

Constant pressure ($\Delta P = const.$) by integrating the filtration equation: $[\mu \alpha x / (2A^2 \Delta P)] V^2 + [\mu R_f / (A \Delta P)] V - t = 0$ t/V vs. V is a straight line \Rightarrow useful for data analysis mass balance \Rightarrow cake depth as function of filtrate V: $h_c = xV/[A\rho_s(1-\varepsilon)]$ moisture ratio: ϕ = mass of wet cake / mass of dry cake $\phi = 1 + (\rho_L / \rho_S) \varepsilon/(1-\varepsilon)$

Compressible cake: $R_{c} = h_{c}/\kappa_{c} = \alpha m_{s}/A \qquad \Rightarrow \qquad \alpha = [\kappa_{c} (1-\varepsilon) \rho_{s}]^{-1}$ Cake porosity ε is not constant in this case. Correlations for average cake porosity: $\alpha' = \alpha_{0} (1-n) (\Delta P)^{n} \qquad n...$ compressibility coefficient calcite: n=0.2kaolin: n=0.6Dry cake mass per filtrate volume also isn't constant. from mass balance: $x = [(1-w_{F})/w_{F}\rho_{L} - \varepsilon/(1-\varepsilon)\rho_{s}]^{-1}$

Filtration cycle	
 filtration cake washing cake deliquering (drainage) cake removal filter cleaning 	τ _F τ _W τ _D τ _R τ _C
Objective:maximize total throughput	
single cycle ($\tau_F + \tau_W + \tau_D + \tau_R + \tau_C$)	
\Rightarrow batch scheduling	

