produced by the disintegration of liquid or the 
condensation of vapor → spherical liquid droplets, small enough to float in moderate 
air currents (when > 100 µm → drizzle or rain drops), 

• Haze: Solid particles in the atmosphere (in the pre-condensation state of air) with radii 
< 0.1 µm (Aitken cores / nuclei) grown in the presence of atmospheric moisture; foggy 
haze = equilibrium state achieved by condensation of moisture on large (0.1 µm < R  
< 1 µm) and giant (> 1 µm) particles (condensation nuclei) of soluble salts, 

• Smog: Combination of smoke and fog, resulting from impurities in the atmosphere 
(products from photochemical reactions or volcanic activity, smoke from wood fires 
etc.) and their combination with water vapor, typically smaller than 1 µm.  

 
In atmospheric physics and meteorology the term “atmospheric aerosol” is frequently used 
synonymously with “atmospheric haze” → subdivided into continental aerosols (“haze M”, 
consisting of insoluble soil components such as quartz or clay minerals or hygroscopic 
sulfates), sea aerosols (“haze L”, consisting of soluble sea salt condensation cores) and high-
altitude stratospheric aerosols, including submicron particles in dust layers (“haze H”).  
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13.2 Condensation and evaporation phenomena in aerosols 
 
Early investigations: Coulier 1875, Aitken 1880, Wilson 1897. 
 
Types of nucleation: homogeneous (condensation of vapor on clusters of similar vapor 
molecules, supercooling is common, for water e.g. down to – 40 °C) – heterogeneous 
(condensation on nuclei of dissimilar material, e.g. ions or ionic clusters or small solid 
particles acting as condensation cores / nuclei). 
 
Homogeneous nucleation is a three-step process: 
 

• Vapor must become sufficiently supersaturated 
• Small clusters of molecules (embryos) must form 
• Vapor must condense on these embryos → nucleus → droplet 

 
In heterogeneous nucleation the second step is omitted (nuclei can be soluble or insoluble).  
 
The theory developed for condensation and evaporation of liquid aerosols can also be applied 
to the formation of solid aerosols (nanoparticles) by gas-phase reactions. 
 
 
13.3 Optical properties of aerosols  
 
Extinction: Combination of scattering and absorption. Under the assumptions of quasi-elastic 
independent, single scattering the extinction of light is given by Bouguer’s law (1760), also 
called Lambert-Beer’s law: 
 

)exp(0 zaII −= , 
 
where I  is the light intensity (or irradiance or luminous flux), z  the path from source to 
receptor and a  the extinction coefficient (also called attenuation coefficient or turbidity), 
which is inversely proportional to the particle size as long as the particle size is large enough 
for the extinction efficiency factor extQ  to be constant (asymptotically approaching 2 with 
increasing particle size d ). Therefore e.g. small particles produce more haze in the 
atmosphere than large particles. For visible light, aerosols are most optically active in the 0.1 
– 1 µm diameter range where the extinction efficiency is highest. The extinction efficiency 
factor is defined as the ratio of energy flux extinguished by a single particle to that incident on 
this particle. For very small particles with even a little bit of absorption absext QQ ≈ , while for 
pure scatterers scatext QQ =  is given by 
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where  
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λ
πα D

= , 

 
with D  being the particle diameter. For 1<<α  this special case of light scattering is called 
Rayleigh scattering (scattering of light by molecules making up the atmosphere; blue light is 
scattered about 9 times as efficiently as red light → blue sky at daytime, red sky during 
sunrise and sunset). For larger particles the relationship of extQ  on D  is more complex, first 
rising from zero according to the fourth-power relation, then oscillating (mainly for pure 
scatterers; absorbing particles exhibit essentially no oscillations, only a slight overshoot to 
values above 2) and finally attaining the asymptotic value of 2. The asymptotic value of 2 
implies that a particle can remove light from an area equal to twice its cross-section 
(“extinction paradox”). In the case of a polydisperse aerosol we have for the extinction 
coefficient 
 

( )∫= dDQDfDa ext
2

4
π  

 
and for the particle mass concentration (mass per unit volume) 
 

( )∫= dDDfDC 3

6
ρπ , 

 
where ρ  is the particle density (typically 2.4 – 2.7 g/cm3) and ( ) dDDf  the number of 
particles per unit volume having diameters between D  and dDD + , i.e. a probability density 
function with the normalization condition (total number of particles per unit volume) 
 

( ) dDDff ∫= . 
 
Therefore, in the case of large particles ( 2=extQ ) the particle mass concentration and the 
extinction coefficient are related via the surface mean diameter (Sauter mean diameter) 
 

( )
( )

aD
dDDfD

dDDfD
C Sauter33 2

3
ργρ

==
∫
∫ . 

 
If the polydisperse aerosol can be described by a lognormal size distribution with geometric 
mean diameter GD  and geometric standard deviation Gσ , then 
 

( )GGDaC σρ 2ln5.2exp
3

= . 

 
Note, however, that the average size of atmospheric aerosol particles can vary markedly, 
depending on the humidity of air (and thus the moisture content of the particles). For soluble 
nuclei this can be even more complicated due to the hysteresis effect, which leads to different 
diameters for rising and falling humidity, especially when the air is moving. Therefore, mass 
concentration measurements derived from extinction measurement should be considered 
reliable only for cases where the relative humidity is less than 40 %.  



PABST & GREGOROVÁ (ICT Prague)                                     Characterization of particles and particle systems –13 
 

 50

The fundamental optical parameter for aerosols is the refractive index, defined as the 
ratio of the speed of light in vacuum to the speed of light in the material. When there is 
appreciable absorption of radiation in the aerosol particle in addition to scattering it is 
necessary to consider the complex refractive index: 
 

κinninN −=′′−′= , 
 
where in the case of visible light the real part n  is for airborne particles mostly between 1.3 
and 1.7 (1.0 for vacuum and air, 1.33 for water, 1.3 for ice, 1.7 for alumina, 2.4 for diamond) 
and the imaginary part between 0 and 1 (typically of order 0.1). Carbon particles have a 
complex refractive index of approx. icarbonN −= 2)( .   

Note that classical Mie theory (1908) considers ccattering by homogeneous spherical 
particles [Kerker 1969], but aerosol particles are inhomogeneous, consisting of at least two 
layers (core + shell) [Babenko et al 2003]. The real and imaginary parts of the complex 
refractive index of the composite aerosol particles (core particles covered by with water films) 
can be calculated as follows: 
 

( )( ) 1
0 1 −−−+= γww nnnn , 

 
( )( ) 1

0 1 −−−+= γκκκκ ww , 
 
where  
 

( )
ϕ

ϕϕµ
ρ
ρ

ρ
ρ

γ
−

==
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ww

w

m
m

, 

 
with ϕ  the relative humidity and ( )ϕµ  the coefficient of mass increase due to the water film, 
which is given in Table 1 [Hanel 1976, Babenko et al. 2003].  
 
ϕ  ( )ϕµ  
0.1 0.050 
0.2 0.065 
0.3 0.080 
0.4 0.095 
0.5 0.110 
0.6 0.127 
0.7 0.140 
0.8 0.146 
0.9 0.150 
0.95 0.156 
0.975 0.160 
 
Alternative expressions use the knowledge of the size change of aerosol particles in 
comparison to their dry cores (with 0D  being the dry particle diameter and ( )ϕD  the aerosol 
particle diameter at relative humidity ϕ , which can be described e.g. via a relation of the type 
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( ) ( ) εϕϕ −−= 1
0D

D , 

 
where ε  is approx. 0.25 ± 0.08 (0.17 for continental aerosols, 0.33 for sea aerosols) [Kasten 
1969, Babenko et al. 2003]. Then we have for the composite density [Hanel 1976] 
 

( ) ( ) ( )( ) 3
00

−−+== DDww ϕρρρϕρρ , 
 
and for the real and imaginary part of the complex refractory index, respectively: 
 

( ) ( ) ( )( ) 3
00

−−+== DDnnnnn ww ϕϕ , 
 

( ) ( ) ( )( ) 3
00

−−+== DDww ϕκκκϕκκ . 
 
Popular size distribution models for aerosols are the (Junge-type) power distribution,  
 

( ) bRaRf −= , 
 
the generalized (modified) four-parametric gamma distribution, 
 

( ) ( )βα RbRaRf −= exp , 
 
and the lognormal distribution, 
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⎥
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2
1exp

ln2 σσπ
RR

R
cRf , 

 
where a, b, c, α, β are fit parameters, 0R  is the median radius and σln  the standard deviation. 
  
 
13.4 Coagulation phenomena in aerosols and nanoparticle systems 
 
Due to their small size and large specific surface area the short-range surface forces such as 
electrostatic (Coulombic) or van der Waals forces can overcompensate long-range volume 
forces such as gravitation and thus aerosol particles in the atmosphere (and similarly 
suspensions of nanoparticles dispersed in liquids) exhibit a general tendency to intreract with 
each other and to coagulate. 

When the relative motion among particles is caused by Brownian motion (Brownian 
diffusion), the process is called Brownian coagulation. It is always present, but usually 
predominates (over other causes of coagulation) only when the particle size is very small (< 
10 nm). When the relative motion arises from external forces such as gravity, electrical forces, 
aerodynamic forces and ultrasound the process is called kinematic coagulation (gravitational, 
electrostatic, turbulent and sonic coagulation or agglomeration, respectively). 

The ultimate goal of coagulation theory is to describe how particle (number) 
concentrations, particle size (distributions) and coagulation rates change with time. The 
simplest theory, going back to Smoluchowski [Smoluchowski 1911, 1917], who derived it 
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originally for coagulation in dilute electrolytes, concerns the Brownian coagulation of a 
monodisperse aerosol of spherical particles [Whytlaw-Gray & Patterson 1932]. The usual 
form of the coagulation equation is 

 
22 NK

dt
dN

B−= , 

 
where dtdN  is the change in particle number concentration ( N ) with time and BK  is the 
Brownian coagulation coefficient (in the continuum regime),  
 

µ
π

3
22 kTDdK BPB == , 

 
(with particle diameter Pd  and gas viscosity µ ), which is related to the Brownian diffusion 
coefficient BD  via the Stokes-Einstein relation,   
 

P
B d

kTD
πµ3

= . 

 
Invoking the initial condition that 0NN =  at 0=t , the solution of the coagulation equation is 
 

tNKN
N

B 00 21
1

+
= . 

 
Several simplifying assumptions are implict in the Smoluchowski model (particles adhere at 
every collision, so that only the diffusional flux toward a single central particle acting as a 
sink has to be considered, and only the first few particle collisions are considered, so that 
particle size changes so slowly that it can be neglected), but experimental data from both 
monodisperse and polydisperse aerosols follow this general form of the equation often 
surprising well. However, the coagulation constant may be appreciably larger due to other 
than Brownian forces (see below) and due to polydispersivity. Redefining BKK 4=  the 
Smoluchowksi coagulation equation reads 
 

2

2
1 KN

dt
dN

−= . 

 
For the coagulation kinetics of polydisperse aerosols no explicit solution exists. 

However, for an aerosol with discrete size classes a system of differential equations can be set 
up, taking into account the increase in particles due to combination from smaller particles and 
the corresponding loss of particles in the smaller size class, i.e. 

 

∑∑ −=
−

=
==

jall
jkkj

k

j
jkjjkj

k NNKNNK
dt

dN 1

1
)(2

1 . 

 
The total number of particles of all sizes (per unit volume) is equal to the sum of the numbers 
of particles in the individual size classes (per unit volume) and can be written as 
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∑=
kall

kNN . 

 
Therefore the total change in particle number concentration is 
 

∑∑−=
jall

jkkj
kall

NNK
dt
dN

2
1 . 

 
Note that no sources or sinks have been assumed for the coagulating particles. 
 
 For an aerosol with a continuous size distribution the corresponding population 
balance is given by the following nonlinear integro-differential equation (thus circumventing 
the problem of many equations), 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫
∞

−−−=
v

dtvNtNvKdtvNtNvK
dt

tvdN

0 0

,,,,,,
2
1, ϕϕϕϕϕϕϕϕ , 

 
where v  and the integration variable ϕ  denote particle volumes (used rather than diameters, 
because volumes are additive), ( )tvN ,  is the particle size distribution function at time t  and 
( )vK ,ϕ  is the so-called collision kernel for two particles of volume ϕ  and v . The collision 

kernel is dependent on the coagulation mechanism. To determine the total number of particles 
per unit volume it is necessary to integrate over all particle volumes, i.e. 
 

( ) ( )∫
∞

==
0

, dvtvNtNN . 

 
Then the change in the total number concentration with time becomes 
 

( ) ( ) ( ) ( )∫∫
∞∞

−=
00

,,,
2
1 ϕϕϕ ddvtvNtNvK

dt
tdN . 

 
As mentioned above, the collision kernel depends ion the coagulation mechanism. For 
Brownian coagulation the collision kernel can be derived either by the kinetic theory of gases 
or by continuum diffusion theory, dependeing on particle size. Particles much smaller than the 
mean free path λ  of the surrounding gas molecules behave like molecules, and the kinetic 
theory of gases must be used to derive the collision kernel, whereas for particles much larger, 
the continuum diffusion theory should be used. Generally the Knudsen number  
 

r
λ

=Kn  

 
is used to define the particle size regime: in the free molecule regime (fm) Kn > 50, in the 
continuum regime (co) Kn < 1. The corresponding collision kernels are 
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where ( ) ( ) 2161 643 ρπ kTK fm

B =  is the Brownian coagulation coefficient form the free 
molecule regime (with ρ  being the particle density) and 
( ) ( )[ ]Kn999.0exp558.0142.1Kn1... −++=C  is the gas slip correction factor. A correction 

function ( )Df Kn  for the transition regime (1 < Kn < 50) has been given e.g. by Dahneke 
[Dahneke 1983]: 
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where DKn  is given by the ratio ( ) ( )( )ϕϕ ,2,Kn vKvK fmcoD = . The corresponding general 
collision kernel, vaild also in the transition regime is then  
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The collision kernels of kinematic coagulation mechanisms (gravitational, electrostatic, 
turbulent and sonic) are more complicated. Depending on the conditions, gravitational 
coagulation (caused by the fact that the relative motion during gravitational settling caused by 
differing particle size leads to additional collisions) and electrostatic coagulation (caused by 
the surface charge of particles, leading to attraction or repulsion) may enhance or decrease the 
coagulation rate, while turbulences always lead to additional collisions and thus turbulent 
coagulation (related to the inertia of aerosol particles) can be treated in a manner similar to 
Brownian coagulation except that the diffusion coefficients are much larger (so-called 
turbulent or eddy diffusion coefficient). For particles smaller than 10 nm Brownian diffusion 
usually dominates. Sonic coagulation is not well understood but it is an empirically known 
fact that under certain circumstances the action of ultrasound can lead to agglomeration.   
 One of the insteresting features of coagulation is that after sufficiently long time all 
coagulating aerosols are predicted to attain the same (quasi-) steady-state size distribution, 
regardless of the aerosol’s initial size distribution [Friedlander 1965, Friedlander & Wang 
1966, Wand & Friedlander 1967]. When this so-called self-preserving size distribution is 
reached, gains by coagulation in the number of particles of a certain size class are 
compensated by losses from that size either by coagulation or by sedimentation (note that the 
self-preserving particle size distribution is only quasi-steady-state, because without a particle 
source the system would eventually run out of particles and exhibit a null size distribution 
function). 
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13.5 Nanoparticles and their safety aspects 
 
Nanoparticles are in many aspects different from their larger-sized counterparts and the 
corresponding bulk materials. They are on the same size scale as most elements of living 
cells, including proteins, nucleic acids, lipids and cell organelles. Thus, nanoparticles (and 
nanomaterials) can interact with biological systems in an unforseen way. On the one hand, 
nanosystems  may be specifically engineered to interact with biological systems (e.g. for 
particular medical applications such as drug delivery systems). On the other hand, the 
production of nanoparticles or their occurrence as a by-product of combustion processes may 
adversely affect a wide range of organisms throughout the environment. Moreover, as a 
results of their increased reactivity (due to the large specific surface) aerosols with 
nanoparticles can be highly explosive, although their larger-size counterparts are not. 
 The increasing production, mainly of metal oxide nanoparticles (of commerical 
interest are e.g. SiO2, TiO2, Al2O3, ZrO2, ZnO and iron oxides) and new carbon materials such 
as nanotubes (single-walled – SWNT - and multi-walled - MWNT) and fullerenes (e.g. C60), 
will enhance the possible exposure at work places. Similarly, the nanoparticles unintentionally 
produced by combustion processes (e.g. in diesel engines or oil burners), are released into the 
environment and affect the whole population. Ambient aerosols may typically contain organic 
and elemental carbon, metals and their oxides as well as chlorides, nitrates and sulfates. 

Although man-made nanoparticles have been occurring in the environment at least 
since the industrial revolution and have been used in various products for several decades, the 
expected increase of production and use of newly developed materials makes the question of 
their safety to life and the environment increasingly important. However, although adverse 
health effects based essentially on the size and shape of particles have been known for a long 
time from experience with workers in the silicate industry (e.g. silicose from fine quartz dust 
and clay minerals) as well as in the inorganic fiber industry (e.g. lung cancer from asbestos 
fibers), fundamental knowledge concerning the toxicity of nanoparticles and nanomaterials is 
still missing or controversial. Without detailed knowledge of possible adverse effects, 
nanoparticle exposure should be avoided at work places as well as in the population and the 
environment. Multiple studies (in vitro and in vivo) are necessary to clarify the biological 
effects of nanoparticles.  
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CPPS−14. Suspensions and nanofluids 
 
 
14.0 Introduction 
 
Suspensions, i.e. dispersions of solid particles in liquid media, are ubiquitous in materials 
technology and many other technological and non-technological fields, including geosciences, 
medicine and ecology. In materials technology casting or injection molding of suspensions are 
popular shaping techniques, e.g. to fabricate ceramics or particulate-, fiber- or platelet-
reinforced plastic parts. Suspensions used in materials technology contain particles with a size 
ranging from submicron (i.e. hundreds of nm) to tens of micrometers, but in principle the 
particles can be much larger (e.g. in mud streams occuring in geosciences). Nanofluids, on the 
other hand, are suspensions with nanoparticles, i.e. particles which are smaller than 100 nm in 
at least one dimension. Due to their small particle size (colloidal range), nanofluids are 
usually more stable against settling. Their preparation, however, is more involved and 
agglomeration can be a major problem. The main field of potential application of nanofluids 
is as heat transfer media. Therefore, apart from rheology, the effective thermal conductivity of 
nanofluids is of particular interest.    
 
 
14.1 Suspension rheology 
 
For an introduction to suspension rheology → see Appendix-CPPS-14-A. The key point of 
suspension rheology is the prediction of the effective viscosity of a suspension based on the 
knowledge of the volume fraction of particles and, possibly, particle shape. The basic 
equation of suspension rheology is the Einstein equation for dilute suspensions of rigid 
spherical particles: 
  

φη 5.21+=r , 
 

where φ  is the solids volume fraction and rη  the relative suspension viscosity, defined as 
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Popular extensions of the Einstein relation to non-dilute systems are: 
 

• Eilers relation:           
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      (contains the Einstein relation in the dilute limit), 
 

• Mooney relation:        ⎟⎟
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      (reduces to the Einstein relation if C  is chosen to be 5.2 ), 
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• Krieger relation:           
N
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       (reduces to the Einstein relation if N  is chosen to be max5.2 φ ), 
 
where rφ  is the reduced volume fraction, defined as 
 

fractionvolumemaximum
fractionvolume

r ==
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φφ . 

  
For anisometric particles the Einstein relation can be generalized to the Jeffery relation, 
 

[ ]φηη += 1r ,                             
 
where the so-called intrinsic viscosity [ ]η  is a function of particle shape. This complicated 
problem has been solved for dilute systems of rotational ellipsoids (i.e. spheroids, prolate and 
oblate) with Brownian motion by Jeffery (1922) and for non-dilute systems of prolate 
particles (fibers) with or without Brownian motion by Brenner (1974) → see Appendix-
CPPS-14-B. Today, fiber suspension are much better investigated than platelet suspensions. 
Nevertheless, even for fibers a prediction of suspension viscosity for non-dilute systems is 
usually extremely difficult, and in practice the Krieger relation is mostly used with 2=N  and 
the maximum volume fraction being linearly dependent on the aspect ratio R , i.e. 
 

Rba ⋅−=maxφ . 
 
 
14.2 Rheology and thermal conductivity of nanofluids 
  
Predictive relations for the effective viscosity of nanofluids are in principle analogous to those 
for ordinary suspensions → see Appendix-CPPS-14-C. The fact (empirical finding) that the 
Einstein relation always underestimates the actual viscosity increase with solid volume 
fraction, can be accounted for either by using a nonlinear relation or, sometimes, by 
reinterpreting the volume fraction in terms of an “effective“, “equivalent“, or “apparent“ 
volume fraction. In nanofluids, and to a certain extent in ordinary suspensions as well, the 
physical interpretation of this apparently enhanced volume fraction may be agglomeration. 
For nanofluids, additionally, the fluid surface layer on the dispersed nanoparticles, which is 
known to exhibit structure and properties different from the bulk fluid, may be volumetrically 
significant. One the most interesting models for practical use is the Chen model [Chen et al. 
2007] → see Appendix-CPPS-14-C.   
 Nanofluids usually exhibit enhanced thermal conductivity in comparison to the base 
fluid and it is commonly agreed that there is measurable enhancement of thermal conductivity 
even for very low volume fractions of solids (< 1 %). Principally this enhancement is simply a 
plausible consequence of the fact that most solids have higher − sometimes considerably 
higher − thermal conductivity than the base fluid, cf. Table 14-C-1. Popular models for the 
effective thermal cobnductivity of nanofluids are the Maxwell-Eucken model, the 
Bruggeman-Landauer model and the Hamilton-Crosser model → see Appendix-CPPS-14-C.  
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Appendix-CPPS-4 
 
CPPS-4-A. Analytical distribution functions 
 
In unit CPPS-4 we have focused on those parts of statistics which are specific to systems of 
small particles and therefore usually not included in standard textbooks of general statistics. 
Therefore we do not give a complete account of analytical functions that can be used to 
approximate size distributions and to perform statistical data analysis → see standard 
textbooks of mathematics and statistics. A few popular analytical distribution functions are: 
 

1. Normal distribution (Gauss-Laplace) for ∞<<∞− x  
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 Ax   =  arithmetic mean (= median = mode) 
 σ   = (arithmetic) standard deviation  ( 2σ  = variance) 

 
The inflection points in the probability density distributions (frequency curves)  
correspond to ( )xF  = 15.9 % and ( )xF  = 84.1 % in the cumulative curve. Using 
probability paper, the two corresponding x  values can be read off and the standard 
deviation can be calculated directly using the relation  
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2. Log-normal distribution: 
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 Gx   =  geometric mean 
 Gσ   = (geometric) standard deviation  

 
3. Gaudin-Schumann distribution (Závesky-Špaček, power-law) for max0 xx ≤≤ : 
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( ) 1

max

−⋅= n
n x

x
nxf . 

  
The cumulative curve of this distribution does not exhibit inflection points, and the 
frequency curve does exhibit a maximum (mode). The fit parameters maxx (“theoretical 
maximum grain size“) and n  (“grain size exponent“) can be determined graphically 
by linear regression on log-log paper accoding to the relation  

 
( ) maxlogloglog xnxnxF −= . 

  
(slope = n , intercept at ( ) %100=xF  gives maxx ). 

 
4. Weibull distribution (or RRSB – Rosin-Rammler-Sperling-Bennett – distribution, a 

combination of exponential and power law) for 0>x : 
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The fit parameters (position parameter Wx  and Weibull modulus m ) can be 
determined using double-log graphs. This distribution can describe sigmoidal 
cumulative curves with inflection points.  

 
 
CPPS-4-B. Comparison of moment notation and moment-ratio notation 
 
 
Distribution type and mean 
value  

Moment notation Moment-ratio notation 

Number-weighted, geometric  
0,0D  

Number-weighted, arithmetic 
(mean length) 

0,1x  0,1D  

Length-weighted, geometric  
1,1D  

Length-weighted, arithmetic 1,1x  1,2D  
Mean surface 0,2x  0,2D  
Surface-weighted, arithmetic  
(Sauter mean) 

2,1x  2,3D  

Mean volume 0,3x  0,3D  
Volume-weighted, geometric  

3,3D  
Volume-weighted, arithmetic 
(De Brouckere mean) 

3,1x  3,4D  
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Appendix-CPPS-7 
 

Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .42 µm

Statistical Means...
Arithmetic Mean Diameter 1.226 µm Variance .706 µm2
Geometric Mean Diameter .995 µm Mean Squre Deviation .84 µm
Quadratic Square Mean Diameter 1.484 µm Average Deviation .631 µm
Harmonic Mean Diameter .807 µm Coefficiant of Variation 68.579 %

Statistical Modes...
Skewness 1.591 Mode .932 µm
Curtosis 3.307 Median .992 µm
Span 1.952 Mean/Median Ratio 1.235
Uniformity .61

Specific Surface Area 74388.21 cm2/cm3
Density 1. g/cc
Form Factor 1. g/cc
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Interpolation Values...     C:\Program Files\a22___32\fritsch\equal-size-intervals.FPS
****** %  <= 0.100 µm 0.1 %  <= 0.150 µm 0.3 %  <= 0.200 µm

1.2 %  <= 0.250 µm 2.9 %  <= 0.300 µm 5.4 %  <= 0.350 µm
8.4 %  <= 0.400 µm 12.0 %  <= 0.450 µm 15.7 %  <= 0.500 µm

19.5 %  <= 0.550 µm 23.3 %  <= 0.600 µm 27.1 %  <= 0.650 µm
30.8 %  <= 0.700 µm 34.4 %  <= 0.750 µm 37.8 %  <= 0.800 µm
41.1 %  <= 0.850 µm 44.4 %  <= 0.900 µm 47.5 %  <= 0.950 µm
50.4 %  <= 1.000 µm 53.2 %  <= 1.050 µm 55.8 %  <= 1.100 µm
58.3 %  <= 1.150 µm 60.6 %  <= 1.200 µm 62.8 %  <= 1.250 µm
64.9 %  <= 1.300 µm 67.0 %  <= 1.350 µm 68.8 %  <= 1.400 µm
70.6 %  <= 1.450 µm 72.2 %  <= 1.500 µm 73.9 %  <= 1.550 µm
75.3 %  <= 1.600 µm 76.7 %  <= 1.650 µm 78.1 %  <= 1.700 µm
79.3 %  <= 1.750 µm 80.5 %  <= 1.800 µm 81.7 %  <= 1.850 µm
82.7 %  <= 1.900 µm 83.7 %  <= 1.950 µm 84.7 %  <= 2.000 µm
85.5 %  <= 2.050 µm 86.4 %  <= 2.100 µm 87.2 %  <= 2.150 µm
87.9 %  <= 2.200 µm 88.5 %  <= 2.250 µm 89.2 %  <= 2.300 µm
89.9 %  <= 2.350 µm 90.5 %  <= 2.400 µm 91.1 %  <= 2.450 µm
91.7 %  <= 2.500 µm 92.6 %  <= 2.600 µm 93.5 %  <= 2.700 µm
94.2 %  <= 2.800 µm 95.0 %  <= 2.900 µm 95.5 %  <= 3.000 µm
96.5 %  <= 3.200 µm 97.3 %  <= 3.400 µm 97.7 %  <= 3.500 µm
97.9 %  <= 3.600 µm 98.4 %  <= 3.800 µm 98.8 %  <= 4.000 µm
99.1 %  <= 4.200 µm 99.3 %  <= 4.400 µm 99.4 %  <= 4.500 µm
99.5 %  <= 4.600 µm 99.6 %  <= 4.800 µm 99.7 %  <= 5.000 µm
99.8 %  <= 5.200 µm 99.9 %  <= 5.400 µm 99.9 %  <= 5.500 µm
99.9 %  <= 5.600 µm 99.9 %  <= 5.800 µm 100.0 %  <= 6.000 µm

100.0 %  <= 6.200 µm 100.0 %  <= 6.400 µm 100.0 %  <= 6.500 µm
100.0 %  <= 6.600 µm 100.0 %  <= 6.800 µm 100.0 %  <= 7.000 µm
100.0 %  <= 7.200 µm 100.0 %  <= 7.400 µm 100.0 %  <= 7.500 µm
100.0 %  <= 7.600 µm 100.0 %  <= 7.800 µm 100.0 %  <= 8.000 µm
100.0 %  <= 7.200 µm 100.0 %  <= 7.400 µm 100.0 %  <= 7.500 µm
100.0 %  <= 7.600 µm 100.0 %  <= 7.800 µm 100.0 %  <= 8.000 µm
100.0 %  <= 8.500 µm 100.0 %  <= 9.000 µm 100.0 %  <= 9.500 µm
100.0 %  <= 10.000 µm 100.0 %  <= 12.000 µm 100.0 %  <= 14.000 µm
100.0 %  <= 16.000 µm 100.0 %  <= 18.000 µm 100.0 %  <= 20.000 µm

Interpolation Values...     C:\Program Files\a22___32\fritsch\five-percent-steps.FPV
1.0 %  <= 0.244 µm 2.0 %  <= 0.278 µm 5.0 %  <= 0.343 µm

10.0 %  <= 0.423 µm 15.0 %  <= 0.491 µm 20.0 %  <= 0.557 µm
25.0 %  <= 0.623 µm 30.0 %  <= 0.690 µm 35.0 %  <= 0.759 µm
40.0 %  <= 0.832 µm 45.0 %  <= 0.910 µm 50.0 %  <= 0.993 µm
55.0 %  <= 1.085 µm 60.0 %  <= 1.187 µm 65.0 %  <= 1.302 µm
70.0 %  <= 1.433 µm 75.0 %  <= 1.589 µm 80.0 %  <= 1.779 µm
85.0 %  <= 2.019 µm 90.0 %  <= 2.361 µm 95.0 %  <= 2.907 µm
98.0 %  <= 3.619 µm 99.0 %  <= 4.120 µm 100.0 %  <= 10.490 µm
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .3 µm

Statistical Means...
Arithmetic Mean Diameter .807 µm Variance .342 µm2
Geometric Mean Diameter .658 µm Mean Squre Deviation .584 µm
Quadratic Square Mean Diameter .995 µm Average Deviation .415 µm
Harmonic Mean Diameter .544 µm Coefficiant of Variation 72.429 %

Statistical Modes...
Skewness 2.169 Mode .539 µm
Curtosis 7.093 Median .634 µm
Span 1.938 Mean/Median Ratio 1.273
Uniformity .61

Specific Surface Area 110278.55
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Interpolation Values...     C:\Program Files\a22___32\fritsch\equal-size-intervals.FPS
****** %  <= 0.100 µm 0.8 %  <= 0.150 µm 1.6 %  <= 0.200 µm

4.6 %  <= 0.250 µm 9.7 %  <= 0.300 µm 15.8 %  <= 0.350 µm
22.4 %  <= 0.400 µm 29.1 %  <= 0.450 µm 35.4 %  <= 0.500 µm
41.2 %  <= 0.550 µm 46.6 %  <= 0.600 µm 51.5 %  <= 0.650 µm
55.9 %  <= 0.700 µm 59.9 %  <= 0.750 µm 63.5 %  <= 0.800 µm
66.8 %  <= 0.850 µm 69.8 %  <= 0.900 µm 72.4 %  <= 0.950 µm
74.9 %  <= 1.000 µm 77.1 %  <= 1.050 µm 79.0 %  <= 1.100 µm
80.8 %  <= 1.150 µm 82.4 %  <= 1.200 µm 83.9 %  <= 1.250 µm
85.2 %  <= 1.300 µm 86.5 %  <= 1.350 µm 87.5 %  <= 1.400 µm
88.6 %  <= 1.450 µm 89.4 %  <= 1.500 µm 90.3 %  <= 1.550 µm
91.1 %  <= 1.600 µm 91.8 %  <= 1.650 µm 92.4 %  <= 1.700 µm
93.0 %  <= 1.750 µm 93.5 %  <= 1.800 µm 94.0 %  <= 1.850 µm
94.5 %  <= 1.900 µm 94.9 %  <= 1.950 µm 95.3 %  <= 2.000 µm
95.6 %  <= 2.050 µm 96.0 %  <= 2.100 µm 96.3 %  <= 2.150 µm
96.5 %  <= 2.200 µm 96.8 %  <= 2.250 µm 97.0 %  <= 2.300 µm
97.3 %  <= 2.350 µm 97.5 %  <= 2.400 µm 97.7 %  <= 2.450 µm
97.9 %  <= 2.500 µm 98.1 %  <= 2.600 µm 98.4 %  <= 2.700 µm
98.6 %  <= 2.800 µm 98.8 %  <= 2.900 µm 99.0 %  <= 3.000 µm
99.3 %  <= 3.200 µm 99.5 %  <= 3.400 µm 99.5 %  <= 3.500 µm
99.6 %  <= 3.600 µm 99.7 %  <= 3.800 µm 99.8 %  <= 4.000 µm
99.8 %  <= 4.200 µm 99.9 %  <= 4.400 µm 99.9 %  <= 4.500 µm
99.9 %  <= 4.600 µm 99.9 %  <= 4.800 µm 100.0 %  <= 5.000 µm

100.0 %  <= 5.200 µm 100.0 %  <= 5.400 µm 100.0 %  <= 5.500 µm
100.0 %  <= 5.600 µm 100.0 %  <= 5.800 µm 100.0 %  <= 6.000 µm
100.0 %  <= 6.200 µm 100.0 %  <= 6.400 µm 100.0 %  <= 6.500 µm
100.0 %  <= 6.600 µm 100.0 %  <= 6.800 µm 100.0 %  <= 7.000 µm
100.0 %  <= 7.200 µm 100.0 %  <= 7.400 µm 100.0 %  <= 7.500 µm
100.0 %  <= 7.600 µm 100.0 %  <= 7.800 µm 100.0 %  <= 8.000 µm
100.0 %  <= 7.200 µm 100.0 %  <= 7.400 µm 100.0 %  <= 7.500 µm
100.0 %  <= 7.600 µm 100.0 %  <= 7.800 µm 100.0 %  <= 8.000 µm
100.0 %  <= 8.500 µm 100.0 %  <= 9.000 µm 100.0 %  <= 9.500 µm
100.0 %  <= 10.000 µm 100.0 %  <= 12.000 µm 100.0 %  <= 14.000 µm
100.0 %  <= 16.000 µm 100.0 %  <= 18.000 µm 100.0 %  <= 20.000 µm

Interpolation Values...     C:\Program Files\a22___32\fritsch\five-percent-steps.FPV
1.0 %  <= 0.179 µm 2.0 %  <= 0.211 µm 5.0 %  <= 0.254 µm

10.0 %  <= 0.303 µm 15.0 %  <= 0.343 µm 20.0 %  <= 0.381 µm
25.0 %  <= 0.420 µm 30.0 %  <= 0.457 µm 35.0 %  <= 0.497 µm
40.0 %  <= 0.539 µm 45.0 %  <= 0.585 µm 50.0 %  <= 0.634 µm
55.0 %  <= 0.690 µm 60.0 %  <= 0.751 µm 65.0 %  <= 0.822 µm
70.0 %  <= 0.904 µm 75.0 %  <= 1.003 µm 80.0 %  <= 1.126 µm
85.0 %  <= 1.292 µm 90.0 %  <= 1.532 µm 95.0 %  <= 1.959 µm
98.0 %  <= 2.549 µm 99.0 %  <= 2.999 µm 100.0 %  <= 8.122 µm
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .23 µm

Statistical Means...
Arithmetic Mean Diameter .544 µm Variance .145 µm2
Geometric Mean Diameter .454 µm Mean Squre Deviation .38 µm
Quadratic Square Mean Diameter .663 µm Average Deviation .259 µm
Harmonic Mean Diameter .382 µm Coefficiant of Variation 69.84 %

Statistical Modes...
Skewness 2.615 Mode .432 µm
Curtosis 11.899 Median .439 µm
Span 1.707 Mean/Median Ratio 1.24
Uniformity .55

Specific Surface Area 157146.92
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Interpolation Values...     C:\Program Files\a22___32\fritsch\equal-size-intervals.FPS
****** %  <= 0.100 µm 3.7 %  <= 0.150 µm 6.0 %  <= 0.200 µm
13.3 %  <= 0.250 µm 23.3 %  <= 0.300 µm 33.6 %  <= 0.350 µm
43.2 %  <= 0.400 µm 51.8 %  <= 0.450 µm 58.9 %  <= 0.500 µm
65.0 %  <= 0.550 µm 70.1 %  <= 0.600 µm 74.4 %  <= 0.650 µm
77.9 %  <= 0.700 µm 81.0 %  <= 0.750 µm 83.5 %  <= 0.800 µm
85.6 %  <= 0.850 µm 87.5 %  <= 0.900 µm 89.1 %  <= 0.950 µm
90.5 %  <= 1.000 µm 91.6 %  <= 1.050 µm 92.6 %  <= 1.100 µm
93.5 %  <= 1.150 µm 94.2 %  <= 1.200 µm 94.9 %  <= 1.250 µm
95.4 %  <= 1.300 µm 96.0 %  <= 1.350 µm 96.4 %  <= 1.400 µm
96.8 %  <= 1.450 µm 97.1 %  <= 1.500 µm 97.4 %  <= 1.550 µm
97.7 %  <= 1.600 µm 97.9 %  <= 1.650 µm 98.1 %  <= 1.700 µm
98.3 %  <= 1.750 µm 98.5 %  <= 1.800 µm 98.6 %  <= 1.850 µm
98.8 %  <= 1.900 µm 98.9 %  <= 1.950 µm 99.0 %  <= 2.000 µm
99.1 %  <= 2.050 µm 99.2 %  <= 2.100 µm 99.2 %  <= 2.150 µm
99.3 %  <= 2.200 µm 99.4 %  <= 2.250 µm 99.4 %  <= 2.300 µm
99.5 %  <= 2.350 µm 99.5 %  <= 2.400 µm 99.6 %  <= 2.450 µm
99.6 %  <= 2.500 µm 99.7 %  <= 2.600 µm 99.7 %  <= 2.700 µm
99.8 %  <= 2.800 µm 99.8 %  <= 2.900 µm 99.8 %  <= 3.000 µm
99.9 %  <= 3.200 µm 99.9 %  <= 3.400 µm 99.9 %  <= 3.500 µm
99.9 %  <= 3.600 µm 100.0 %  <= 3.800 µm 100.0 %  <= 4.000 µm

100.0 %  <= 4.200 µm 100.0 %  <= 4.400 µm 100.0 %  <= 4.500 µm
100.0 %  <= 4.600 µm 100.0 %  <= 4.800 µm 100.0 %  <= 5.000 µm
100.0 %  <= 5.200 µm 100.0 %  <= 5.400 µm 100.0 %  <= 5.500 µm
100.0 %  <= 5.600 µm 100.0 %  <= 5.800 µm 100.0 %  <= 6.000 µm
100.0 %  <= 6.200 µm 100.0 %  <= 6.400 µm 100.0 %  <= 6.500 µm
100.0 %  <= 6.600 µm 100.0 %  <= 6.800 µm 100.0 %  <= 7.000 µm
100.0 %  <= 7.200 µm 100.0 %  <= 7.400 µm 100.0 %  <= 7.500 µm
100.0 %  <= 7.600 µm 100.0 %  <= 7.800 µm 100.0 %  <= 8.000 µm
100.0 %  <= 7.200 µm 100.0 %  <= 7.400 µm 100.0 %  <= 7.500 µm
100.0 %  <= 7.600 µm 100.0 %  <= 7.800 µm 100.0 %  <= 8.000 µm
100.0 %  <= 8.500 µm 100.0 %  <= 9.000 µm 100.0 %  <= 9.500 µm
100.0 %  <= 10.000 µm 100.0 %  <= 12.000 µm 100.0 %  <= 14.000 µm
100.0 %  <= 16.000 µm 100.0 %  <= 18.000 µm 100.0 %  <= 20.000 µm

Interpolation Values...     C:\Program Files\a22___32\fritsch\five-percent-steps.FPV
1.0 %  <= ********* µm 2.0 %  <= 0.110 µm 5.0 %  <= 0.189 µm

10.0 %  <= 0.232 µm 15.0 %  <= 0.259 µm 20.0 %  <= 0.284 µm
25.0 %  <= 0.308 µm 30.0 %  <= 0.332 µm 35.0 %  <= 0.357 µm
40.0 %  <= 0.382 µm 45.0 %  <= 0.410 µm 50.0 %  <= 0.439 µm
55.0 %  <= 0.471 µm 60.0 %  <= 0.508 µm 65.0 %  <= 0.550 µm
70.0 %  <= 0.599 µm 75.0 %  <= 0.657 µm 80.0 %  <= 0.733 µm
85.0 %  <= 0.833 µm 90.0 %  <= 0.981 µm 95.0 %  <= 1.260 µm
98.0 %  <= 1.669 µm 99.0 %  <= 2.006 µm 100.0 %  <= 59.400 µm

 
 
 



PABST & GREGOROVÁ (ICT Prague)                      Characterization of particles and particle systems –Appendices 
 

 66

Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.22 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .12 µm

Statistical Means...
Arithmetic Mean Diameter .382 µm Variance .063 µm2
Geometric Mean Diameter .322 µm Mean Squre Deviation .25 µm
Quadratic Square Mean Diameter .456 µm Average Deviation .171 µm
Harmonic Mean Diameter .271 µm Coefficiant of Variation 65.538 %

Statistical Modes...
Skewness 2.601 Mode .106 µm
Curtosis 13.851 Median .325 µm
Span 1.68 Mean/Median Ratio 1.177
Uniformity .5

Specific Surface Area 221185.97
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Interpolation Values...     C:\Program Files\a22___32\fritsch\equal-size-intervals.FPS
****** %  <= 0.100 µm 12.5 %  <= 0.150 µm 17.4 %  <= 0.200 µm
29.5 %  <= 0.250 µm 43.5 %  <= 0.300 µm 55.6 %  <= 0.350 µm
65.4 %  <= 0.400 µm 73.2 %  <= 0.450 µm 78.9 %  <= 0.500 µm
83.3 %  <= 0.550 µm 86.8 %  <= 0.600 µm 89.4 %  <= 0.650 µm
91.4 %  <= 0.700 µm 93.0 %  <= 0.750 µm 94.2 %  <= 0.800 µm
95.2 %  <= 0.850 µm 96.1 %  <= 0.900 µm 96.7 %  <= 0.950 µm
97.3 %  <= 1.000 µm 97.7 %  <= 1.050 µm 98.0 %  <= 1.100 µm
98.3 %  <= 1.150 µm 98.6 %  <= 1.200 µm 98.8 %  <= 1.250 µm
99.0 %  <= 1.300 µm 99.1 %  <= 1.350 µm 99.2 %  <= 1.400 µm
99.3 %  <= 1.450 µm 99.4 %  <= 1.500 µm 99.5 %  <= 1.550 µm
99.6 %  <= 1.600 µm 99.6 %  <= 1.650 µm 99.7 %  <= 1.700 µm
99.7 %  <= 1.750 µm 99.7 %  <= 1.800 µm 99.8 %  <= 1.850 µm
99.8 %  <= 1.900 µm 99.8 %  <= 1.950 µm 99.8 %  <= 2.000 µm
99.9 %  <= 2.050 µm 99.9 %  <= 2.100 µm 99.9 %  <= 2.150 µm
99.9 %  <= 2.200 µm 99.9 %  <= 2.250 µm 99.9 %  <= 2.300 µm
99.9 %  <= 2.350 µm 99.9 %  <= 2.400 µm 99.9 %  <= 2.450 µm

100.0 %  <= 2.500 µm 100.0 %  <= 2.600 µm 100.0 %  <= 2.700 µm
100.0 %  <= 2.800 µm 100.0 %  <= 2.900 µm 100.0 %  <= 3.000 µm
100.0 %  <= 3.200 µm 100.0 %  <= 3.400 µm 100.0 %  <= 3.500 µm
100.0 %  <= 3.600 µm 100.0 %  <= 3.800 µm 100.0 %  <= 4.000 µm
100.0 %  <= 4.200 µm 100.0 %  <= 4.400 µm 100.0 %  <= 4.500 µm
100.0 %  <= 4.600 µm 100.0 %  <= 4.800 µm 100.0 %  <= 5.000 µm
100.0 %  <= 5.200 µm 100.0 %  <= 5.400 µm 100.0 %  <= 5.500 µm
100.0 %  <= 5.600 µm 100.0 %  <= 5.800 µm 100.0 %  <= 6.000 µm
100.0 %  <= 6.200 µm 100.0 %  <= 6.400 µm 100.0 %  <= 6.500 µm
100.0 %  <= 6.600 µm 100.0 %  <= 6.800 µm 100.0 %  <= 7.000 µm
100.0 %  <= 7.200 µm 100.0 %  <= 7.400 µm 100.0 %  <= 7.500 µm
100.0 %  <= 7.600 µm 100.0 %  <= 7.800 µm 100.0 %  <= 8.000 µm
100.0 %  <= 7.200 µm 100.0 %  <= 7.400 µm 100.0 %  <= 7.500 µm
100.0 %  <= 7.600 µm 100.0 %  <= 7.800 µm 100.0 %  <= 8.000 µm
100.0 %  <= 8.500 µm 100.0 %  <= 9.000 µm 100.0 %  <= 9.500 µm
100.0 %  <= 10.000 µm 100.0 %  <= 12.000 µm 100.0 %  <= 14.000 µm
100.0 %  <= 16.000 µm 100.0 %  <= 18.000 µm 100.0 %  <= 20.000 µm

Interpolation Values...     C:\Program Files\a22___32\fritsch\five-percent-steps.FPV
1.0 %  <= ********* µm 2.0 %  <= ********* µm 5.0 %  <= ********* µm

10.0 %  <= 0.118 µm 15.0 %  <= 0.187 µm 20.0 %  <= 0.213 µm
25.0 %  <= 0.234 µm 30.0 %  <= 0.252 µm 35.0 %  <= 0.270 µm
40.0 %  <= 0.288 µm 45.0 %  <= 0.306 µm 50.0 %  <= 0.325 µm
55.0 %  <= 0.347 µm 60.0 %  <= 0.371 µm 65.0 %  <= 0.398 µm
70.0 %  <= 0.429 µm 75.0 %  <= 0.465 µm 80.0 %  <= 0.511 µm
85.0 %  <= 0.572 µm 90.0 %  <= 0.664 µm 95.0 %  <= 0.835 µm
98.0 %  <= 1.094 µm 99.0 %  <= 1.313 µm 100.0 %  <= 5.045 µm
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .42 µm

Statistical Means...
Arithmetic Mean Diameter 1.226 µm Variance .706 µm2
Geometric Mean Diameter .995 µm Mean Squre Deviation .84 µm
Quadratic Square Mean Diameter 1.484 µm Average Deviation .631 µm
Harmonic Mean Diameter .807 µm Coefficiant of Variation 68.579 %

Statistical Modes...
Skewness 1.591 Mode .932 µm
Curtosis 3.307 Median .992 µm
Span 1.952 Mean/Median Ratio 1.235
Uniformity .61

Specific Surface Area 74388.21 cm2/cm3
Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .42 µm

Statistical Means...
Arithmetic Mean Diameter 1.226 µm Variance .706 µm2
Geometric Mean Diameter .995 µm Mean Squre Deviation .84 µm
Quadratic Square Mean Diameter 1.484 µm Average Deviation .631 µm
Harmonic Mean Diameter .807 µm Coefficiant of Variation 68.579 %

Statistical Modes...
Skewness 1.591 Mode .932 µm
Curtosis 3.307 Median .992 µm
Span 1.952 Mean/Median Ratio 1.235
Uniformity .61

Specific Surface Area 74388.21 cm2/cm3
Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .42 µm

Statistical Means...
Arithmetic Mean Diameter 1.226 µm Variance .706 µm2
Geometric Mean Diameter .995 µm Mean Squre Deviation .84 µm
Quadratic Square Mean Diameter 1.484 µm Average Deviation .631 µm
Harmonic Mean Diameter .807 µm Coefficiant of Variation 68.579 %

Statistical Modes...
Skewness 1.591 Mode .932 µm
Curtosis 3.307 Median .992 µm
Span 1.952 Mean/Median Ratio 1.235
Uniformity .61

Specific Surface Area 74388.21 cm2/cm3
Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .42 µm

Statistical Means...
Arithmetic Mean Diameter 1.226 µm Variance .706 µm2
Geometric Mean Diameter .995 µm Mean Squre Deviation .84 µm
Quadratic Square Mean Diameter 1.484 µm Average Deviation .631 µm
Harmonic Mean Diameter .807 µm Coefficiant of Variation 68.579 %

Statistical Modes...
Skewness 1.591 Mode .932 µm
Curtosis 3.307 Median .992 µm
Span 1.952 Mean/Median Ratio 1.235
Uniformity .61

Specific Surface Area 74388.21 cm2/cm3
Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .42 µm

Statistical Means...
Arithmetic Mean Diameter 1.226 µm Variance .706 µm2
Geometric Mean Diameter .995 µm Mean Squre Deviation .84 µm
Quadratic Square Mean Diameter 1.484 µm Average Deviation .631 µm
Harmonic Mean Diameter .807 µm Coefficiant of Variation 68.579 %

Statistical Modes...
Skewness 1.591 Mode .932 µm
Curtosis 3.307 Median .992 µm
Span 1.952 Mean/Median Ratio 1.235
Uniformity .61

Specific Surface Area 74388.21 cm2/cm3
Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .3 µm

Statistical Means...
Arithmetic Mean Diameter .807 µm Variance .342 µm2
Geometric Mean Diameter .658 µm Mean Squre Deviation .584 µm
Quadratic Square Mean Diameter .995 µm Average Deviation .415 µm
Harmonic Mean Diameter .544 µm Coefficiant of Variation 72.429 %

Statistical Modes...
Skewness 2.169 Mode .539 µm
Curtosis 7.093 Median .634 µm
Span 1.938 Mean/Median Ratio 1.273
Uniformity .61

Specific Surface Area 110278.55
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .3 µm

Statistical Means...
Arithmetic Mean Diameter .807 µm Variance .342 µm2
Geometric Mean Diameter .658 µm Mean Squre Deviation .584 µm
Quadratic Square Mean Diameter .995 µm Average Deviation .415 µm
Harmonic Mean Diameter .544 µm Coefficiant of Variation 72.429 %

Statistical Modes...
Skewness 2.169 Mode .539 µm
Curtosis 7.093 Median .634 µm
Span 1.938 Mean/Median Ratio 1.273
Uniformity .61

Specific Surface Area 110278.55
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .3 µm

Statistical Means...
Arithmetic Mean Diameter .807 µm Variance .342 µm2
Geometric Mean Diameter .658 µm Mean Squre Deviation .584 µm
Quadratic Square Mean Diameter .995 µm Average Deviation .415 µm
Harmonic Mean Diameter .544 µm Coefficiant of Variation 72.429 %

Statistical Modes...
Skewness 2.169 Mode .539 µm
Curtosis 7.093 Median .634 µm
Span 1.938 Mean/Median Ratio 1.273
Uniformity .61

Specific Surface Area 110278.55
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .3 µm

Statistical Means...
Arithmetic Mean Diameter .807 µm Variance .342 µm2
Geometric Mean Diameter .658 µm Mean Squre Deviation .584 µm
Quadratic Square Mean Diameter .995 µm Average Deviation .415 µm
Harmonic Mean Diameter .544 µm Coefficiant of Variation 72.429 %

Statistical Modes...
Skewness 2.169 Mode .539 µm
Curtosis 7.093 Median .634 µm
Span 1.938 Mean/Median Ratio 1.273
Uniformity .61

Specific Surface Area 110278.55
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .23 µm

Statistical Means...
Arithmetic Mean Diameter .544 µm Variance .145 µm2
Geometric Mean Diameter .454 µm Mean Squre Deviation .38 µm
Quadratic Square Mean Diameter .663 µm Average Deviation .259 µm
Harmonic Mean Diameter .382 µm Coefficiant of Variation 69.84 %

Statistical Modes...
Skewness 2.615 Mode .432 µm
Curtosis 11.899 Median .439 µm
Span 1.707 Mean/Median Ratio 1.24
Uniformity .55

Specific Surface Area 157146.92
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .23 µm

Statistical Means...
Arithmetic Mean Diameter .544 µm Variance .145 µm2
Geometric Mean Diameter .454 µm Mean Squre Deviation .38 µm
Quadratic Square Mean Diameter .663 µm Average Deviation .259 µm
Harmonic Mean Diameter .382 µm Coefficiant of Variation 69.84 %

Statistical Modes...
Skewness 2.615 Mode .432 µm
Curtosis 11.899 Median .439 µm
Span 1.707 Mean/Median Ratio 1.24
Uniformity .55

Specific Surface Area 157146.92
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .23 µm

Statistical Means...
Arithmetic Mean Diameter .544 µm Variance .145 µm2
Geometric Mean Diameter .454 µm Mean Squre Deviation .38 µm
Quadratic Square Mean Diameter .663 µm Average Deviation .259 µm
Harmonic Mean Diameter .382 µm Coefficiant of Variation 69.84 %

Statistical Modes...
Skewness 2.615 Mode .432 µm
Curtosis 11.899 Median .439 µm
Span 1.707 Mean/Median Ratio 1.24
Uniformity .55

Specific Surface Area 157146.92
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .23 µm

Statistical Means...
Arithmetic Mean Diameter .544 µm Variance .145 µm2
Geometric Mean Diameter .454 µm Mean Squre Deviation .38 µm
Quadratic Square Mean Diameter .663 µm Average Deviation .259 µm
Harmonic Mean Diameter .382 µm Coefficiant of Variation 69.84 %

Statistical Modes...
Skewness 2.615 Mode .432 µm
Curtosis 11.899 Median .439 µm
Span 1.707 Mean/Median Ratio 1.24
Uniformity .55

Specific Surface Area 157146.92
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.22 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .12 µm

Statistical Means...
Arithmetic Mean Diameter .382 µm Variance .063 µm2
Geometric Mean Diameter .322 µm Mean Squre Deviation .25 µm
Quadratic Square Mean Diameter .456 µm Average Deviation .171 µm
Harmonic Mean Diameter .271 µm Coefficiant of Variation 65.538 %

Statistical Modes...
Skewness 2.601 Mode .106 µm
Curtosis 13.851 Median .325 µm
Span 1.68 Mean/Median Ratio 1.177
Uniformity .5

Specific Surface Area 221185.97
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.22 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .12 µm

Statistical Means...
Arithmetic Mean Diameter .382 µm Variance .063 µm2
Geometric Mean Diameter .322 µm Mean Squre Deviation .25 µm
Quadratic Square Mean Diameter .456 µm Average Deviation .171 µm
Harmonic Mean Diameter .271 µm Coefficiant of Variation 65.538 %

Statistical Modes...
Skewness 2.601 Mode .106 µm
Curtosis 13.851 Median .325 µm
Span 1.68 Mean/Median Ratio 1.177
Uniformity .5

Specific Surface Area 221185.97
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.22 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .12 µm

Statistical Means...
Arithmetic Mean Diameter .382 µm Variance .063 µm2
Geometric Mean Diameter .322 µm Mean Squre Deviation .25 µm
Quadratic Square Mean Diameter .456 µm Average Deviation .171 µm
Harmonic Mean Diameter .271 µm Coefficiant of Variation 65.538 %

Statistical Modes...
Skewness 2.601 Mode .106 µm
Curtosis 13.851 Median .325 µm
Span 1.68 Mean/Median Ratio 1.177
Uniformity .5

Specific Surface Area 221185.97
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.22 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .12 µm

Statistical Means...
Arithmetic Mean Diameter .382 µm Variance .063 µm2
Geometric Mean Diameter .322 µm Mean Squre Deviation .25 µm
Quadratic Square Mean Diameter .456 µm Average Deviation .171 µm
Harmonic Mean Diameter .271 µm Coefficiant of Variation 65.538 %

Statistical Modes...
Skewness 2.601 Mode .106 µm
Curtosis 13.851 Median .325 µm
Span 1.68 Mean/Median Ratio 1.177
Uniformity .5

Specific Surface Area 221185.97
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.22 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .12 µm

Statistical Means...
Arithmetic Mean Diameter .382 µm Variance .063 µm2
Geometric Mean Diameter .322 µm Mean Squre Deviation .25 µm
Quadratic Square Mean Diameter .456 µm Average Deviation .171 µm
Harmonic Mean Diameter .271 µm Coefficiant of Variation 65.538 %

Statistical Modes...
Skewness 2.601 Mode .106 µm
Curtosis 13.851 Median .325 µm
Span 1.68 Mean/Median Ratio 1.177
Uniformity .5

Specific Surface Area 221185.97
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.22 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .12 µm

Statistical Means...
Arithmetic Mean Diameter .382 µm Variance .063 µm2
Geometric Mean Diameter .322 µm Mean Squre Deviation .25 µm
Quadratic Square Mean Diameter .456 µm Average Deviation .171 µm
Harmonic Mean Diameter .271 µm Coefficiant of Variation 65.538 %

Statistical Modes...
Skewness 2.601 Mode .106 µm
Curtosis 13.851 Median .325 µm
Span 1.68 Mean/Median Ratio 1.177
Uniformity .5

Specific Surface Area 221185.97
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.22 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .12 µm

Statistical Means...
Arithmetic Mean Diameter .382 µm Variance .063 µm2
Geometric Mean Diameter .322 µm Mean Squre Deviation .25 µm
Quadratic Square Mean Diameter .456 µm Average Deviation .171 µm
Harmonic Mean Diameter .271 µm Coefficiant of Variation 65.538 %

Statistical Modes...
Skewness 2.601 Mode .106 µm
Curtosis 13.851 Median .325 µm
Span 1.68 Mean/Median Ratio 1.177
Uniformity .5

Specific Surface Area 221185.97
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.22 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .12 µm

Statistical Means...
Arithmetic Mean Diameter .382 µm Variance .063 µm2
Geometric Mean Diameter .322 µm Mean Squre Deviation .25 µm
Quadratic Square Mean Diameter .456 µm Average Deviation .171 µm
Harmonic Mean Diameter .271 µm Coefficiant of Variation 65.538 %

Statistical Modes...
Skewness 2.601 Mode .106 µm
Curtosis 13.851 Median .325 µm
Span 1.68 Mean/Median Ratio 1.177
Uniformity .5

Specific Surface Area 221185.97
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.22 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .12 µm

Statistical Means...
Arithmetic Mean Diameter .382 µm Variance .063 µm2
Geometric Mean Diameter .322 µm Mean Squre Deviation .25 µm
Quadratic Square Mean Diameter .456 µm Average Deviation .171 µm
Harmonic Mean Diameter .271 µm Coefficiant of Variation 65.538 %

Statistical Modes...
Skewness 2.601 Mode .106 µm
Curtosis 13.851 Median .325 µm
Span 1.68 Mean/Median Ratio 1.177
Uniformity .5

Specific Surface Area 221185.97
cm2/cm3

Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .42 µm

Statistical Means...
Arithmetic Mean Diameter 1.226 µm Variance .706 µm2
Geometric Mean Diameter .995 µm Mean Squre Deviation .84 µm
Quadratic Square Mean Diameter 1.484 µm Average Deviation .631 µm
Harmonic Mean Diameter .807 µm Coefficiant of Variation 68.579 %

Statistical Modes...
Skewness 1.591 Mode .932 µm
Curtosis 3.307 Median .992 µm
Span 1.952 Mean/Median Ratio 1.235
Uniformity .61

Specific Surface Area 74388.21 cm2/cm3
Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .42 µm

Statistical Means...
Arithmetic Mean Diameter 1.226 µm Variance .706 µm2
Geometric Mean Diameter .995 µm Mean Squre Deviation .84 µm
Quadratic Square Mean Diameter 1.484 µm Average Deviation .631 µm
Harmonic Mean Diameter .807 µm Coefficiant of Variation 68.579 %

Statistical Modes...
Skewness 1.591 Mode .932 µm
Curtosis 3.307 Median .992 µm
Span 1.952 Mean/Median Ratio 1.235
Uniformity .61

Specific Surface Area 74388.21 cm2/cm3
Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .42 µm

Statistical Means...
Arithmetic Mean Diameter 1.226 µm Variance .706 µm2
Geometric Mean Diameter .995 µm Mean Squre Deviation .84 µm
Quadratic Square Mean Diameter 1.484 µm Average Deviation .631 µm
Harmonic Mean Diameter .807 µm Coefficiant of Variation 68.579 %

Statistical Modes...
Skewness 1.591 Mode .932 µm
Curtosis 3.307 Median .992 µm
Span 1.952 Mean/Median Ratio 1.235
Uniformity .61

Specific Surface Area 74388.21 cm2/cm3
Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .42 µm

Statistical Means...
Arithmetic Mean Diameter 1.226 µm Variance .706 µm2
Geometric Mean Diameter .995 µm Mean Squre Deviation .84 µm
Quadratic Square Mean Diameter 1.484 µm Average Deviation .631 µm
Harmonic Mean Diameter .807 µm Coefficiant of Variation 68.579 %

Statistical Modes...
Skewness 1.591 Mode .932 µm
Curtosis 3.307 Median .992 µm
Span 1.952 Mean/Median Ratio 1.235
Uniformity .61

Specific Surface Area 74388.21 cm2/cm3
Density 1. g/cc
Form Factor 1. g/cc
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Meas.No. 300 Date 21.2.2007 Time 10:25 Operator ID Serial No. 778

Al2O3, D50 = 1 micron

Measuring Range 0.1 [µm]  -  100.9 [µm] Pump 50 [%]
Resolution 102 Channels    (20 mm / 38 mm )
Absorption 10.00 [%] Ultrasonic On
Measurement Duration 100 [Scans]

Regularization / Modell 5793.601

Fraunhofer Calculation selected.

Mean Values...
D43 = 1.23 µm D42 = .99 µm D41 = .81 µm D40 = .67 µm
D32 = .81 µm D31 = .66 µm D30 = .55 µm
D21 = .54 µm D20 = .46 µm
D10 = .42 µm

Statistical Means...
Arithmetic Mean Diameter 1.226 µm Variance .706 µm2
Geometric Mean Diameter .995 µm Mean Squre Deviation .84 µm
Quadratic Square Mean Diameter 1.484 µm Average Deviation .631 µm
Harmonic Mean Diameter .807 µm Coefficiant of Variation 68.579 %

Statistical Modes...
Skewness 1.591 Mode .932 µm
Curtosis 3.307 Median .992 µm
Span 1.952 Mean/Median Ratio 1.235
Uniformity .61

Specific Surface Area 74388.21 cm2/cm3
Density 1. g/cc
Form Factor 1. g/cc
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Appendix-CPPS-9 
 
 
Table 9-A. Mean caliper diameter, surface and volume of standard shapes. 
 
Shape (and 
corresponding 
linear size 
measure) 

Mean caliper diameter Surface  Volume 

Sphere with radius 
r  

r2  22 6.124 rr ≈π  33 2.4
3
4 rr ≈⎟
⎠
⎞

⎜
⎝
⎛ π  

Hemisphere with 
radius r  r⎟

⎠
⎞

⎜
⎝
⎛ +

4
1 π  

23 rπ  3

3
2 rπ⎟
⎠
⎞

⎜
⎝
⎛  

Oblate spheroid 
with semiaxes 

ba =  and c  
( ac < ) where 

212

1
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

a
cε  

ε
ε

arcsin⎟
⎠
⎞

⎜
⎝
⎛+

ac  

⎥⎦
⎤

⎢⎣
⎡
−
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

ε
ε

ε
π

π

1
1ln

2
2

2

c

a
 

ca 2

3
4 π⎟
⎠
⎞

⎜
⎝
⎛  

Prolate spheroid 
with semiaxes 

ba =  and c  
( ac > ), where 

212

1
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛=

a
cε  

ε
ε

arcsinh⎟
⎠
⎞

⎜
⎝
⎛+

ac  

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

c
ac

a

ε
ε

π

π

arcsin2

2
2

2

 

ca 2

3
4 π⎟
⎠
⎞

⎜
⎝
⎛  

Cylinder of length 
l  and radius r  ( )rl π+

2
1  ( )rlr +π2  2rlπ  

Thin rod (needle), 
i.e. 0→r  2

l  
0→  0→  

Thin disc 
(platelet), 
i.e. 0→l  

2
rπ  

22 rπ  0→  

Tetrahedron of 
edge length a  aa 91.0

3
1arccos3 21

≈⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛
π

 
22 73.13 aa ≈  33 12.0

12
2 aa ≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

 
Cube of edge 
length a  a⎟

⎠
⎞

⎜
⎝
⎛

2
3  

26a  3a  

Octahedron of 
edge length a  aa 18.1

3
2arccos6 21

≈⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛
π

 
22 46.332 aa ≈  33

21

47.0
9
2 aa ≈⎟
⎠
⎞

⎜
⎝
⎛
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Dodecahedron of 
edge length a  

a

a

64.2

10
5

2
1arccos15

21

≈
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛
π  

( )[ ]
2

221

6.20
52553

a
a

≈

+  

3

3

66.7

4
5715

a

a

≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
 

Tetrakaidecahedro
n of edge length a  

a3  ( )
2

2

8.26
3216

a
a

≈

+
 

33 3.1128 aa ≈  

Icosahedron of 
edge length a  ( )

a

a

74.1

10
53

2
3

5521arccos15

21

≈

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

+
⎟
⎠
⎞

⎜
⎝
⎛
π

 

22 66.835 aa ≈  ( )

3

3

18.2

12
535

a

a

≈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
 

Parallelepiped of 
edge lengths a , b  
and c  

2
cba ++  ( )cabcab ++2  cba  
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Appendix-CPPS-14 
 
14-A. Introduction to suspension rheology 
 
14-A-1. States of matter (basic rheological classification) 
 
• gas (compressible fluid) 
• liquid (incompressible fluid) 
• solid  
 

Deborah number: 
)(
)(

timendeformatiotimeprocesssticcharacteri
timerelaxationtimematerialsticcharacteri

t
t

De
process

material ==  

 
• fluids ( 1<<De , for purely viscous fluids 0→De ) 
• visco-elastic and elastico-viscous materials ( 1≈De , Maxwell fluid, Kelvin solid) 
• solids ( 1>>De , for purely elastic solids ∞→De ) 
 
Order of magnitude of viscosities for different classes of materials (only orientational values 
for typical materials of the respective class !)  
 
Material Viscosity Remark 
Gases 10 µPas at room temperature 
Water, ethanol, mercury 1 mPas at room temperature 
Metal melts 1 mPas at high temperature  
Ceramic suspensions 10 mPas − 1000 mPas apparent viscosity 
Oil 1 Pas apparent viscosity 
Ceramic pastes 10 Pas − 1000 Pas apparent viscosity 
Glass melts 10 Pas at high temperature 
Solid glass 1018 Pas Extrapolated value 
 
 
14-A-2. Basic 1-D rheological models  
 
Model Constitutive 

equation (1-D) 
Mechanical 
analogue 

Rheological 
characteristic 

Response 

Hooke γτ G=  spring 
 

ideally viscous − on de-loading: 
deformation and 
stresses  restore 
instantaneously 

Newton γµτ &=  dashpot 
 

perfectly elastic − on de-loading: 
deformation remains, 
stresses restore 
instantaneously 

Maxwell 
µ
ττγ +=

G
&

&  
spring and 
dashpot  
in series 
 

stress  
relaxation  

− on de-loading: 
stresses relax slowly 
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with 
G

trelax
µ

=  relaxt
t

e
−

⋅= 0ττ  

Kelvin γµγτ &+= G  spring and dashpot 
parallel 
 
 
 
 

Delayed 
response  

with 
G

tdelay
µ

=  

− on de-loading: 
deformation relaxes 
slowly 

delayt
t

e
−

⋅= 0γγ  
 
− on loading: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⋅=

−
delayt

t

final e1γγ

 
 

(only here γ  is the shear deformation, γ&  the shear rate !) 
 

!!!    In the following γ  is the shear rate    !!! 
 
Definition of the 1-D shear stress τ  and shear rate γ  for important geometries and flow 
types:  
 
• In (rectangular) Cartesian coordinates with flow in direction x (plane Couette flow): 
 

−  Shear stress xyττ ≡  ( = x-y-component of the stress tensor),  

− shear rate 
dy
dvx≡γ  ( = y-direction gradient of the x-component of the velocity vector 

= x-y-component of the rate of deformation tensor) 
 
• In cylindrical (semi-polar) coordinates with flow in axial direction (cylindrical Poiseuille 

flow): 
  

− Shear stress rzττ ≡  ( = r-z-component of the stress tensor),  

− shear rate 
dr
dvz≡γ  ( = radial gradient of the axial velocity component = r-z-

component of the rate of deformation tensor) 
 
• In cylindrical (semi-polar) coordinates with flow in tangential direction (cylindrical 

Couette flow):  
 

− Shear stress θττ r≡  ( = r-θ-component of the stress tensor),  

− shear rate ωγ θ =≡
dr

dv
 ( = radial gradient of the angular velocity = r-θ-component of 

the rate of deformation tensor) 
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14-A-3. Principle of rheology − fluid flow along solid surfaces 
 

Critical assumption (boundary condition): 
 

Fluid sticks on the solid surface (absence of wall slip) 
 
Note: All "normal" monophase liquids (not gases ! not suspensions !) are assumed to stick on 
solid surfaces during flow, irrespective of their physico-chemical adherence or wetting 
behavior with respect to these surfaces ! Even mercury sticks on the glass surface during flow 
through capillaries ! (Coleman, Markovitz & Noll, 1966) 
 
 
14-A-4. Simple viscometers (basic formulae) 
 

• Falling ball viscometer:                  
v

gD ls

18
)(2 ρρ

η
−

=       (Stokes equation) 

 

• Capillary viscometer:                   
L
pD

4
∆

=τ        ( p∆ = pressure difference )                                                

                                                          
D
vz8

=γ         ( zv  = mean velocity ) 

 
 

• Rotational viscometer:            
hR

M
2

12π
τ =               ( M = torque )                                                

                                                     2

2

11 ⎟
⎠
⎞⎜

⎝
⎛−

=

R
R
ωγ        ( ω  = angular velocity ) 

 
 
14-A-5. Rational theory of viscometry 
 

)(DTT =  
 
• Linear case – Newtonian fluids (Navier-Stokes fluids = 3-D "Newtonian fluids", 

compressible or incompressible): 
 

D1DT µξ 2)( += tr  
 
• Non-linear case – non-Newtonian fluids (purely viscous, Reiner-Rivlin fluids, 

compressible or incompressible) 
 

2
210 (...)(...)(...) DD1T φφφ ++=  

 
where the iφ  are scalar functions of T,ρ  and the three principal invariants DI , DII  and 

DIII . 
 



PABST & GREGOROVÁ (ICT Prague)                      Characterization of particles and particle systems –Appendices 
 

 100

• For incompressible fluids (= liquids) 0=== DItrdiv Dv  and for viscometric flows 
(equivalent to simple shear flows) 0det == DIIID . Furthermore for incompressible 
fluids the pressure is hydrostatic and therefore an arbitrary scalar, into which the first 
above r.h.s. term can be absorbed. For viscometric flows the third r.h.s. term determines 
normal stresses only. When these are without concern we have for the stress tensor 

 
D1T )(1 DIIp φ+−=  

 
Since ( ) ( )[ ]22

2
1 DD trtrII D −=  and 0=Dtr  we have for the shear stress tensor 

 
( )DDτ )( 2

1 tr−= φ  
 

("generalized Newtonian fluids", only incompressible !) 
 
Specialization to 1-D shear stresses 
 
• Linear case − Newtonian fluids               γµτ =  

where µ  = viscosity (coefficient of dynamic shear viscosity). 
 
• Nonlinear case − Generalized Newtonian fluids                     γγητ )(=    

where ( )γη  = apparent viscosity. 
 
Special models for non-Newtonian liquids in 1-D:  

 
− Power law (Ostwald - De Waele model):                         nKγτ =  
− Bingham model:                                                               γττ K+= 0  
− Herschel-Bulkley model (generalized Bingham model):  nKγττ += 0  
− Bird-Carreau model, (modified) Cross model, Prandtl-Powell-Eyring model 

 
 
14-A-6. Temperature dependence of viscosity 
 

• AFE - type equations:         T
B

e0ηη =       (Arrhenius, Andrade, Frenkel, Eyring)  
 
(theory of reaction rates) 

• WLF - type equations:          )(
)(

0
0

0

TTB
TTA

e −+
−

= ηη        (William, Landel, Ferry) 
 
(free volume theory) 

• VFT - type equations:           0
0

TT
A

e −=ηη            (Vogel, Fulcher, Tamann) 
 
(modified free volume theory) 

 
• Purely empirical fit equations e.g.     )(

0
0TTAe −−= ηη  
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14-A-7. Concentration dependence of viscosity 
 
For dilute systems: 
 

Definition: Relative viscosity         
liquidpureofityvis

suspensionofityvis
r cos

cos

0

==
η
ηη  

 
• Einstein formula:                     φη 5.21+=r       (φ  = volume fraction of solids) 
 

(for perfectly rigid non-interacting spheres) 
 

• Second-order formulae for rigid spheres with first-order interaction effects: 
 
                                                     ...5.21 2 +++= φφη Br      ( 1.144.4 −=B )    
 
For concentrated systems: 
 

Definition: Reduced volume fraction     
fractionvolumemaximum

fractionvolume
r ==

maxφ
φφ  

 
Note: The highest possible maxφ  for a system of monosized spheres corresponds to closest 
packing, i.e. 74 %. For real systems the value maxφ  is often close to the value of random close 
packing of monosized spheres, i.e. 64 %. 
 

• Shell model formulae for monodisperse systems        ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
=

3

3

1 r

r
r C

φ
φ

η  

 
(where C  is a model-dependent parameter ranging from 0.589 to 1.125) 

 
 

• Eilers formula:           
2

1
125.11 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

⋅+=
r

r φ
φη  

 

• Mooney formula:        ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅=
r

r C
φ

φη
1

1exp    

     (reduces to Einstein if C  is chosen to be 5.2 ) 
 

• Krieger formula:           
N

r
r ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=
φ

η
1

1  

      (reduces to Einstein if N  is chosen to be max5.2 φ ) 
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14-B. Rheology of suspensions with anisometric particles 
 
14-B-1. Effective, relative and intrinsic viscosity 
 
Effective properties are the macroscopic (i.e. overall or large-scale), properties of multiphase 
materials. In general they are dependent on the constituent (i.e. phase) properties and the 
microstructure of the material. For two-phase solid-liquid mixtures with matrix-inclusion type 
microstructure (suspensions) the effective shear viscosity η  (simply called "effective 
viscosity" in the sequel) can be assumed to be a function of the solids volume fraction φ . 
Note, however, that the assumption of a dependence exclusively on φ  is only justifiable on 
pragmatic grounds, i.e. when higher-order microstructural information is lacking. Note 
further, that in assuming the existence of a unique (i.e. not shear-rate dependent) shear 
viscosity, one implicitly assumes purely viscous behavior (i.e. no viscoelastic effects) and 
Newtonian (linear) behavior of the whole suspension (and not only for the suspending 
medium). In the dilute limit, i.e. for volume fractions 0→φ , the effective viscosity η  of 
suspensions with rigid, spherical particles is given by the Einstein relation 
 

)5.21(0 φηη += .               
 
In this equation, φ  is the solids volume fraction, η  denotes the effective suspension viscosity 
and 0η  the viscosity of the suspending medium (pure liquid). In order to simplify notation in 
the following text, we introduce the relative viscosity rη ,  
 

0η
ηη ≡r ,                             

 
and the so-called intrinsic viscosity [ ]η , 
 

[ ]
φ

η
η

φ

1
lim

0

−
≡

→

r .                    

 
Using intrinsic viscosity, the Einstein relation can be formally generalized to suspensions of 
anisometric particles, i.e. 
 

[ ]φηη += 1r .                             
 
Jeffery, in a rigorous treatment of the motion of a rigid ellipsoids and spheroids of a certain 
aspect ratio, was the first to calculate definite values for [ ]η  as a function of the particle 
aspect ratio. Therefore this can be called Jeffery-Einstein relation. 
 
 
14-B-2. Intrinsic viscosity as a function of the particle aspect ratio 
 
Jeffery (1922) calculated the motion of a single ellipsoidal particle immersed in a viscous 
liquid. He solved the equations of motion for the case of slow laminar (creeping) shear flow 
and showed that for a rotationally symmetric ellipsoid (spheroids) this motion is in general 
periodic, with its axis of revolution describing a cone about the perpendicular to the plane of 
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the undisturbed motion of the liquid (Jeffery's orbit). Jeffery's investigation reveals no 
tendency of the spheroid to set its axis in any particular direction with regard to the 
undisturbed motion of the liquid. This finding is in agreement with modern research on fiber 
suspensions. Note, however, that the result has been derived for dilute suspensions (i.e. 
suspensions with non-interacting fibers or platelets) in shear flow, and cannot be assumed to 
be valid for either non-dilute suspensions (i.e. suspensions with interacting fibers or platelets) 
or other flow types, i.e. elongational flow. 

According to Jeffery, only lower and upper bounds can be given for the intrinsic viscosity 
of spheroid suspensions. The lower bound (i.e. the minimum value of [ ]η ) corresponds to the 
smallest dissipation of energy, the upper bound (i.e. the maximum value of [ ]η ) to the largest. 
In modern notation, these bounds are given by the following formulae: 
 
1. Minimum intrinsic viscosity 
 

[ ] 4min
1

Ahd
=η ,                

 
2. Maximum intrinsic viscosity 
 

[ ]
( ) ⎥

⎦

⎤
⎢
⎣

⎡
++

+
=

C
hd

B
d

A
h

dhhd

2

23max
2

2
1η .             

 
In these equations, h  is the length of the long axis ("height") and d  the length of the short 
axis ("diameter"), and the coefficients CBA ,,  are 
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for prolate spheroids, for which ⎟
⎠
⎞

⎜
⎝
⎛≡

d
harccosθ , and  
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and for oblate spheroids, for which ⎟
⎠
⎞

⎜
⎝
⎛≡

h
darccosθ . Numerical values of the minimum and 

maximum intrinsic viscosity of spheroid suspensions are listed in Table 14-B-1 as a function 
of the aspect ratio dhR ≡ . 
 
 
Table 14-B-1. Minimum and maximum intrinsic viscosity values of a suspension with oblate 
and prolate spheroids as a function of the particle aspect ratio (calculated according to 
Jeffery). 
 
 
 

Aspect ratio R   Minimum of [ ]η  Maximum of [ ]η  
0 2.061 ∞  
1/100 2.067 86.3 
1/50 2.072 43.9 
1/40 2.075 35.4 
1/30 2.080 26.9 
1/20 2.089 18.4 
1/10 2.116 9.96 
1/9 2.122 9.11 
1/8 2.130 8.27 
1/7 2.139 7.43 
1/6 2.151 6.58 
1/5 2.168 5.74 
1/4 2.193 4.91 
1/3 2.232 4.08 
1/2 2.306 3.27 
1 2.5 2.5 
2 2.174 2.819 
3 2.088 3.088 
4 2.053 3.327 
5 2.035 3.548 
6 2.025 3.753 
7 2.019 3.948 
8 2.015 4.134 
9 2.012 4.312 
10 2.010 4.485 
20 2.002 5.999 
30 2.001 7.316 
40 2.001 8.529 
50 2.000 9.677 
100 2.000 14.9 
∞  2.000 ∞  
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According to Brenner (1974), in simple shear flow the intrinsic viscosity of a suspension with 
axisymmetric particles (possessing fore-aft symmetry) is given by the expression 
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2
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In this expression 
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3
5

=  

 
is a dimensionless parameter and  
 

rD
P γ
=  

  
the rotary Péclet number, with γ  being the shear rate and the rotary Brownian diffusion 
coefficient rD  given by the Stokes-Einstein equation 
 

r
r KV

kTD
06 η

= , 

 
where k  is the Boltzmann constant, T  the absolute temperature, V  the particle volume and 

0η  the viscosity of the suspending medium. The material constants N  and rK  (connected to 
the rotation of the axisymmetric particle about a transverse axis) are dependent on the model 
shape chosen and the aspect ratio (true axis ratio, particle axis ratio) baR = , where a  is the 
polar radius (for prolate shapes half of the length, for oblate shapes half of the thickness) and 
b  the equatorial radius (for prolate shapes half of the thickness, for oblate shapes half of the 
diameter). For spheroids in general 
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In these expressions the α ‘s are defined as  
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for prolate spheroids ( 1>R ) and  
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for prolate spheroids ( 1<R ). As a consequence  
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for all spheroids. The volume of a spheroid is 
 

2

3
4 abV π

= . 

 
In the limiting case 1>>R  (long thin prolate spheroid) 
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Moreover, for long thin prolate spheroids, 
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For long slender ( 1>>R , but finite and blunt-ended) cylindrical rods (with 45.5≈L ) 
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Moreover, for long slender cylindrical rods, 
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The volume of a circular cylinder is 
 

22 abV π= . 
 
The material constants in the limiting case 1<<R  (infinitesimally thin circular disk of radius 
b ) can be obtained from the general results for an oblate spheroid, by letting the polar radius 
a  tend to zero. Since, however, the volume V  of such a disk and accordingly also its volume 
fraction φ  is zero, the results must be presented in a different form, using the number density 
n  (number of disks per unit volume) as a concentration measure. According to Brenner 
(1974) 
 

3

3
326 bVKr →  

 
and  
 

1−=B  
 
(corresponding to 0=R ). Moreover, the following replacements have to be made: 
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1 45
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3

2 45
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3 45
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3

4 45
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In the special case of spheres ( 1=R ) the α  integrals reduce to 
3
2

21 ==αα , 
5
2

43 ==αα  

and 
15
4

65 ==αα  and thus the material constants are   

 
1=rK , 
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0=B , 

 

2
1

1 =Q , 

 
432 QQQ ==  

 
The volume of a sphere (with radius b ) is 
 

6

3bV π
= . 

 
For all axisymmetric particles with fore-aft symmetry the material parameters 1Q  through 

4Q , as well as rK , N , and B  completely determine the behavior of the suspension in 
arbitrary flow processes. Only five of these parameters are independent. Note that for all 
model shapes described above 1≤B . The inverse case 1≥B  occurs only for relatively 
uncommon model shapes (e.g. certain peanut-shaped bodies). The parameter 4Q  is derived 
from 
 

BNQQ
2
1

34 −= . 

 
All material parameters are uniquely defined by the aspect ratio R . Based on the knowledge 
of rK  and particle size (volume V ) 1 the rotary Péclet number can be estimated in order to 
assess the influence of Brownian motion. It is common practice to distinguish three regimes: 
 

• Dominant Brownian motion: 
 

1<<P  
 

In this case (“zero shear rate limit”) the intrinsic viscosity is maximal. The upper 
bound of the intrinsic viscosity is 
 

[ ] 3210 25 QQQ +−=η . 
 
According to Brenner (1974) this result holds not only for simple shear flows (as 
stated in earlier derivations), but for any (homogeneous) shear flow, including e.g. 
uniaxial extension. For long thin prolate spheroids ( 1>>R ) this equation reduces to 
the well-known approximate result of Kuhn and Kuhn (1945) 

                                                 
1 Apart from diluteness of the suspension, the particle system is assumed to be monodisperse, with a 
constant aspect ratio. This has to be kept in mind when a comparison with real suspensions is 
intended. The extrapolation of viscosity measurement results in the non-dilute region to the dilute 
region may or may not be justified. Due to interactions effective in the non-dilute region, such an 
extrapolation may lead to higher intrinsic viscosity values. Similarly, the effect of polydispersity of real 
systems on the results is difficult to assess, especially when additionally the aspect ratio is not size-
invariant or has a distribution with finite width.     
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Table 14-B-2 lists the upper bound of the intrinsic viscosity [ ]0η  (i.e. in the case 

0=P ) for dilute suspensions of prolate and oblate spheroids in dependence of the 
aspect ratio, according to the exact numerical calculation of Scheraga, cf. Brenner 
(1974). 
 
Table 14-B-2. Upper bound of the intrinsic viscosity [ ]0η  (i.e. in the case 0=P ) for 
dilute suspensions of prolate and oblate spheroids in dependence of the aspect ratio. 
 

R  or R1  Prolate Oblate 
1 2.5 2.5 
2 2.908 2.854 
4 4.663 4.059 
5 5.806 4.708 
10 13.63 8.043 
16 27.18 12.10 
25 55.19 18.19 
50 176.8 35.16 

 
  

• Intermediate Brownian motion: 
 

   133 >>>>+ − PRR ee    
  

In this case (which necessarily requires 1>>R  for prolate and 1<<R  for oblate 
particles) the intrinsic viscosity is  
 

[ ] ( )
4
55 41 ++= QQη  

  
• Weak Brownian motion: 

 
1>>P        and      33 −+>> ee RRP  

 
where eR  is an “equivalent aspect ratio” (emerging in a natural way in hydrodynamic 
theory), which is equal to the true aspect ratio (i.e. RRe = ) in the case of spheroids 
and  
 

R
R

L
Re ln3

8π
=  

 
in the case of long slender cylindrical rods. Table 14-B-3 lists equivalent aspect ratios 
of slender rods in dependence of the true aspect ratio. 
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Table 14-B-3. Equivalent aspect ratios of slender rods in dependence of the true 
aspect ratio. 
 

R  eR  
1 - 
2 2.98 
4 4.21 
5 4.89 
10 8.17 
16 11.9 
25 17.3 
50 31.3 
100 57.8 
1000 472 

 
In the case of weak Brownian motion the goniometric factors are given in Table 14-B-
4 in dependence of the equivalent aspect ratio, according to the asymptotic results of 
Hinch & Leal, cf. Brenner (1974). 

 
Table 14-B-4. Goniometric factors in dependence of the equivalent aspect ratio. 

 
eR  θ2sin  φθ 2sinsin 2P  φθ 2cossin 2  

1 0.667 0 0 
2 0.690 2.1653 -0.2716 
4 0.758 8.6551 -0.5136 
5 0.784 13.302 -0.5810 
10 0.862 51.090 -0.7530 
16 0.905 128.92 -0.8366 
25 0.936 312.55 -0.8918 
50 0.968 1244.68 -0.9388 
100 0.986 4998.81 -0.9578 
∞  1 22R∝  -1 

 
The values in this table refer to the case ∞≤≤ eR1  (prolate particles). In order to 
obtain the values of the goniometric factors in the range 10 ≤≤ eR  (oblate particles) 
the following replacements have to be made: 
 

ee RR 1→  
 

θθ 22 sinsin →  
 

φθφθ 2sinsin2sinsin 22 −→  
 

φθφθ 2cossin2cossin 22 −→ . 
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For long slender bodies ( 1>>eR , i.e. 1→B ), i.e. when 131 >>>> eRP , the following 
asymptotic approximations can be used, cf. Brenner (1974): 

 

eR
792.11sin 2 −=θ  

 

P
Re

2
2sinsin

2
2 =φθ  

 

eR
0524.312cossin 2 +−=φθ . 

  
The corresponding intrinsic viscosity is 
 

[ ]
R

R
ln

315.0=η . 

 
In the total absence of Brownian motion (i.e. absence of rotary diffusion, corresponding to the 
limit ∞→P ) bodies with 1≤B  (common case) undergo in simple shear flow a time-
periodic rotation of the type first described by Jeffery (1922). The equations governing 
rotation of an axisymmetric body suspended in a liquid medium exposed to simple shear flow 
are 
 

φθγθ 2sin2sin
4
1 B=&                          and                         ( )φγφ 2cos1

2
1 B+=& . 

 
Inspection of these equations shows, however, that bodies with 1≥B  undergo an aperiodic 
motion in simple shear flow, ultimately adopting a stable terminal orientation. In this case the 
terminal orientations are 2πθ =∞ , R=∞φtan  and 2πθ =∞ , R−=∞φtan  for 1≥B  and 

1−≤B , respectively. As a consequence, in the absence of rotary Brownian motion the 
orientational distribution function is the Dirac delta function (distribution) and the following 
goniometric factors may be employed to calculate the intrinsic viscosity in simple shear flow    
 

1sin 2 =θ  
 

B
B 12sinsin

2
2 −

=φθ  

 

B
12cossin 2 −=φθ . 

 
In concluding we note that the intrinsic viscosity is in general bounded from below by the 
inequality [ ] 1>η . 
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14-C. Rheology and thermal conductivity of nanofluids 
 
14-C-1. Concentration measures and mixture rules  
 
Transformation of mass fractions (weight fractions) w  into volume fractions φ  and vice 
versa: 
 

( ) ww
w

fs

f

ρρ
ρ

φ
+−

=
1

 

 

( ) φρφρ
φρ

sf

sw
+−

=
1

 

 
In these relations sρ  is the density of the solid particles and fρ  the density of the base fluid, 
i.e. the liquid medium; φ  and w  (for convenience without subscript) refer to the dispersed 
phase, i.e. the solid particles. Accordingly, the effective density of the suspension is 
 

( ) fs ρφρφρ −+= 1 . 
 
The primary aim of suspension rheology is the description of the effective viscosity of a 
suspension η  at constant temperature in dependence of the volume fraction of solids φ . In the 
classical approach to nanofluids, volume fractions, mass fractions and densities are related by 
the same relations as for ordinary suspensions (see above). Moreover, if the nanofluid is in 
thermal equilibrium, the effective volumetric heat capacity pp cC ρ=  (effective specific heat 
at constant pressure, referred to unit volume) is usually assumed to be 
 

( ) PfPsP CCC φφ −+= 1 . 
 
Although from a theoretical point of view this simple additivity of the volumetric heat 
capacities with respect to volume fractions is questionable (an exact treatment has to take 
compressibility and thermal expansion into account), this relation can be expected to be a 
reasonable approximation to reality. The exact relation is based on the additivity of the 
specific heats (i.e. heat capacities referred to unit mass) with respect to mass fractions, i.e. 
 

( ) PfPsP cwcwc −+= 1 . 
 
Note that for the calculation of the effective (volumetric) thermal expansion coefficient β  of 
suspensions, including nanofluids, the thermal expansion of the solid phase particles can 
usually be neglected, i.e. 
 

( ) fβφβ −= 1 , 
 

where fβ  is the volumetric thermal expansion coefficient of the base fluid.  
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14-C-2. Effective viscosity and thermal conductivity  
 
Predictive relations for the effective viscosity of nanofluids are in principle analogous to those 
for ordinary suspensions (see above), i.e. the Einstein and Brinkman relation. Additionally, 
several other extensions or modifications of the Einstein relation as well as several relations 
of empirical origin (obtained from fitting experimental data), have been proposed, e.g.  
 

φη 101+≈r   
 

( )26.106.101 φφη ++=r   
 

( ) ( ) ( ) ...5.25.25.25.21 432 +++++= φφφφη r  
 

25341.391 φφη ++=r  
 
The fact (empirical finding) that the linear Einstein relation always underestimates the actual 
viscosity increase with solid volume fraction, can be accounted for either by using a nonlinear 
relation or, sometimes, by reinterpreting the volume fraction in terms of an “effective“, 
“equivalent“, or “apparent“ volume fraction. In nanofluids, and to a certain extent in ordinary 
suspensions as well, the physical interpretation of this apparently enhanced volume fraction 
may be agglomeration (since “porous“ agglomerates formed by clustering of primary particles 
can act as secondary particles during flow processes). For nanofluids, additionally, the fluid 
surface layer on the dispersed nanoparticles, which is known to exhibit structure and 
properties different from the bulk fluid, may be volumetrically significant. One the most 
interesting models for practical use is the Chen model [Chen et al. 2007]. Under reasonable 
assumptions, this model contains one adjustable parameter which can be determined from 
experimentally measured data and interpreted in physical terms, viz. as an effectively 
enhanced volume fraction due to agglomeration. The Chen model is based on a Krieger-type 
relation, modified for agglomerated suspensions, i.e. 
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where maxφ  is the maximum concenration (solids volume fraction) at which flow can occur 
(approx. 0.605 for high shear rate flows), [ ]η  is the intrinsic viscosity (approx. 2.5 for 
isometric particles) and aφ  is the apparent volume fraction of the agglomerated solid 
particles, which is related to the true volume fraction φ  via the fractal dimension D , 
 

D
a

a r
r −
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⎛⋅=

3

φφ , 

 
where r  and ar  are the radii of the primary particles and the secondary particles 
(agglomerates), respectively. Assuming that agglomeration is a diffusion limited aggregation 
process (DLA process) the fractal dimension D  is approx. 1.8 for nanofluids. The resulting 
relation 
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can thus be used to extract an effective agglomerate size (radius ar ) from the measured 
concentration dependence of the viscosity ( rη  versus φ  curve) when the primary particle size 
is known. Note that the above Krieger-type expression can be expanded in polynomial form, 
 

[ ] [ ]( ) [ ]( ) ...1 32 ++++= aaar φηφηφηη  
 
In other words, when the apparent volume fraction of agglomerated particles is taken instead 
of the true volume fraction, Einstein-type equations and its extensions are obtained (see 
above). Indeed, experimentally it is often found, that the ratio rra  is between 3 and 4, so that 
the intrinsic viscosity remains at a value close to 2.5, as expected for approximately isometric 
agglomerates. Note further, that the temperature dependence of the effective viscosity of 
nanofluids, and suspensions in general, is almost entirely determined by that of the base fluid 
(liquid medium) and can be described e.g. by the Vogel-Fulcher-Tamann relation. In 
concluding this subsection we would like to emphasize that the rheology of nanofluids is a hot 
topic of current research and many open questions remain. For strongly anisometric 
nanoparticles (e.g. carbon nanotubes) the viscosity increase with solids volume fraction can 
be expected to be much stronger than predicted by any of the above models.  
 Nanofluids usually exhibit enhanced thermal conductivity in comparison to the base 
fluid. There is some controversy on whether this enhancement is even larger than predicted by 
classical models (recent critical work [Zhang et al. 2007] denies this and claims that 
systematic measurement errors are responsible for erroneously high thermal conductivity 
values beyond the classical predictions), but it is commonly agreed that there is measurable 
enhancement of thermal conductivity even for very low volume fractions of solids (< 1 %). 
Principally this enhancement is simply a plausible consequence of the fact that most solids 
have higher − sometimes considerably higher − thermal conductivity than the base fluid, cf. 
Table 14-C-1. 
 
Table 14-C-1. Thermal conductivity values of materials of interest for nanofluids.  
 
Material Thermal conductivity [W/mK] at R.T. 
  
Base fluids  
Water 0.613 
Ethylene glycol 0.25 
Oil 0.11 
  
Nanoparticles   
MW-CNT (carbon nanotubes) 3000 
CuO 76.5 
Al2O3 33 (up to 42-46 ?) 
SiO2 1.4 
Fullerene 0.4 
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The most popular models for thermal conductivity prediction are the Maxwell (or 
Maxwell-Eucken) model for spherical particles [Maxwell 1892, Eucken 1932], sometimes 
erroneously attributed to Wasp [Wasp 1977], 
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the Bruggeman-Landauer mean field model [Bruggeman 1935, Landauer 1952], 
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and the Hamilton-Crosser model for non-spherical particles [Hamilton & Crosser 1962], 
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where n  is a shape factor, which is Ψ= 3n , where Ψ  is the sphericity, defined as the ratio 
of the surface area of a volume-equivalent sphere to that of the particle in question. Note that 
for spheres 3=n , i.e. the Hamilton-Crosser model contains the Maxwell model as a special 
case. High aspect ratio particles have high values of n  and therefore generally more potential 
for thermal conductivity enhancement than isometric nanoparticles of the same material 
(however, also the viscosity is extremely enhanced, which sets certain limitations to the 
exploitation of this potential in practical applications – the volume fraction has to be kept low 
enough to ensure sufficient fluidity). In the case of carbon nanotubes, which are intrinsically 
high-aspect ratio materials, the extremely high thermal conductivity clearly outweighs the 
requirement of extremely low concentrations to ensure fluidity.  

Specific models for anisometric particles, in particular high aspect ratio fibers and 
carbon nanotubes, are the Yamada-Ota unit-cell model [Yamada & Ota 1980], 
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which can also be considered as a modification of the Maxwell model (where C  is a shape 
factor given for cylindrical particles by ( )PP dlC 2.02 φ= , where PP dl is the aspect ratio, 
i.e. the ratio of fiber length and diameter) and the Jang-Choi model [Jang & Choi 2004],  
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where ζ  is the Kapitza resistance (often treated as an adjustable parameter), fmr  is the radius 
of the molecules of the base fluid, spr  the radius of the solid particles, pRe  the (nano-)particle 
Reynolds number, Pr  the Prandtl number and the cos-term determines the fiber orientation 
(via θ ): 1cos2 =θ  for well aligned fibers and 31cos2 =θ  for completely random 
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orientation. This model predicts an additional thermal conductivity contribution via the 
particle interfaces and a inverse dependence on particle size (last term). Similarly, the model 
by Kumar et al. [Kumar 2004]  
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where 2C  is a constant and Pv  is given by the Stokes-Einstein relation 
 

2
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P r

Tkv
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= , 

 
predicts that the thermal conductivity enhancement increases with particles size as 31 Pr  
(however, it also predicts a temperature dependence in addition to that of the base fluid; 
which has not been experimentally confirmed so far). Note that in the absence of 
microconvection (caused by particle motion), the Jang-Choi model simplifies to 
 

φζθφ ⋅⋅⋅+−=
f

s
r k

k
k 2cos1 . 

 
In order to account for thermal conductivity increases beyond the predictions, the bulk 
thermal conductivity of the solid particles can be replaced by an “effective“ (apparent, 
equivalent) thermal conductivity, e.g. that of agglomerates (aggregates), cf. [Chen et al. 2007] 
for a combined Maxwell-and-Bruggeman model, or the nanoparticles with its adsorbed 
partially ordered liquid layer (which exhibits structure and properties significantly different 
from the bulk fluid and approaching the corresponding solid phase structure and properties) 
can be modeled as composite shells, i.e. the nanoparticles are modeled as non-overlapping 
equivalent particles of greater size and the ordered liquid layer is assumed to have higher 
thermal conductivity than the bulk thermal conductivity of the base fluid. The Maxwell 
relation as modified by the Yu-Choi model is 
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where ε  is the ratio of the ordered layer thickness to the nanoparticle radius and pek  is the 
effective thermal conductivity of the composite-shell particles given by  
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, 

 
where γ  is the ratio of the thermal conductivity of the ordered layer to that of the solid 
particle core. 
Denoting the ratio between the thermal conductivity of the solid particles and the fluid 
(“phase contrast“) as fs kk=κ , a short-hand notation of the above relations can be given. In 
this short-hand notation further models occuring in the literature can be given as follows: 
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1. Jeffrey model [Jeffrey 1973]: 
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2. Davis model [Davis 1986]: 
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3. Lu-Lin relation [Lu & Lin 1996]: 
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