Chemické inženýrství A/B

Sušení Drying

F. Štěpánek & J. Lindner, 2011-13

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Drying

<u>Filtration/Centrifugation</u> - mechanical separation of liquid from solids

Drying - separation by L-V phase transition

Composition - solid material:

A ... liquid; B ... solid

dry basis: wet basis:

$$x_{A} = m_{A} / m_{B}$$
 $w_{A} = m_{A} / (m_{A} + m_{B})$

Composition - gas phase:

partial pressure $p_A = y_A P$

relative saturation $\varphi = p_A / p_A^*$

saturated vapour pressure $p_A^* = p_A^*(T)$

(e.g. from Antoine equation)

Moisture equilibrium:

• free moisture content $x_A = x_{A,tot} - x_A^*$

Classification of drying processes

Means of heat supply:

- direct heat transfer (hot gas)
- indirect heat transfer (heat exchange surface, microwave, or radiative)

Means of vapour removal:

- cross-flow of carrier gas
- through-flow of carrier gas
- suction

Means of solids motion:

- static vs. agitated (mechanically, fluidisation)

Heat-transfer rate:

$$Q = h_q A \Delta T$$
 or

$$Q = h_{q} \ aV \ \Delta T$$

 ΔT ... mean temperature difference, $\Delta T \sim (T_h - T_v)$

(not necessarily ΔT_{LM})

Heat-transfer coefficients:

-from gas to a single particle (or droplet)

$$Nu = 2.0 + 0.60 \text{ Re}_{p}^{1/2} \text{ Pr}^{1/3}$$

-from fluid to a flat surface (laminar flow and Pr>0.7)

$$Nu = 0.664 Re^{1/2} Pr^{1/3}$$

$$(Nu = h_a L/\lambda)$$

$$Re=uL\rho/\mu$$

$$Pr = c_p \mu / \lambda)$$

-otherwise correlations for each geometric arrangement

Drying curves and drying rates:

drying rate, $-dx_A/dt$

moisture content, x_A

- 1) warming-up period
- 3) 1st falling-rate period
- 2) constant-rate period
- 4) 2nd falling-rate period

Calculation of drying time:

-Constant drying conditions

Drying rate
$$R = -(1/A) dm_A/dt = -(m_B/A) dx_A/dt$$

Drying time
$$t_T = (m_B/A)_{x1} \int x^2 dx_A/R$$

Constant period:
$$R = R_c \Rightarrow t_c = m_B (x_1 - x_2) / (AR_c)$$

Falling rate period:
$$R = a x_A + b = a = (R_c - R')/(x_c - x')$$

$$\Rightarrow t_{\rm f} = m_{\rm B} / (aA) \ln(R_1/R_2)$$

If single falling-rate period and x'=0, then total time:

$$t_{\rm T} = m_{\rm B}/(AR_{\rm c})[(x_{\rm initial}-x_{\rm c})+x_{\rm c} \ln(x_{\rm c}/x_{\rm final})]$$