Úpravy algebraických výrazů. Operace se zlomky, mocninami a odmocninami.
Mnohočleny. Operace s mnohočleny, určování kořenů, rozklad mnohočlenu na součin kořenových činitelů. Doplnění kvadratického trojčlenu na úplnou druhou mocninu.
Řešení jednoduchých algebraických rovnic – rovnice lineární, kvadratická, některé typy algebraických rovnic vyšších stupňů. Ekvivalentní a neekvivalentní úpravy, význam zkoušky při řešení rovnice.
Řešení jednoduchých logaritmických, exponenciálních a goniometrických rovnic. Rovnice s absolutní hodnotou.
Soustavy algebraických rovnic, především dvou lineárních rovnic o dvou neznámých.
Nerovnice. Řešení lineárních a kvadratických nerovnic a jejich soustav. Nerovnice s absolutní hodnotou.
Řešení jednoduchých nerovnic logaritmických, exponenciálních a goniometrických. Nerovnice součinového a podílového typu.
Komplexní čísla. Algebraický a goniometrický tvar komplexního čísla. Operace s komplexními čísly. Moivreova věta. Odmocnina z komplexního čísla. Řešení kvadratické rovnice s reálnými koeficienty a záporným diskriminantem.
Analytická geometrie v rovině. Souřadnice bodu a vektoru. Analytické vyjádření přímky v rovině – parametrická, obecná a směrnicová rovnice přímky. Vzájemná poloha dvou přímek.